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Obesity, a wide-spreading medical condition, is associated 
with a range of life-threatening diseases including type-2 
diabetes, cardiovascular disease, and cancer through mecha-
nisms that are poorly understood (1–3). It has become clear 
that white adipose tissue (WAT), overgrown in obesity, is the 
source of factors that have systemic effects on many aspects of 
physiology. Mobilization of progenitor cells and their recruit-
ment to the site of inflammation is one of the mechanisms 
that underlies tissue repair and influences disease progression 
(4). Elevated systemic circulation of hematopoietic progenitor 
cells (HPC), endothelial progenitor cells (EPC), and of stromal 
progenitors, commonly referred to as mesenchymal stromal 
cells (MSC) underlies tissue remodeling in development and 
pathology (5,6). Although the capacity of progenitor cells to 
facilitate wound healing can have clinical benefit, it can also 
negatively affect disease outcome. For example, recruitment 
of HPC, EPC, and MSC by tumors and fibrotic lesions can 
promote cancer progression through effects on vasculariza-
tion, stromatogenesis, and the immune response (3,7,8). The 
purpose of this study was to examine the relationship between 
obesity and levels of circulating progenitor cells (CPCs).

SubjectS and MethodS
In this study, 26 individuals (11 men and 15 women) with the mean age 
of 45 ± 3 years were recruited. Approval for the study was obtained from 
Tulane University institutional review board. Peripheral blood samples 
(15 ml) were collected from each subject under an informed consent. 

Demographic (age, gender), medical (history of diabetes, cancer and 
other comorbidities), and lifestyle (smoking, exercise) data were collected, 
BMI (kg/m2) was calculated, and subjects were divided into subgroups 
according to their BMI (nonobese <30 and obese >30). Supplementary 
Table S1 online shows the baseline donor characteristics.

For flow cytometric analysis of human blood, peripheral blood mono-
nuclear cells (PBMC) were isolated by Ficoll gradient centrifugation. 
PBMC analysis was performed with an LSR-II flow cytometer and the 
FACSDiva software (BD Bioscience, San Jose, CA). Cells were gated to 
exclude cell clumps, contaminating polymorphonuclear cells, red blood 
cells, platelets, endothelial microparticles, debris, as well as dead cells 
based on 7-aminoactinomycin D staining (Figure 1a). Viable PBMC 
(>500,000/sample) were then used to enumerate individual popula-
tions (Figure 1b). For fluorescence-activated cell sorting on PBMC and 
WAT-derived cells (see Supplementary Figure S1 online), fluorescein 
isothiocyanate-conjugated CD31antibody (clone WM59), phycoeryth-
rin-conjugated CD34 antibody (clone 8G12), and allophycocyanin-Cy7-
conjugated CD45 antibody (clone HI30) along with appropriate isotype 
control immuno globulin G from BD Bioscience were used. Cell cultur-
ing, cytospins, cell differentiation assays, and cell staining analyses were 
performed as we have described previously (7,9,10).

Statistical comparisons of circulating cell frequencies, which were not 
normally distributed as determined by the Kolmogorov–Smirnov test, 
were performed using nonparametric Mann–Whitney U-test (for two 
group comparison) and by using ANOVA based on the Kruskal–Wallis 
test (for three group comparison).

ReSultS
To analyze systemic circulation of CD34+ cells, we enumerated 
distinct peripheral blood cell populations by multipara metric 
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flow cytometry. Based on the established gating protocol 
(11), we enumerated circulating CD34dimCD31brightCD45− 
endothelial cells (EC) and CD34brightCD31dimCD45dim 
CPC, which include HPC and EPC (11). In parallel, we quanti-
fied circulating CD34brightCD45bright leukocytes and cells 
with the CD34brightCD31−CD45− immunophenotype; the 
 latter were present in the majority of PBMC from obese sub-
jects (Figure 1b). We used conventional cell culture assays 
(7,9,10) to establish the identity of each cell population iso-
lated by fluorescence-activated cell sorting (Figure 1c). Cells 
sorted as CPC predominantly did not attach in culture and had 
the expected HSC morphology. A shown in Supplementary 
Figure S2a,b online, we demonstrated that this population is 
indeed enriched in hematopoietic progenitors based on their 
capacity to differentiate into unit-granulocyte- macrophage 
or burst-forming units-erythrocyte. As expected, the other 
three sorted cell populations were not efficient in hematopoi-
esis (see Supplementary Figure S2a,b online). Cells sorted 
as CD34bright leukocytes expectedly contained nonadher-
ent and weakly adherent cells, whereas cells sorted as EC 
attached to fibronectin and attempted forming endothelial 
networks. The identity of EC was validated by immunofluores-
cence analysis of cytospins indicating the expected expression 
of von Willebrand factor and VE-Cadherin (CD144), which 
also confirmed lack of endothelial markers on other sorted 
populations (see Supplementary Figure S2c online). The 
CD34brightCD45−CD31− population has not been  previously 
identified in blood by flow cytometry. In solid tissues, the 
CD34brightCD45−CD31− immunophenotype has been previ-
ously attributed to pericytic mesenchymal progenitors (MSC) 
that can be isolated as fibroblast colony-forming units (CFU-
F) (10,12,13). To test whether these cells correspond to circu-
lating MSC, we analyzed cytospins of every cell population 
isolated by fluorescence-activated cell sorting by immunofluo-
rescence. This confirmed expression of NG2, a pericyte marker 
present on MSC, specifically by CD34brightCD45−CD31− 
cells (see Supplementary Figure S2c online). We also 
inspected PBMC cultured on uncoated plastic in conditions 
used for MSC expansion (7,12). Indeed, we observed CFU-F 
 typical of MSC derived from PBMC of subjects with BMI 
>30 (Figure 1d). Interestingly, we have not been able to iso-
late CFU-F from PBMC of any of the BMI <30 subjects. We 
confirmed that cultured cells of this population express char-
acteristic MSC markers such as collagen-I and αSMA (see 
Supplementary Figure S3a online). Differentiation of culture-
expanded CFU-F from obese individuals into adipocytes, oste-
oblasts, and chondrocytes by using standard assays established 
in our group (13) unequivocally demonstrated their MSC 
identity (see Supplementary Figure S3b online).

Finally, we assessed whether obesity correlates with changes 
in cell circulation in healthy volunteers assigned into two 
groups based on the BMI: nonobese (BMI <30), and obese 
(BMI >30). Fifty-four percent of the study subjects had BMI 
>30. There were no significant differences between the BMI 
groups with regard to mean age, gender, physical activ-
ity, or dieting history (see Supplementary Table S1 online). 

Circulating cell frequency data for all of the individuals ana-
lyzed are presented in Supplementary Table S2 online and 
graphically summarized in Figure 1e. Consistent with previ-
ously reported results (11,14), PBMC obtained from nonobese 
donors contained 0.02% CPC and 0.76% EC (Figure 1e). In 
this group, CD34bright leukocytes constituted 0.03% of viable 
PBMC, whereas MSC were at the background level of detec-
tion (0.001%). Assignment of nonobese subjects into lean 
(BMI <25) and overweight (BMI 25–30) revealed no signifi-
cant difference in cell circulation between these subgroups (see 
Supplementary Figure S4 online). By comparing BMI <30 
and BMI >30 PBMC, we detected no statistically significant 
correlation between obesity and frequencies of circulating EC 
(P = 0.3681) or CD34bright leukocytes (P = 0.2268). In stark 
contrast, obese subjects displayed a fivefold higher (P = 0.0019) 
frequency of circulating CPC and a tenfold higher (P = 0.0021) 
frequency of circulating MSC, as compared to nonobese sub-
jects (Figure 1e).

diScuSSion
Here, we enumerated circulating CPC, EC, CD34bright leuko-
cytes, and MSC by flow cytometry and confirmed the identity of 
these populations through phenotypic characterization ex vivo. 
Although the strategy for enumeration of hematopoietic and 
endothelial populations was based on previously published 
studies (11,14), this is the first report on MSC enumeration by 
flow cytometry. We show that flow cytometric separation of 
EC, CPC, and CD34-bright leukocytes isolates the correspond-
ing cell populations from both PBMC (Figure 1) and from 
the stromal/vascular fraction of WAT (see Supplementary 
Figure S1 online). As reported previously (10,15,16), our gat-
ing strategy also isolates MSC as the CD34brightCD45−CD31− 
population from WAT. Our inability to directly recover CFU-F 
from the small numbers of cells sorted as MSC from PBMC 
is likely due to their comparatively large size and the result-
ing fragility/vulnerability to damage during sorting. However, 
expression of pericyte/MSC markers specifically on circulating 
CD34brightCD45−CD31− cells combined with the presence of 
multipotent CFU-F exclusively in the peripheral blood of obese 
individuals strongly argues that these cells are indeed MSC.

Previously, increased circulation of white blood cells in obese 
individuals has been reported (17). So far, it has not been estab-
lished which cell populations are mobilized resulting in increased 
white blood cells counts of obese subjects. Our data demonstrate 
that obesity is associated with increased circulation of hemat-
opoietic and mesenchymal progenitor cells. Previous studies 
have reported increased circulation of HSC, EPC, and EC under 
pathological conditions such as cancer (6,8,14). Although asso-
ciation of HPC circulation with obesity has not been previously 
explored, a recent study reported an inverse correlation of EPC 
circulation with obesity (18). Because EPC constitute only a minor 
fraction of the combined CPC pool, it can be concluded that 
mobilization of HPC is  responsible for the association of obesity 
with increased frequency of CPC that we observed. Our results 
indicate that MSC circulate at detectable levels in obese, but not 
in lean or overweight individuals. This observation is consistent 
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with published reports on MSC detection in the systemic circula-
tion, which have been until now based on CFU-F enumeration 
in cell culture (5). In agreement with our inability to detect MSC 
in nonobese donors, CFU-F circulation has been previously 
found virtually undetectable in healthy individuals and shown to 
be increased in certain pathological conditions (19). Strikingly, 

according to previous reports, the “MSC-positive” blood samples 
contain CFU-F at a frequency of 1–2/106 white blood cells (20), 
which is in the range of the MSC content we established for the 
majority of PBMC samples from nonobese individuals.

Because WAT expanded in obesity is a rich source of pro-
genitor cells (15,16), our findings suggest a possibility that at 
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least some of MSC and CPC observed in the peripheral blood 
of obese subjects originate in adipose tissue. In addition to 
adipocytes, WAT contains high numbers of MSC (known as 
adipose stromal cells), as well as EC and infiltrating white 
blood cells (10,21), which is demonstrated in Supplementary 
Figure S1 online. Recently, WAT has also been appreciated as 
an ectopic reservoir of HPC (22). In concert with adipocytes, 
these WAT cell populations secrete endocrine molecules col-
lectively termed adipokines (23). While the evidence for 
bioactivity of WAT-derived progenitors is burgeoning, their 
mobilization, migration, and implication in human disease so 
far have not been explored. In mouse models, adipose EC and 
MSC can migrate to sites of chronic inflammation and contrib-
ute to tumor microenvironment (7). Recent studies indicating 
that MSC are quickly recruited to the sites of tissue damage 
from the circulation (24) are consistent with our unpublished 
data from patients undergoing open abdominal surgery (data 
not shown). The possibility of mobilization of WAT cells and 
their recruitment by pathological tissues in humans remains 
to be further investigated. On the other hand, recent reports 
indicating that adipocytes can be derived from hematopoietic 
stem cells (25–27) point to the possibility of “hematopoietic 
to mesenchymal transition.” Although these reports have been 
challenged with data indicating that bone marrow-derived pre-
cursors contribute only to infiltrating vasculature-associated 
cells, but not to adipocytes (28,29), increased MSC circulation 
in obese subjects due to cell mobilization from the bone mar-
row, rather than from WAT, remains a possibility. Although the 
exact molecular networks driving migration of cells in disease 
and obesity are unknown at present, it is likely that inflam-
mation and hypoxia signals are important (30). Irrespective 
of the source of cells mobilized in obesity, our results may 
have important clinical implications. If progenitors mobilized 
in obesity become recruited to the sites of disease, they may 
positively influence tissue repair and recovery, thus possibly 
accounting for the “obesity paradox” (31).
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