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Feline chronic enteropathy (FCE) is a common cause of mor-
bidity and mortality in old cats.14 Histologic quantification and 
localization of lymphocyte infiltrates in small intestinal biop-
sies is an integral part of distinguishing chronic enteritis from 
low-grade intestinal lymphoma and to assess the severity of the 
condition.14 However, healthy cats and cats with FCE can have 
similar histologic characteristics, and criteria for separating 
inflammation from low-grade intestinal lymphoma are conten-
tious.14 In addition, multiple studies have demonstrated low 
interobserver agreement for pathologists grading of lympho-
cyte infiltrates in cats, despite the use of standardized semi-
quantitative grading schemes.29 The inherent low reproducibility 
of histologic grading undermines the statistical power of 
research studies and contributes to skepticism among clinicians 
regarding the utility of biopsies for the diagnosis of FCE.

Recent advancements in whole-slide imaging and artificial 
intelligence (AI) have facilitated the development of AI models 
for histopathology.2 Convolutional neural networks, the most 
common type of AI algorithm for advanced image analysis, 
have shown promise in improving the reproducibility of histologic 

evaluations in diagnostic practice.2 AI models for histopathol-
ogy can be employed at the image level to predict a diagnosis 
(image classification tasks), at the object level to identify 
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Abstract
Feline chronic enteropathy is a poorly defined condition of older cats that encompasses chronic enteritis to low-grade 
intestinal lymphoma. The histological evaluation of lymphocyte numbers and distribution in small intestinal biopsies is crucial 
for classification and grading. However, conventional histological methods for lymphocyte quantification have low interobserver 
agreement, resulting in low diagnostic reliability. This study aimed to develop and validate an artificial intelligence (AI) model 
to detect intraepithelial and lamina propria lymphocytes in hematoxylin and eosin-stained small intestinal biopsies from cats. 
The median sensitivity, positive predictive value, and F1 score of the AI model compared with the majority opinion of 11 
veterinary anatomic pathologists, were 100% (interquartile range [IQR] 67%–100%), 57% (IQR 38%–83%), and 67% (IQR 
43%–80%) for intraepithelial lymphocytes, and 89% (IQR 71%–100%), 67% (IQR 50%–82%), and 70% (IQR 43%–80%) for lamina 
propria lymphocytes, respectively. Errors included false negatives in whole-slide images with faded stain and false positives in 
misidentifying enterocyte nuclei. Semiquantitative grading at the whole-slide level showed low interobserver agreement among 
pathologists, underscoring the need for a reproducible quantitative approach. While semiquantitative grade and AI-derived 
lymphocyte counts correlated positively, the AI-derived lymphocyte counts overlapped between different grades. Our AI model, 
when supervised by a pathologist, offers a reproducible, objective, and quantitative assessment of feline intestinal lymphocytes 
at the whole-slide level, and has the potential to enhance diagnostic accuracy and consistency for feline chronic enteropathy.
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specific image elements (object detection tasks), or at the pixel 
level to predict a label for each pixel (segmentation tasks).13 In 
contrast to image level AI models and semiquantitative grading 
by a pathologist, object detection models and semantic seg-
mentation models enable the extraction of quantitative features 
from histology slides. This allows the identification of histo-
logic patterns and facilitates the integration of histology results 
into multimodal analyses.

The objective of this study was to develop and validate an 
AI model to quantify intraepithelial and lamina propria lym-
phocytes in hematoxylin and eosin (H&E)-stained small intes-
tinal biopsies from cats. The ultimate purpose of the model is to 
enhance the diagnostic accuracy and consistency of histologic 
diagnoses for FCE by providing a reproducible, objective, and 
quantitative assessment of feline intestinal lymphocytes at the 
whole-slide level.

Materials and Methods

Model Design

To quantify intraepithelial and lamina propria lymphocytes, we 
developed 2 separate models and merged the model outputs 
(Fig. 1): a “cell detection” model that utilized object detection 
with instance segmentation to detect lymphocytes and identify 
lymphocyte nucleus boundaries, and a “mucosal compartment” 

model that used semantic segmentation to classify pixels into 
epithelium, lamina propria, intestinal lumen, or other. In a post-
analysis step, lymphocytes were then classified as intraepithe-
lial or lamina propria lymphocytes depending on whether the 
center of a lymphocyte was located within the epithelium or 
lamina propria. Both models were strongly supervised convo-
lutional neural networks, developed using Aiforia create 
(Helsinki, Finland). Settings and versions are detailed in 
Supplemental Table S1.

Case Material

The AI models were developed and tested using retrospectively 
obtained feline small intestinal biopsies that were submitted for 
clonality testing to the Leukocyte Antigen Biology Laboratory 
at the School of Veterinary Medicine, University of California 
Davis between 2010 and 2020. A total of 383 cases from 11 
different laboratories were sampled and 1 H&E-stained slide 
per case was randomly selected for digitization (Fig. 2). Cases 
were included regardless of diagnosis, biopsy type, or slide 
quality. Table 1 contains a summary of the original diagnoses 
(based on histology, immunohistochemistry, and clonality 
assessments) for slides included in the training, tuning, and test 
sets. Supplemental Table S2 contains signalments and original 
diagnoses for all cases in the study. Cases where slides were 
missing, lacked small intestinal tissue, or failed scanning were 
excluded (n = 50). The remaining slides (n = 333) were divided 
into training (124 slides), tuning (104 slides), and testing (105 
slides) sets. The optimal tuning and test set sizes were deter-
mined based on a small pilot study that evaluated performance 
variability across slides (data not shown). The number of train-
ing slides were chosen based on the model performance in the 

Figure 1. Model design. Two distinct artificial intelligence models 
were iteratively trained. Between training rounds, intermediate 
versions underwent tuning using a separate set of slides. If tuning 
results were unsatisfactory, training sizes were increased or 
hyperparameters were adjusted. Once tuning set performances 
were deemed satisfactory, the models were finalized and applied to 
manually outlined sections of small intestine in the test set slides. 
Analysis results were merged during postprocessing. Performance 
was validated at the lymphocyte level and concordance with 
pathologist grades was assessed at the whole-slide image (WSI) level.

Figure 2. Case material. Randomly selected slides were, after 
excluding inadmissible slides, partitioned into training, tuning, and 
test sets.
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tuning sets. In each training and tuning set slide, a single region 
of interest (ROI) per model was annotated. The ROIs were 
selected by evaluating the small intestinal fragments for the 
most complete wall layers, and if multiple fragments met this 
criterion, one was randomly chosen. Detailed methodology for 
set size calculation, ROI selection, and annotations are avail-
able in the Supplemental Materials. Examples of training anno-
tations and test set analysis results are provided in Supplemental 
Figure S1. The test set whole-slide images (WSIs) were catego-
rized by a board-certified veterinary anatomic pathologist 
(J.M.W.) based on stain quality (adequate vs faded), tissue 
quality (adequate vs crushed), and image focus (adequate vs 
out of focus). Submitting laboratory, biopsy types, and quality 
features of the test set are presented in Fig. 3. Detailed criteria 
for assessing the quality of the test set slides are provided in the 
Supplemental Materials. Information regarding the number 
and size of training and tuning set annotations for each model 
is available in Supplemental Table S3.

Digitization

WSIs were generated at the Virtual Slide Scanning Facility, 
School of Veterinary Medicine, University of California Davis 
using an Olympus VS120 virtual slide microscope and a 40× 
objective (0.17 μm2/pixel). WSIs with suboptimal focus were 
purposefully not rescanned. Raw WSIs in the Olympus VSI 

format were deidentified and uploaded to Aiforia create 
(Helsinki, Finland).

Statistical Software

All postanalysis processing, statistical validation, and visual-
izations were conducted using R programming language within 
the RStudio integrated development environment.23,25 The cus-
tom R scripts were supported by a range of open-source pack-
ages for data science,26,27 data import and export,19,20,28 spatial 
analysis,5,9,21 statistics,16 and visualization.3,11,18,22 All custom R 
scripts used in this study are available at GitHub (https://github.
com/ucdavis/AIFeBx_supplemental). An online random num-
ber generator was used for ROI selection during model devel-
opment (Supplemental Materials).8

Postanalysis Processing

To classify the lymphocytes as either “intraepithelial” or “lam-
ina propria,” output coordinates of both models were exported 
and merged. Each lymphocyte was mapped to a mucosal com-
partment based on the location of the lymphocyte centroid. The 
confidence score of lymphocytes mapped to a mucosal com-
partment was determined as follows. In addition to output coor-
dinates for AI-predictions, both models provided a confidence 
score for every pixel/object that reflects the probability of the 

Table 1. Original diagnosis by histology, immunohistochemistry, and clonality.

Training Tuning Test

T-cell lymphoma, smalla 79/124 (64%) 74/104 (71%) 75/105 (71%)
T-cell lymphoma, intermediate/largeb 3/124 (2%) 3/104 (3%) 3/105 (3%)
Enteritis 40/124 (32%) 27/104 (26%) 26/105 (25%)
Normal - - 1/105 (1%)
Nondiagnostic 2/124 (2%) - -

aIncludes presumed and emerging T-cell lymphomas.
bIncludes large granular lymphocyte lymphomas.

Figure 3. Composition of the test set (n = 105). (a) Submitting laboratory. Randomly selected slides were stratified by submitting laboratory 
resulting in a test set diverse in terms of origin. (b) Biopsy type. Slides were included in the study regardless of biopsy type. (c) Quality. Slides 
were included in the study regardless of quality, and rescanning of whole-slide images were purposefully not attempted.
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pixel/object belonging to a specific class. The confidence score 
for a lymphocyte mapped to a mucosal compartment was cal-
culated by multiplying the confidence scores of the lymphocyte 
with that of the respective mucosal compartment. This resulted 
in a theoretical confidence score range between 0.25 and 1 for 
each AI-generated lymphocyte prediction.

Model Validation at the Lymphocyte Level

The model was validated by comparing AI-derived lymphocyte 
annotations with pathologist-generated lymphocyte annota-
tions. Eleven board-certified veterinary anatomic pathologists 
were tasked with annotating lamina propria and intraepithelial 
lymphocytes in one 5000 µm2, randomly generated, validation 
region per WSI of the test set (Supplemental Materials). The 
pathologists, who had a median of 1 year of experience (range 
<1 year to 18 years since board-certification), were from dif-
ferent diagnostic laboratories, contract research organizations, 
or academic departments; had not participated in the develop-
ment of the AI model; and were blinded to case details, each 
other’s annotations, and the AI results. Since the outline of 
lymphocytes was unknown, lymphocytes were inferred by 
aggregating the annotations from individual pathologists based 
on spatial proximity (Fig. 4, Supplemental Figure S2).

Any cell that at least 1 pathologist had annotated was con-
sidered a candidate lymphocyte. Candidate lymphocytes were 
considered “reference lymphocytes” if the majority of patholo-
gists (n > 6) agreed. Candidate lymphocytes were considered 
“equivocal lymphocytes” if five or fewer pathologists agreed. 
A true positive was defined as an AI-generated lymphocyte 

prediction that was supported by a reference lymphocyte. A 
false positive was defined as an AI-generated lymphocyte pre-
diction that was not supported by a reference lymphocyte. A 
false positive was considered “unequivocal” if it was not iden-
tified by any pathologist. A false negative was defined as a ref-
erence lymphocyte that was not detected by the model. A false 
negative was deemed “unequivocal” if all pathologists identi-
fied the reference lymphocyte. Equivocal lymphocytes that 
were not detected by the model were classified as true nega-
tives (Fig. 4). Sensitivity (also known as recall), positive pre-
dictive value (PPV, also known as precision), and F1 scores 
(harmonic mean of sensitivity and PPV) were calculated indi-
vidually for each validation region, averaged across the test set, 
and reported as median and interquartile range (IQR) values.

To understand causes of error, unequivocal false negative 
and false positive lymphocytes were classified by a board-cer-
tified veterinary anatomic pathologist (JMW) as caused by cell 
detection model errors, mucosal compartment model errors, or 
technical validation errors (mispredictions of cells located on 
the boundary of the validation region or cases where precise 
reference lymphocyte localization failed).

Interobserver Agreement Between  
Pathologists at the WSI Level

Eleven pathologists semiquantitatively graded intraepithelial 
lymphocytes as well as lamina propria lymphocytes and plasma 
cells according to the 2008 World Small Animal Veterinary 
Association guidelines.4 The pathologists evaluated all sections 
available in the WSI and provided a grade for intraepithelial 

Figure 4. Workflow for reference lymphocyte identification. (a) Lymphocyte nuclei were annotated by 11 pathologists (grey dots). (b) Individual 
pathologist annotations were clustered into candidate lymphocytes (circles) based on a minimum distance threshold (see Supplemental Materials). 
Clusters with six or more annotations consistent with the majority opinion were considered “reference lymphocytes” (solid circles). Clusters 
with less than six annotations consistent with the minority opinion were considered “equivocal lymphocytes” (dashed circles). (c) For every 
artificial intelligence (AI)-generated lymphocyte prediction, the distance to the nearest candidate lymphocyte centroid (x) was calculated (orange 
arrows). If the closest candidate lymphocyte was a reference lymphocyte, and the distance was below a certain distance threshold, the AI-
generated lymphocyte prediction was considered a true positive (TP, green dot); the AI-generated prediction was considered a false positive (FP) 
if the closest candidate lymphocyte was not a reference lymphocyte (FP1), or the distance was above the threshold (FP2). Reference lymphocytes 
without an AI-annotation below the distance threshold from the centroid were considered false negatives (FN, red solid circle). Equivocal 
lymphocytes (candidate lymphocytes with less than six contributing pathologists) without an AI-annotation below the distance threshold from 
the centroid were considered true negatives (TN, green dashed circle). Note that true negatives in the data set only encompassed objects that 
at least 1 pathologist annotated. Coordinates for objects that no pathologists annotated, were not available for documentation.
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lymphocytes and a grade for lamina propria lymphocytes and 
plasma cells, ranging from normal, mildly increased, moder-
ately increased, or markedly increased. Interobserver agree-
ment was examined across WSIs for each pair of pathologists 
using weighted kappa with linear weights and 95% confidence 
intervals (CIs) and Cohen’s kappa (with 95% CI).

Concordance of AI Model Quantification  
and Pathologist Grades at the WSI Level

Concordance between the median pathologists’ grade and the 
AI-model generated count was assessed descriptively. 
AI-model generated counts for intraepithelial and lamina pro-
pria lymphocytes per 1000 µm2 were calculated individually 
for each tissue fragment and aggregated for each WSI using the 
median value.

Availability of Supporting Research Data

All supporting data, including WSIs and annotations, are avail-
able at BioImage Archive (https://www.ebi.ac.uk/biostudies/
BioImages/studies), accession number S-BIAD1129, DOI: 
10.6019/S-BIAD1129.

Results

Model Validation at the Lymphocyte Level

To characterize model performance, we compared AI-generated 
lymphocyte predictions against reference lymphocytes that 
were identified based on a majority vote of eleven pathologists 

(Fig. 4). Out of 3830 total candidate lymphocytes, less than 
half (1659, 43%) were identified by the majority of patholo-
gists (n > 6) and used as reference lymphocytes (Fig. 5). The 
proportion of lymphocytes identified by the majority of pathol-
ogists was similar for the lamina propria (1194/2735, 44%) and 
the epithelium (465/1095, 43%). Of note, the median number 
of reference lymphocytes per validation region was similar or 
identical to the average number of annotations per pathologist 
(Table 2), supporting the majority vote as a suitable method for 
identifying reference lymphocytes.

The AI model identified more lymphocytes than there were 
reference lymphocytes (Table 2). This was particularly true for 
intraepithelial lymphocytes, where the average number of lym-
phocytes per ROI identified by the model was twice the num-
ber of reference lymphocytes. When ranked based on the 
number of lymphocyte annotations per validation region, the 
AI model performed similarly to the most annotation-generous 
pathologists (Fig. 6). The frequency distributions of candidate 
lymphocytes, reference lymphocytes, AI-lymphocyte predic-
tions, and pathologist annotations per validation region are 
depicted in Supplemental Figure S3.

The AI model identified a higher proportion of reference 
lymphocytes in the epithelium (median sensitivity 100%, IQR 
67%–100%) than the lamina propria (median sensitivity 89%, 
IQR 71%–100%) but also identified a higher proportion of 
equivocal lymphocytes or nonlymphoid cells in the epithelium 
(median PPV 57%, IQR 38%–83%) than the lamina propria 
(median PPV 67%, IQR 50%–82%) (Fig. 7a–c). The higher 
sensitivity for intraepithelial lymphocytes was counterbalanced 
by the higher PPV for lamina propria lymphocytes, resulting in 

Figure 5. Candidate lymphocytes categorized by number of contributing pathologists. Only candidate lymphocytes with six or more 
contributing pathologists were used as reference lymphocytes.

Table 2. Lymphocytes per validation region.

Intraepithelial median (IQR) Lamina propria median (IQR)

Annotations per pathologista 2 (1–6) 11 (6–17)
Candidate lymphocytesb 7 (3–13) 22 (16–32)
Reference lymphocytesc 2 (1–5) 10 (6–16)
AI-generated lymphocyte predictions 4 (2–8) 13 (7–20)

Abbreviations: AI, artificial intelligence; IQR, Interquartile range.
aAverage number of lymphocyte annotations per pathologist.
bIdentified by aggregating individual pathologist annotations based on center distances.
cIdentified as candidate lymphocytes to which a majority of the pathologists (6 or more out of 11) had contributed.
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a similar F1-score for intraepithelial lymphocytes (median 
67%, IQR 43%–80%) and lamina propria lymphocytes (median 
70%, IQR 43%–80%).

To explore the relationship between sensitivity and PPV at 
different confidence thresholds, we calculated both parameters 
across the range of encountered AI model confidence values 
(Fig. 8). The increase in PPV observed with higher confidence 
thresholds was modest compared with the decrease in sensitiv-
ity, indicating that raising the confidence threshold to improve 
PPV comes at a high cost in sensitivity. Sensitivity and PPV of 
the AI model for intraepithelial and lamina propria lympho-
cytes, calculated per validation regions grouped by slide stain 
quality, tissue quality, image focus, and submitting laboratory, 
are detailed in Supplemental Figure S4.

False positives were more frequent than false negatives for 
both intraepithelial and lamina propria lymphocytes (Fig. 9). 
False positives represented AI model predictions that were sup-
ported by no pathologist or a minority of pathologists (n < 6). 
Conversely, false negatives represented lymphocytes that were 
identified by most pathologists (n > 6) but not the model. Out 
of 1118 false predictions, 223 (20%) were “unequivocally” 
false meaning that either a model prediction was not supported 
by any pathologist (unequivocally false positive) or a reference 
lymphocyte that was identified by all pathologists was not pre-
dicted by the model (unequivocally false negative).

Unequivocal errors caused by the cell detection model were 
more common than errors caused by the mucosal compartment 
model (135/223, 61% vs 30/223, 14%) (Supplemental Figure 

S5). In addition, some unequivocal errors were caused by nei-
ther model but were inherent to the validation strategy (57/223, 
26%; explained in more detail below). Most of the unequivocal 
cell detection model errors were false positives (116/135, 
86%), but the cell type that was identified as a lymphocyte by 
the model could not be confidently determined in almost half 
of the cases (56/116, 48%, Supplemental Figure S6). False 
labeling of enterocyte nuclei (51/116, 44%) was a more com-
mon source of unequivocal errors than false labeling of goblet 
cell nuclei (4/116, 3%) or plasma cells (2/116, 2%) (Fig. 10a, 
Supplemental Figure S6). Only 19/135 (14%) unequivocal cell 
detection model errors constituted false negatives (Fig. 10b). 
Unequivocal false positives stemming from mucosal compart-
ment model errors represented instances where the epithelial/
lamina propria border was identified imprecisely by the model. 
This resulted in intraepithelial lymphocyte being classified as 
lamina propria lymphocyte or vice versa (Fig. 10c). For both 
cell detection model errors and mucosal compartment model 
errors, most unequivocal errors occurred in WSIs of subopti-
mal quality (Supplemental Figure S7). Suboptimal focus was 
the most common quality issue for unequivocal mucosal com-
partment model errors, while faded staining was the most com-
mon quality issue for unequivocal cell detection model errors. 
Validation errors comprised instances where lymphocytes were 
positioned on the border of the validation region resulting in 
disagreement about whether a lymphocyte was part of the vali-
dation region (Supplemental Figure S8a). These errors also 
included instances where abutting or overlapping lymphocytes 

Figure 6. Pathologists were ranked by how generously they annotated lymphocytes. A higher value indicates fewer lymphocytes per 
validation region consistent with a cautious annotator, while a lower value indicates more lymphocytes per validation region consistent with a 
generous annotator. The box represents the interquartile range (IQR) and the line inside the box indicates the median. The whiskers extend 
to the smallest and largest value within 1.5 times the IQR from the first and third quartiles. The artificial intelligence model ranked among the 
most annotation-generous pathologists for most validation regions. AI, artificial intelligence model; p01–p11, pathologists 1–11; Ref, reference 
lymphocytes.
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precluded the unambiguous aggregation of pathologist annota-
tions into reference lymphocytes (Supplemental Figure S8b). 
In addition, technical validation errors encompassed situations 
where the distance between a model prediction and the nearest 
pathologist annotation was marginally higher than the maxi-
mum threshold required for colocalization (Supplemental 
Figure S8c). Notably, these technical validation errors are 
inherent to the specific validation strategy we used, are not 
reflective of the true AI model performance, and are not rele-
vant for scenarios outside of validation.

Interobserver Agreement Between Pathologists  
at the WSI Level

Interobserver agreement at the WSI level revealed frequent and 
marked disagreement in semiquantitative grades, with only 
four instances of complete agreement amongst all 11 patholo-
gists (Fig. 11, Supplemental Figure S9). Two instances involved 
a “normal” grade (both for intraepithelial lymphocytes), and 
the other two pertained to a “marked” grade (1 each for intraep-
ithelial lymphocytes and lamina propria lymphocytes and 

Figure 7. Performance metrics for the artificial intelligence (AI) model, calculated per validation region in the test set. AI-generated 
lymphocyte predictions were compared with reference lymphocytes composed of the majority opinion (six or more) of eleven pathologists. 
The box represents the interquartile range (IQR) and the line inside the box indicates the medians. The whiskers extend to the smallest and 
largest values within 1.5 times the IQR from the first and third quartiles. (a) Sensitivity. The median sensitivity of the AI model, compared 
with the reference lymphocytes, was higher for intraepithelial lymphocytes than for lamina propria lymphocytes in the validation regions of 
the test set. (b) Positive predictive value (PPV). The median PPV of the AI model, compared with the reference lymphocytes, was lower for 
intraepithelial lymphocytes than lamina propria lymphocytes in the validation regions of the test set. (c) F1 score (the harmonic mean of 
sensitivity and PPV). The median F1 score of the AI model, compared with the reference lymphocytes for the intraepithelial lymphocytes 
and lamina propria lymphocytes were similar in the validation regions of the test set, reflecting a higher sensitivity for the intraepithelial 
lymphocytes than the lamina propria lymphocytes, counterbalanced by a higher PPV for the lamina propria lymphocytes than the intraepithelial 
lymphocytes.

Figure 8. Positive predictive value (PPV) by sensitivity at different confidence thresholds. Median PPV and sensitivity for the artificial 
intelligence (AI) model compared with the reference lymphocytes was calculated using the range of encountered AI model confidence values. 
The increase in median PPV observed with higher AI model confidence thresholds was modest compared with the decrease in median 
sensitivity.
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Figure 9. Number of false negative (FN), false positive (FP), true negative (TN), and true positive (TP) artificial intelligence (AI)-generated 
lymphocyte predictions when compared with reference lymphocytes. A small portion of false negative predictions consisted of reference 
lymphocytes to which all pathologists (11/11) contributed (dark blue/orange). These are considered unequivocally false negatives. Similarly, 
false positive predictions consisting of AI-generated lymphocyte predictions that did not align with any candidate lymphocyte, have zero 
contributing pathologists, and are considered unequivocally false positives (gray).

plasma cells). These WSIs were characterized by a relatively 
homogenous lymphocyte distribution across and within tissue 
fragments. Conversely, 12 WSIs received all 4 grades for at 
least 1 compartment. Most of these WSIs (10/12, 83%) were 
characterized by heterogeneous lymphocyte distributions 
within or across tissue fragments. Of the remaining 2 WSIs, 1 
was a large cell lymphoma, and 1 was a small pinch biopsy 
with villi in cross-section, presumably limiting diagnostic 
interpretation. The interobserver agreement varied among indi-
vidual pairs of pathologists, often surpassing what would be 
expected by random chance. When comparing agreement 
between pathologist pairs across all WSIs to random chance, 
the weighted kappa values ranged from no agreement (0.11, 
95% CI [0.04, 0.17]) to moderate agreement (0.64, 95% CI 
[0.53, 0.75]) (Supplemental Figure S10).

Concordance of AI Model Quantification  
and Pathologist Grade at the WSI Level

The AI model-derived lymphocyte counts increased with higher 
median semiquantitative grade but there was a substantial over-
lap of lymphocyte counts between WSIs with different grades 
(Fig. 12).

Discussion

This study aimed to improve the accuracy and reproducibility 
of quantifying lymphocytes in intestinal biopsies of cats with 
FCE using AI. Histopathologic assessment of lymphocyte infil-
trates in small intestinal biopsies is used to classify cases as 
chronic enteritis or low-grade intestinal lymphoma, and to 
grade the severity of the disease.14 Given that the definition of 
and histomorphologic criteria for chronic enteritis and low-
grade intestinal lymphoma in cats are controversial, we delib-
erately did not attempt to diagnose these conditions as a model 
endpoint. Instead, we focused on improving the quantification 

of lymphocytes, an important part of the histopathological 
assessment that suffers from low interobserver agreement and 
poor reproducibility.29 This is the first study that utilizes AI to 
quantify lymphocytes in intestinal biopsies from cats with 
FCE.

We believe that supporting the pathologist with AI-based 
detection tools and quantitative data is a more rewarding and 
transparent strategy than replacing the pathologist with a black-
box model. Previous studies have utilized AI to diagnose FCE, 
either based on histologic assessment on a WSI level,10 or com-
plete blood counts and biochemistry values.1 However, safe 
implementation of AI models into clinical practice requires 
verification of model output by human experts, who are ulti-
mately responsible for diagnostic decisions.24 The accuracy of 
our model output can be gauged by assessing the AI-predictions 
superimposed as an image mask onto an H&E-stained slide. If 
the performance of the model is deemed inadequate, the pro-
vided quantitative data can be ignored. A recent study applied a 
similar approach for the diagnostic grading of ulcerative colitis 
in humans.17 The model-derived data correlated well with 
human semiquantitative grades and illustrates the potential 
benefit of AI-based cell quantification.17

Validation of our model by comparing AI-generated lym-
phocyte predictions to pathologist annotations in small valida-
tion regions revealed a low interobserver agreement for 
lymphocyte annotations between pathologists. Only 12% of all 
candidate lymphocytes were identified by all 11 pathologists 
and only 43% were annotated by the majority of annotators, 
suggesting that distinguishing lymphocytes from other cell 
types is not straightforward. The inconsistent identification of 
lymphocytes has been recognized as a source of interobserver 
variability for grading of tumor-infiltrating lymphocytes in 
human breast cancer but not for grading of feline intestinal 
biopsies.12 Given the high variability of annotations across 
pathologists in this study, determining the level of agreement 
required for identifying reference lymphocytes presented an 
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Figure 10. Examples of unequivocal errors in validation regions of test set. Small intestine, cat. Hematoxylin and eosin-stained validation 
regions (left). Artificial intelligence (AI)-predictions and candidate lymphocytes (right). Solid fills represent AI-predictions (yellow, epithelium; 
light blue, lamina propria; orange; intraepithelial lymphocytes; dark blue, lamina propria lymphocytes). Circles represent candidate lymphocytes, 
with color intensities representing number of contributing pathologists (orange circles, candidate intraepithelial lymphocytes; blue circles, 
candidate lamina propria lymphocytes). Black points represent center coordinates for individual pathologist annotations. (a) Examples of 
unequivocal false positives. The validation region contains 12 unequivocally false positives (AI-predictions not annotated by any pathologists) 
targeting epithelial nuclei (arrows). These are categorized as cell detection model errors. (b) Examples of unequivocal false negatives. 
The validation region contains two unequivocal false negatives (candidate lymphocytes annotated by all pathologists, arrows). These are 
categorized as cell detection model errors. The stain quality in this whole-slide image was categorized as faded. (c) Examples of unequivocal 
errors categorized as mucosal compartment model errors. The validation regions contain two candidate lymphocytes that all pathologists 
annotated as lamina propria lymphocytes, but the AI model predicted as intraepithelial lymphocytes (arrows). Note that the validation region 
also contains 11 candidate lymphocytes where pathologists disagreed on classification as intraepithelial lymphocytes and lamina propria 
lymphocytes (asterisks). This slide was categorized as having suboptimal focus quality.



148 Veterinary Pathology 62(2) 

Figure 11. Interobserver agreement between pathologists at the whole-slide image (WSI) level. 105 test slides were graded by 11 
pathologists for intraepithelial lymphocyte infiltration (normal, mild, moderate, or marked) and lamina propria lymphocyte and plasma cell 
infiltration (normal, mild, moderate, or marked). The “set size” scale depicts how many WSIs received at least 1 grade of the categories 
depicted. The “intersection size” scale depicts how many WSIs in total received combinations of the grades indicated by the interconnected 
dots. (a) Intraepithelial lymphocytes. All pathologists agreed on the grade for three WSIs. Six WSIs received all four grades. (b) Lamina propria 
lymphocytes and plasma cells. All pathologists agreed on the grade for 1 slide. Six WSIs received all four grades.

Figure 12. Concordance of artificial intelligence (AI) model quantification and pathologist grade at the whole-slide image (WSI) level. AI-
derived lymphocyte counts, calculated per tissue fragment and averaged across the WSI correlated positively with, but displayed a substantial 
overlap between, the median pathologists’ grades.
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important question. The higher the required level of annotator 
agreement, the fewer the identified reference lymphocytes, the 
higher the model sensitivity but the lower the PPV. Requiring 
complete annotator agreement for reference lymphocyte deter-
mination yielded a high sensitivity but low PPV and likely 
underestimated the true number of lymphocytes. Instead, we 
used a majority decision for reference lymphocyte determina-
tion, which balanced sensitivity and PPV and represents a well-
established method for resolving rater discrepancies.6 An 
alternative approach could have been to use immunohisto-
chemistry-labeled lymphocytes as the reference standard, but 
this was deemed infeasible for a study of this size. In addition, 
this strategy might have resulted in greater discrepancies 
between the number of reference lymphocytes on one hand and 
the number of AI-predicted or human-annotated lymphocytes 
on the other hand as, in the authors’ opinion, humans tend to 
underestimate the number of CD3-positive cells based on H&E 
slides.

Most false positives observed in our study stemmed from the 
model detecting equivocal lymphocytes, that is, lymphocytes 
that were identified by fewer than six pathologists. A less con-
servative validation approach might have classified these as true 
positives. Of greater concern were unequivocal false positives, 
that is, AI-predicted lymphocytes that were not annotated by 
any pathologist. Enterocyte nuclei, plasma cells and goblet cell 
nuclei were identified as sources of confusion within this cate-
gory. A comprehensive evaluation of the AI model’s ability to 
differentiate between different cell types would require the 
annotation of various cell types, a task beyond the study’s scope.

Instances of unequivocal false negatives were infrequent in 
our study and primarily occurred in WSIs with faded stain or 
suboptimal focus. Our model development strategy leveraged a 
data set comprised of slides from several diagnostic laborato-
ries, deliberately incorporating variations in image quality and 
refraining from rescanning WSIs with suboptimal focus. In 
contrast to the common practice of developing AI models on 
extensively filtered and cleaned data sets,24 our approach aimed 
to maintain diversity. This decision potentially resulted in a 
lower test performance but will likely mitigate the expected 
performance drop when transitioning the model into clinical 
use. With that said, faded stain, while common in archived case 
material, is not expected in routine diagnostic practice, and out 
of focus WSIs would have triggered rescanning in a diagnostic 
laboratory. Limiting the use of the AI model to biopsies of ade-
quate stain quality and image focus is expected to reduce the 
frequency of false-negative predictions and improve sensitivity 
without the need for further model improvement.

For this study, we calculated performance metrics separately 
for each validation region and averaged the results across the 
test set. In contrast to pooling of results from all validation 
regions and calculating a single value for each performance 
metric, our strategy allows for the assessment of performance 
variability between different WSIs. Choosing smaller validation 
regions and more slides rather than bigger regions and fewer 
slides was motivated by providing a sufficiently small area for 
manual annotation while maximizing the diversity of the tissue 

assessed. However, this strategy likely contributed to the vari-
ability in performance observed between different WSIs.

When comparing semiquantitative grades between patholo-
gists for WSIs, we observed a low interobserver agreement. The 
current World Small Animal Veterinary Association guidelines 
for histopathologic grading of intestinal biopsies do not account 
for variation between different tissue fragments or within a sin-
gle tissue fragment.4 Therefore, pathologists may either choose 
to base their grade on the most severely affected region of a 
slide or provide an average grade across all tissue fragments. 
Our findings are in line with a previous study that utilized the 
same grading scheme and found comparable interobserver 
agreement.29 In our study, WSIs with low interobserver agree-
ment often exhibited heterogeneous lymphocyte distributions 
while WSIs with high interobserver agreement, exhibited rela-
tively uniform lymphocyte distribution. These findings parallel 
a study on factors influencing interobserver agreement for 
tumor-infiltrating lymphocytes in human breast cancer, which 
highlights the heterogeneity in lymphocyte distribution as an 
important contributing factor.12 Although our model provides 
lymphocyte counts per tissue fragment, this resolution is likely 
insufficient to detect small foci of increased lymphocyte densi-
ties. Consequently, future iterations of this model should aim to 
provide lymphocyte densities in a more granular fashion.

Comparison of semiquantitative grades to AI-derived lym-
phocyte counts on a whole-slide level revealed substantial 
overlap of lymphocyte counts between different semiquantita-
tive grades. The current World Small Animal Veterinary 
Association guidelines are widely used as a gold-standard for 
assessing the severity of lymphocyte infiltrates in feline small 
intestinal biopsies, but their application for this study came 
with several major limitations. First, existing grading schemes 
are semiquantitative, while our AI model provides quantitative 
output with no established rules for translation. Second, these 
grading schemes were established for duodenal biopsies only, 
whereas our AI model was trained on various small intestinal 
segments. Third, the lamina propria grading scheme combines 
lymphocytes and plasma cells whereas our model is intended 
for quantifying lymphocytes only. In addition to these limita-
tions inherent to the grading scheme, shortfalls of our model 
likely contributed to the overlap of lymphocyte counts between 
different semiquantitative grades. First, the AI-generated lym-
phocyte counts were inaccurate for some WSIs. Second, 
AI-generated lymphocyte counts represented an average across 
a tissue fragment while pathologists may have considered 
regional differences in density of lymphocyte distribution. 
However, the fact that pathologists provided divergent grades 
for the same slide in the great majority of cases suggests that 
the limitations of semiquantitative grading, and a human’s abil-
ity to accurately and reproducibly estimate cell numbers might 
be a bigger source of error than the shortfalls of our model.

The most recent American College of Veterinary Internal 
Medicine guidelines for diagnosing and distinguishing low-
grade intestinal lymphoma from lymphoplasmacytic enteritis in 
FCE, expands on previous recommendations for grading small 
intestinal biopsies in cats.15 The guidelines emphasize the 



150 Veterinary Pathology 62(2) 

importance of evaluating apical to basal gradients, heterogene-
ity of lymphocyte distribution, and formation of intraepithelial 
clusters, features that cannot be assessed by our current model.15 
Future work should focus on improving the consistency of the 
AI model performance across different WSIs and the spatial 
resolution of the model. While AI-based identification of spatial 
histological patterns might not resolve the conundrum of dif-
ferentiating lymphoma from enteritis, it may enable the discov-
ery of associations between histological features and molecular 
alterations, clinical signs, response to treatment, or outcome.

This model is only intended for use in specific scenarios and 
requires output verification by the user. This model was trained 
and validated using archived cases that were submitted for 
clonality testing, which affected the composition of our data 
set. To maximize generalizability, we included cases regardless 
of the original diagnosis. Specimens primarily consisted of 
small intestine with infiltrates of small lymphocytes, variable 
numbers of plasma cells, and no or mild architectural distor-
tion. Cases with large or atypical lymphocytes, nonlymphoid 
inflammation, or necrosis were markedly underrepresented in 
the study material. In addition, B-cell lymphomas and nonlym-
phoid neoplasms were lacking, and no cases exhibited autoly-
sis. Given the underrepresentation of cases with large or 
atypical lymphocytes, the model is not expected to perform 
well in cases of nonsmall cell lymphoma. Adequate perfor-
mance for detecting large or atypical lymphocytes would 
require additional training. Consequently, the model is expected 
to perform best on biopsies that are compatible with a diagno-
sis of lymphoplasmacytic enteritis or small cell lymphoma. 
Caution should be exercised when applying the model to other 
conditions and technical confounders such as faded stain or out 
of focus areas need to be considered. In addition, convolutional 
neural networks are sensitive to variations in image properties, 
and we anticipate that the performance of the AI model will 
decrease when applied to cases from laboratories not included 
in the training data or to WSIs generated by different slide 
scanners.7 Consequently, the model is intended for a “human-
in-the-loop” use scenario where the output is verified by a 
skilled pathologist by examining the lymphocyte mask on an 
H&E overlay. If these conditions are met, our data suggests that 
the current model is sufficiently reliable to provide a reproduc-
ible and quantitative evaluation of small lymphocytes at a 
whole-slide level, an outcome that a pathologist cannot cur-
rently achieve.
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