A Literature Review: ECG-Based Models for Arrhythmia
Diagnosis Using Artificial Intelligence Techniques

Abir Boulif', Bouchra Ananou', Mustapha Ouladsine!

and Stéphane Delliaux?

Bioinformatics and Biology Insights
Volume 17: 1-29

© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11779322221149600

®SAGE

TAix-Marseille University, CNRS, LIS, Marseille, France. 2Aix-Marseille University, INSERM,

INRAE, C2VN, Marseille, France.

ABSTRACT: In the health care and medical domain, it has been proven challenging to diagnose correctly many diseases with complicated and
interferential symptoms, including arrhythmia. However, with the evolution of artificial intelligence (Al) techniques, the diagnosis and prognosis of
arrhythmia became easier for the physicians and practitioners using only an electrocardiogram (ECG) examination. This review presents a syn-
thesis of the studies conducted in the last 12years to predict arrhythmia’s occurrence by classifying automatically different heartbeat rhythms.
From a variety of research academic databases, 40 studies were selected to analyze, among which 29 of them applied deep learning methods
(72.5%), 9 of them addressed the problem with machine learning methods (22.5%), and 2 of them combined both deep learning and machine
learning to predict arrhythmia (5%). Indeed, the use of Al for arrhythmia diagnosis is emerging in literature, although there are some challenging
issues, such as the explicability of the Deep Learning methods and the computational resources needed to achieve high performance. However,
with the continuous development of cloud platforms and quantum calculation for Al, we can achieve a breakthrough in arrhythmia diagnosis.
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Introduction
Neuro-cardiovascular diseases are the leading cause of death in
the world. Arrhythmias represent a category of these diseases
associated with medical issues that can range from a minor
inconvenience or discomfort to a fatal problem. An arrhythmia is
an abnormality of the heart’s rhythm which is controlled by elec-
trical signals. It may beat too slow, too quick, or irregular.! The
electrocardiogram (ECG) is an effective tool for arrhythmia
diagnosis, it measures the heart’s electrical activity. Other ambu-
latory devices can be used for the same aim, such as Holter
Monitor.? However, the diagnosis of arrhythmias is not always
obvious, especially for atrial fibrillation (AF) that can be related to
asymptomatic and transient forms. Moreover, there are some
limitations in the extraction methods and time series analysis
from ECG singularities and their dynamics. To address these
limitations, artificial intelligence (Al) is applied to the diagnosis
and prognosis of diseases, such as arrhythmia. For this end, we
focused in our previous works on the diagnosis of AF with
machine learning (ML) methods. For instance, we conducted a
multi-dynamics analysis of QRS complex with support vector
machine (SVM) and multiple kernel learning (MKL) in Trardi
et al,3 which reached respective sensitivity values of 96.54% and
95.47%. Other works were mainly based on the extraction of dif-
ferent features from R-wave derivatives for automatic medical
decision-making, especially for AF detection as in literature.*® In
addition, the use of univariate and multivariate methods plays a
major role in the analysis of the ECG time series.

On future work, the objective is to process ECG signals and
classify different categories of heartbeat to detect different
types of arrhythmia and thus help health care professionals. For

this aim, we realized a literature review on ECG-based models
for arrhythmia detection using Al techniques in the last
12 years.

This article is organized as follows: Section “Methods of
Search and Selection” presents an overview on search strategy
and the criteria of studies’ selection. Section “Results of Studies’
Exploration” emphasizes the exploration of the studies selected
and the collected information from these studies. Section
“Discussion and Interpretation” is dedicated to the interpreta-
tion and discussion of the obtained results, the contribution of
this review, and comparison to other literature reviews. To sum
up, the final section “Conclusions” contains a summary of the
strengths and limitations of the used deep learning (DL)
techniques.

Methods of Search and Selection
This section presents the search strategy, the criteria of selec-
tion, and the extraction of study characteristics.

Search strategy

To conduct this review, multiple academic research databases
were selected to gather relevant articles that were published from
January 2010 to September 2022. These open source databases
are PubMed, IEEE Xplore, Springer, ScienceDirect, and
ResearchGate. PubMed and IEEE Xplore are considered as 2 of
the leading databases in biological sciences and engineering,
respectively.” Springer is one of the leading research publishers
that provides a large number of resources for literature in differ-
ent fields. ScienceDirect was used for its several and various
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Table 1. Inclusion criteria.

CRITERION DESCRIPTION

Date 2010-2022
Type Journal article and conference
Domain Bioinformatics and computer science

Participants With no other disease symptoms/

medications effects

Review Peer-reviewed
Evaluation Accuracy /sensitivity /specificity/F1 score /
metrics AUC /confusion matrix

Abbreviation: AUC, area under curve.

peer-reviewed journals and articles. For ResearchGate, it allows
access to a large number of free papers because it is the largest
academic social network in terms of active users.®

To realize a targeted search, we identify articles from their
titles and abstracts using the following keywords: “artificial intel-
arrhythmia diagnosis,” “arrhythmia

classification,” “heartbeat classification,” “ECG classification.”

» «

ligence for arrhythmia,
Collection of data sources was based on the process below:

1. Targeted web-based search.
2. Classification of sources by level of relevance.
3. Studies’ selection based on the inclusion criteria listed in

Table 1.

The selected databases provide peer-reviewed articles except
ResearchGate that does not require a peer-review for the pub-
lished articles.

Study selection

The scope of the studies selected comprises the following
conditions:

> Studies conducted on the diagnosis of arrhythmia in
the last 12 years;

> Studies addressing the classification of any type of
arrhythmia to,
»  Present a variety of databases,
» Identify a large number of arrhythmia in both sub-

classes and super-classes;

> Studies handling the diagnosis of arrhythmia with no
other cardiovascular disease interference to encircle
tightly the scope and circumstances of occurrence of
this abnormality and thus realize a precise and accurate
diagnosis and prognosis.

Moreover, the studies can handle either beat classification or
category classification. The former contains many subclasses of

heart rhythm as shown in Table A3 (Appendix 1) and the latter
addresses the classification topic based on the main arrhythmia
categories defined by the American National Standards
Institute/Association for the Advancement of Medical
Instrumentation (ANSI/AAMI). Different heartbeat catego-
ries will be found in Table A2 (Appendix 1).

Many criteria were considered in the first articles’ selection,
but only articles with the inclusion criteria sorted in Table 1
were retained.

Study mining: extraction of study characteristics

With a view to exploring the selected publications, retrieving
information, and identifying patterns, we extracted the follow-
ing characteristics:

e Study perimeter: defines year of publication and authors;

e Input information: includes datasets used in the study,
number of participants, and number of arrhythmia
classes to predict;

e ECG signal information: contains ECG recording for-
mat and signal duration;

e Feature set: defines the extraction approach and the
extracted features from each study. The extraction meth-
odology depends on the learning structure, hand-crafted
methods, or end-to-end learning (where the selection,
extraction, and classification are embedded in one stage);

e Methods: define the pre-processing and prediction meth-
ods used in each study to implement the Al algorithms;

e Evaluation: presents the metrics and key performance to
evaluate the prediction.

The objective is to extract a large number of characteristics to

analyze deeply each study.

Results of Studies’ Exploration
Selection

To search for the adequate papers, we rely on the process shown
in Figure 1.

First, we realized a quick search for the topic by keywords
which results in 730 records. Second, we removed duplicates
given that we used 5 research databases, then a paper inventory
was held by sorting publications by abstract.

When applying the inclusion criteria in Table 1, we focused
on selecting papers that do not deal with other cardiovascular
diseases. Although the study® includes the treatment of myo-
cardial ischemia, it was selected because there was no interfer-
ence with arrhythmia diagnosis; the 2 diseases were
independently addressed. Irfan et al'® used a dataset with 13
types of heartbeats, including arrhythmias and myocardial
infarctions, which added more variety to the dataset without
affecting the performance of the model for arrhythmia
diagnosis.
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Initial search by
keywords:

Sorting by
abstract:

700 records 200 records

Removal of
duplicates

Figure 1. The process of study selection.

Diagonal text
reading:

80 records

Application of
inclusion criteria:

Full-text review:

40 records
100 records

We included the study'! although they conducted the clas-
sification of congestive heart failure rhythm with the normal
and arrhythmia rhythms because this allowed the classifier to
have a higher recognition ability in classification.

In this stage, 100 records were selected. We adopted a diag-
onal-text reading and found that some papers focused on the
analysis of the ECG signals without addressing the arrhythmia
prediction, so we excluded 18 studies.

After a full-text review, we selected 40 studies that handle
the arrhythmia classification with various methods of pre-pro-
cessing and several approaches of diagnosis.

Study design

Various datasets were used for the selected studies. In total, 95%
of the studies used open access datasets from PhysioNet reposi-
tory’? mainly the Massachusetts Institute of Technology-
Boston’s Beth Isracl Hospital (MIT-BIH) arrhythmia database.
Besides, Li et al'3 used data collected from Fluke ProSim?2 vital
sign simulator which is a paying portable solution that trans-
forms physiological simulation by adding multi-parameter func-
tionalities, including ECG simulation and arrhythmia waveform
selections.’* Ribeiro et al'® used the Telehealth Network of
Minas Gerais (TNMG) dataset which was obtained from one of
the largest telehealth services in Brazil. Hannun et al'® used an
own collected data recorded by Zio monitor which is a portable
device described by physicians to diagnose irregular heart
rhythms for up to 14 days'” unlike Holter monitor, used in Park
and Kang,'® which can be worn only from 24 to 28hours.

For the studies relying on the PhysioNet repository data-
bases, some of them used small samples of individuals (between
14 and 78 participants). Hannun et al'® included 53 877 par-
ticipants aged 69 * 16 years and Ribeiro et al'® collected data
from 1676384 individuals older than 16 years. The remainder
of the studies did not report the exact number of participants
(Table 2).

Figure 2 shows that 9 studies used augmented data to bal-
ance the datasets and enhance the Al models. It should be
observed that most of the selected studies are published in the
last 5years, and this can be explained by the recent emergence
of Al and the growth of literature sources lately.

Ullah et al* used 2 types of datasets from PhysioNet: MIT-
BIH arrhythmia database and PTB Diagnostic ECG Database. In
addition, they used generative adversarial network (GAN) model
to generate new artificial signal for classes with small amount of
data. The same technique was used to augment data in Ma et al.#!

Irfan et al' used the publicly available MIT-BIH arrhyth-
mia database and UCI arrhythmia dataset available in the
University of California Irvine ML Repository.

Synthetic minority oversampling technique (SMOTE) is used
in literature!®*C to handle the problem of the imbalanced data in
the MIT-BIH arrhythmia database and MIT-BIH AF database.
SMOTE relies on a k-nearest neighbor algorithm to create new
synthetic data. Whereas, Shahin et al** upsampled the training
data by randomly duplicating the samples resulting in relatively
equal classes but not as varied as it should be.

Two public databases from China Physiological Signal
Challenge 2018 (CPSC-2018) and Computing in Cardiology
Challenge 2017 (CinC-2017) were used in Wang et al;* the
data were augmented by applying, respectively, flipping and
random erasure techniques.

Hu et al* used MIT-BIH arrhythmia database for classify-
ing 4 classes following the AAMI annotation and 8 classes
following the widely used classification in literature. Different
label classifications comprising 41, 20, and 5 classes are also
reported in Feyisa et al* with the use of PTB-XL dataset
which is a 12-lead database with various types of arrhythmia.
Wang et al*® used the CinC-2017 database and applied a data
augmentation with the Mix-Up operation in the training
stage to reduce the data imbalance and thus the overfitting;
the method generates more training data without extra com-
putational resources.

Table 2 shows in details the input information for each study.

The databases in the table above can contain a higher num-
ber of classes than what was reported in this review, but since
there are some studies that focus on specific rthythms, we men-
tioned only the classes that were actually used for classification.

Feature set

Given that some studies used DL techniques, the end-to-end
structure was implemented, in which selection, extraction, and
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Table 2. Input information.

YEAR

2019

2017

2019

2019

2018

2014

2019

2013

2016

2018

2013

2015

2019

2018

2018

STUDY

Chen et al'®

Acharya et al?°

Yildirim et al?!

Yang et al??

Yildirim23

Sumathi et al®

Gao et al?*

Martis et al2s

Lietal™

Anwar et al?6

Liu27

Elhaj et al?8

Kim et al?®

Yildirim30

Oh et al’®

DATABASES

MIT-BIH arrhythmia
database,

QT database,

MIT-BIH supraventricular

arrhythmia database,

INCART database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

INCART database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia

Database, MIT-BIH AF

database, MIT-BIH
malignant ventricular
ectopy database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database,

Fluke ProSim2 vital sign

simulator

MIT-BIH arrhythmia
database,

MIT-BIH supraventricular

arrhythmia database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

NO. OF

CLASSES

15

NO. OF
PARTICIPANTS

47

NR

NR

NR

47

NR

NR

NR

47

NR

47

NR

NR

47
NR

NR

NR

44

45
(19 F, 26 M)

47

ECG
RECORDING
FORMAT

2-lead

2-lead

2-lead

12-lead

1-lead (lead
)

1-lead (lead
1)

2-lead (Il and
V1)

2-lead (Il and
V1)

2-lead (V1
and V5)
2-lead (Il and
V5)

2-lead (Il and
V1)

NR

NR

NR

NR

NR

NR

2-lead (Il and
VI)
NR
NR

1-lead (MLII)

1-lead (MLII)

SIGNAL
DURATION

30mn

NR

30mn

NR

30mn

30mn

30mn

30mn

NR

30mn

NR

NR

30mn

30mn

30mn

NR

10seconds

NR

TYPE OF
DATA

Native

Native,
Augmented
Native

Native

Native

Native

Native

Native

Native,
Simulated

Native

Native

Native

Native

Native

Native

(Continued)
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Table 2. (Continued)

YEAR STUDY

DATABASES

NO. OF

CLASSES

NO. OF
PARTICIPANTS

ECG
RECORDING
FORMAT

SIGNAL
DURATION

TYPE OF
DATA

2018 Oh et al®?

2018 Raj and Ray33

2020 Ribeiro et al'®

2017 Qin et al34

2017 Rajagopal and
Ranganathans3?

2010 Benali et al3¢

2017 Rajesh and
Dhuli®”

2018 Yang et al®

2019 Hannun et al'®

2014 Park and Kang'®

2021 Ullah et al®®

2022 Irfan et al'®

2020 Shahin et al*°

2022 Ma et al#!

2021 Sabut et al*?

2020 Wang et al*?

2022 Anbarasi et al'!

2022 Zubair and
Yoon#4

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

Telehealth Network of
Minas Gerais (TNMG)
dataset

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database, INCART

MIT-BIH arrhythmia
database

Original ECG dataset
recorded by Zio monitor

MIT-BIH arrhythmia
database, Holter ECG
monitoring data

MIT-BIH arrhythmia
database,
PTB diagnostic ECG
database

MIT-BIH arrhythmia
database,
UCI arrhythmia dataset

MIT-BIH arrhythmia
database

MIT-BIH arrhythmia
database

CU ventricular
tachyarrhythmia
database,

MIT-BIH malignant
ventricular ectopy
database

China Physiological
Signal Challenge 2018
database,

Computing in Cardiology

Challenge 2017 database

MIT-BIH arrhythmia
database,

MIT-BIH NSR database,
BIDMC database

MIT-BIH arrhythmia
database

12

17

n

2

47

47

1676 384
(60.3% F,
39.7% M)
(>16years)

NR

47

NR

NR

NR

53 877 (43%
F, 57% M)
(69=16
year old)

47

NR

47 (25 F, 22
M),

(44.9% M,
55.1% F)
47

47

NR

NR

10
18,

48

1-lead (MLII)

NR

12-lead

1-lead (II)
NR
NR
NR
2-lead (MLII

and V5)
1-lead (MLII)

1-lead (MLII)

NR

2-lead,
NR

2-lead

NR

NR

12-lead,
1-lead

NR,
NR,
2-lead

1-lead (MLII)

Variable length

30mn

7-10seconds

30mn

30mn

NR

30:06 mn

30mn

30seconds

30mn

NR

30mn
NR

30mn

NR

8minutes,
30mn

[6,60]seconds,
=9seconds

1mn,
NR,
20hours

30mn

Native

Native

Native

Native

Native

Native

Native

Native

Native

Native

Native,
Augmented

Augmented
Native

Augmented

Augmented

Native

Augmented

Native

Native

(Continued)
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Table 2. (Continued)

DATABASES NO. OF NO. OF ECG SIGNAL TYPE OF
CLASSES PARTICIPANTS RECORDING DURATION DATA
FORMAT

2022 Hu et al*® MIT-BIH arrhythmia 4,8 NR 1-lead (MLIl),  30mn, Native
database, 2 1-lead (MLII) 10hours
MIT-BIH AF database

2022 Feyisa et al+® PTB-XL dataset 41,20,5 (52% M, 48% 12-lead 10seconds Native

F)

2019 Ju et al*’ MIT-BIH arrhythmia 13 NR NR NR Native
database

2022 Wang et al*8 Computing in Cardiology 4 NR 1-lead =9seconds Augmented
Challenge 2017 database

2021 Wang*? MIT-BIH arrhythmia 2, NR NR 30mn, Native
database, 2 [6,60]seconds

China Physiological
Signal Challenge 2018

database
2021 Luo et al®° MIT-BIH AF database 9 NR 2-lead 30mn Augmented
2022 Iftene et al®! MIT-BIH arrhythmia 2, 47, 2-lead, 30mn, Augmented
database, 2 290 NR NR
PTB diagnostic ECG
database

Abbreviations: BIDMC, Beth Israel Deaconess Medical Center; CU, Creighton University; INCART, St. Petersburg Institute of Cardiological Techniques; MIT-BIH,
Massachusetts Institute of Technology-Boston’s Beth Israel Hospital; MLII, Modified Limb lead II; NR, Not Reported; NSR, Normal Sinus Rhythm; PTB, Physikalisch-
Technische Bundesanstalt; UCI, University of California Irvine.

Selected papers by year and type of data

8 - N Native
! Augmented

Number of publications

2010 20l11 20l12 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Year
Figure 2. Selected publications from 2010 to 2022.
classification are embedded in one stage. However, the hand- Raw ECG signal is fed as input to models where no feature
crafted methods process the extraction of features indepen- extraction phase is required; Table 3 reports the hand-crafted

dently from other learning stages. studies where feature extraction was realized. In addition, the



Boulif et al

Table 3. Feature set.

STUDY EXTRACTION APPROACH/DATA
INPUT
2019 Chen et al® RR interval,
DWT,
FFT
2019 Yildirim et al?! Raw ECG signal,
Deep-coded ECG signals by CAE
2019 Yang et al?? Dual-lead raw ECG signal,
Triple-lead raw ECG signal
2014 Sumathi et al® Wavelet transform
2013 Martis et al® HOS cumulants + PCA,
DWT +HOS + PCA
2016 Lietals PCA + KICA
Db 2 DWT + PCA + LDA
2018 Anwar et al?® RR interval
Discrete Meyer Wavelet
Transform + ICA
Teager energy operator
2015 Elhaj et al?® Meyer DWT + PCA
HOS cumulants + ICA
2018 Raj and Ray33 Sparse decomposition
2017 Qin et al®* Biorthogonal 6.8 Wavelet multi-
resolution analysis + PCA
2017 Rajagopal and Db 4 DWT + PCA
Ranganathans3?
2010 Benali et al®® Raw data
2017 Rajesh and Dhuli®”  Intrinsic mode functions (IMFs)
decomposition
2018 Yang et al%8 PCANet (CNN with PCA filters)
2014 Park and Kang'® Raw data
2021 Sabut et al*? Data decomposition

EXTRACTED FEATURES

2 time-domain
3 frequency-domain
5 space-domain

NR

NR

5 space-domain

12 nonlinear cumulants

20 nonlinear
4 frequency-domain

4 time-domain

12 time-frequency domain

1 time-domain

12 time-frequency domain
16 nonlinear

5 time-domain

12 time-frequency domain

12 time-frequency domain

1 space-domain
1 frequency-domain
3 time-domain

4 nonlinear

4 nonlinear

NR

2 space-domain
4 time-domain

24 time-frequency domain

12-lead feature fusion

CAE for coded data

DL-CCANEet,
TL-CCANet
NR

NR

NR

NR

NR

Composite dictionary (CD):
DOST, DST, DCT dictionaries

NR

NR

NR

Ensemble empirical mode
decomposition (EEMD)

Empirical mode decomposition
(EMD)

NR
NR

Db6 DWT, EMD,VMD

Abbreviations: CAE, Convolutional Auto-encoder; CNN, Convolutional Neural Network; DCT, Discrete Cosine Transform; DL-CCANet, Dual-Lead Canonical Correlation
Analysis Network; DOST, Discrete Orthogonal Stockwell Transform; DST, Discrete Sine Transform; DWT, Discrete Wavelet Transform; HOS, Higher-Order Spectra; ICA,
Independent Component Analysis; KICA, Kernel-Independent Component Analysis; LDA, Linear Discriminant Analysis; NR, Not Reported; PCA, Principal Component

Analysis; PCANet, Principal Component Analysis Network.

most employed technique for data extraction is discrete wavelet
transform (DWT); 17% of the studies used this technique
either separately as in literature®!? or with other extraction
methods, as in literature,'325:26:28,3435 such as principal compo-
nent analysis (PCA) that was used in 15% of the studies. Other
methods were used, such as Fast Fourier Transform (FFT) in

Chen et al and Higher-Order Spectra (HOS) in litera-
ture.?>?8 Other studies used personalized DL techniques for
feature extraction. For instance, Yildirim et al?! used a convolu-
tional auto-encoder (CAE) while Yang et al*? used a canonical
correlation analysis network (CCANet) which combines
canonical correlation analysis and cascaded convolution
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network, and Yang et al®® used a principal component analysis
network (PCANet) which is a convolutional neural network
(CNN) with PCA filters. Wang et al® realized a multi-scale
feature learning with CNN kernels to extract features from
segments with different size.

Another type of signal decomposition is the intrinsic
mode functions (IMFs) decomposition that can be charac-
terized by empirical model decomposition (EMD) and
ensemble empirical model decomposition (EEMD) as in
Rajesh and Dhuli’” or by variable model decomposition
(VMD) as in Sabut et al.*2

Depending on the used approach, the features may be
related to time-, frequency-, or space-domain and can be linear
or nonlinear features (Table 3). In addition, 4 studies reported
the use of MATLAB software to realize the feature extraction
phase where the other studies did not fill in this information.

Pre-processing and prediction methods

All selected studies used pre-processing methods to handle
the data except Hannun et al'® that proceeded directly to the
classification. In the selected studies, we found out that some
methods were used once for feature extraction and other
times for data pre-processing. The pre-processing methods
include noise removal, data segmentation, data normaliza-
tion, data reduction, signal compression, and signal detec-
tion. Wavelet transform (W'T) method, including different
types of wavelets, was used for noise removal in litera-
ture?0-2428,35,38 and with improved versions in literature.1323
Sumathi et al’ used Symlet WT for QRS detection as shown
in Table 4. The Pan—Tompkins algorithm proposed by Pan
and Tompkins®? was used for segmentation and QRS detec-
tion in literature’®2>28 and for R-peak detection in litera-
ture.2033:35.38 More than half of the studies used data
normalization. Some studies used ML methods for data pro-
cessing as in Yildirim et al?! and Liu?” where they used,
respectively, CAE for signal compression and SVM for QRS
marking. Ullah et al** mentioned segmentation and pre-pro-
cessing of data with no more details on the used techniques.
Irfan et al’® applied standardization of data (standard scalar
unit) and feature reduction with PCA on the UCI dataset,
and noise removal with DWT and normalization on the
MIT-BIH arrhythmia dataset.

In addition, data padding was reported in Wang et al* as a
processing operation to fix the input length.

Using continuous W'T, Anbarasi et al'! transformed 1-D
signal to 2-D colored images to feed the CNN network. The
transfer learning was introduced in Hu et al* to overcome the
imbalance data problem.

Ju et al*’ proposed a bidirectional gated recurrent unit
(GRU) network where the output is linked to the forward and
backward states resulting in a better fit than unidirectional
GRU and simpler structure than LSTM. To alleviate the issue

of redundancy in bidirectional GRU, Wang# used an improved
version of the aforementioned technique by adding a scale
parameter to the model and combining it with CNN for fea-
ture extraction.

As shown in Table 4, the selected studies used several Al
methods:

& ML methods: SVM, random forest, decision tree, feed-
torward NN, residual NN, K-nearest neighbors.

% DL methods: CNN, long short-term memory (LSTM),
GAN, GRU.

& Statistical AI methods: CCA, linear discriminant
analysis.

% Artificial evolutionary algorithms: Genetic algorithm.

% Mathematics algorithms: Fuzzy logic, directed acyclic

graph.

Some studies used the methods above either separately, com-
bined, or in personalized view adapted to the application con-
text to enhance the model performance. For instance, Sumathi
et al’ combined fuzzy logic with NN, and Ullah et al*® com-
bined CNN with LSTM, and Attention method which uses a
weighted sum of all the encoder hidden states to flexibly focus
the attention of the decoder to the most relevant parts of the
input sequence. Feyisa et al* relied on a multi-receptive CNN
where the receptive field can be obtained by either using mul-
tiple kernels of different sizes or using a fixed-size kernel with
a varying dilation rate.

Most of the studies reported the use of k-fold cross-valida-
tion method for evaluation.

When there are various classes/categories in the dataset, the
mentioned metrics refer to the overall performance on the
ensemble of classes or databases. For more details, Table Al
(Appendix 1) shows different metrics for evaluation.

In the case of multi-class classification, we adopt averaging
methods for some metrics calculation, resulting in a set of dif-
ferent average scores (macro, weighted, micro) in the classifica-
tion report.

Discussion and Interpretation

In this review, we synthetize some literature studies addressing
the ECG diagnostic approaches and the arrhythmia classifica-
tion methods. We establish a comparison between the selected
studies by discussing the following topics.

Used datasets and ECG signal information

The set of databases used in the selected studies is listed below.
There are some studies that tested some of these databases
separately or combined to provide high amount of data. The
BIDMC database used in Anbarasi et al'! for congestive heart
failure was excluded from this analysis because we want to
focus only on databases with arrhythmias.
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Table 4. Pre-processing and prediction methods in the selected studies.

YEAR STUDY PRE-PROCESSING PREDICTION METHODS EVALUATION OVERALL
METHODS METHODS ACCURACY (%)
2019 Chen et al'® PCA for dimensionality Cascaded classifier composed of NR 99.80
reduction random forest and multilayer
perceptron
2017 Acharya et al?® Db 6 WT for noise removal, CNN 10-fold cross- 94.03
Pan—-Tompkins algorithm for validation
R-peak detection, ECG
heartbeat segmentation,
Z-score normalization
2019 Yildirim et al?? ECG heartbeat Long short-term memory (LSTM) NR 99.23
segmentation, CAE for ECG
signal compression CAE with LSTM NR 99.11
2019 Yang et al?? ECG heartbeat SVM with DL-CCANet (MIT-BIH) 10-fold cross- 99.40
segmentation, min-max validation
normalization
SVM with DL-CCANEet (INCART lead 5-fold cross- 98.31
Il and V1) validation
SVM with DL-CCANet (INCART lead 5-fold cross- 98.26
V1 and V5) validation
SVM with DL-CCANEet (INCART lead 5-fold cross- 98.31
Il and V5) validation
SVM with TL-CCANet (INCART lead 5-fold cross- 98.76
II, V1, and V5) validation
2018 Yildirim23 ECG heartbeat Deep unidirectional LSTM-WS NR 99.25
segmentation, Daubechies
Wavelet sequence for Deep bidirectional LSTM-WS NR 99.39
multi-resolution analysis
2014 Sumathi et al® Noise removal, Symlet WT Adaptive neuro-fuzzy inference NR 98.24
for QRS detection system (ANFIS) model
2019 Gao et al* Db 6 DWT for noise LSTM with focal loss (noise-free data) NR 99.26
removal, ECG heartbeat
segmentation, Z-score LSTM with focal loss (noisy data) NR 99.07

normalization

2013 Martis et al?® Noise removal, Pan— Feedforward NN 10-fold cross- 94.52
Tompkins algorithm for QRS (with HOS + PCA) validation
detection, ECG heartbeat
segmentation Least-square SVM 10-fold cross- 94.30
(with HOS + PCA) validation
Feedforward NN 10-fold cross- 93.61
(with DWT + HOS + PCA) validation
Least-Square SVM 10-fold cross- 93.76
(with DWT + HOS + PCA) validation
2016 Lietal Improved wavelet threshold SVM + genetic algorithm (with NR 98.80
method for noise removal MIT-BIH data)
SVM + genetic algorithm (with NR 97.30
personalized ECG acquisition
platform)
2018 Anwar et al2é Noise removal, ECG Feedforward NN (18-class scheme) 3-fold cross- 99.75
heartbeat segmentation validation
Feedforward NN (5-category 3-fold cross- 99.80
scheme) validation
2013 Liu2? Noise removal, data Self-constructing neural-fuzzy NR 96.40

normalization,
SVM for QRS detection and
marking

inference network (SONFIN)

(Continued)
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Table 4. (Continued)

YEAR

2015

2019

2018

2018

2018

2018

2020

2017

2017

2010

2017

STUDY

Elhaj et al?8

Kim et al?®

Yildirim30

Oh et al®!

Oh et al®2

Raj and Ray33

Ribeiro et al'5

Qin et al*4

Rajagopal and
Ranganathan3s

Benali et al3¢

Rajesh and
Dhulis?

PRE-PROCESSING
METHODS

Db 6 DWT for noise
removal, Pan—Tompkins
algorithm for QRS detection,
ECG segmentation

ECG heartbeat
segmentation

Data normalization

Heterogeneous ECG
segmentation, Z-score
normalization

ECG segmentation, Z-score
normalization

Noise removal, Pan—
Tompkins algorithm for
R-peak detection, ECG
heartbeat segmentation

Vector cardiogram linear
transformation for
dimensionality reduction

ECG heartbeat
segmentation

Db 8 DWT for noise
removal, Pan—Tompkins
algorithm for R-peak
detection, ECG heartbeat
segmentation

Noise removal, QRS
detection (original algorithm
by GBM laboratory at
Tlemcen university)

Noise removal, ECG
heartbeat segmentation

PREDICTION METHODS

Feed-forward NN
SVM with RBF kernel
GoogleNet deep NN with

1-inception

GoogleNet deep NN with
2-inception

GoogleNet deep NN with
1-inception + CNN

1-D CNN (13-class scheme)
1-D CNN (15-class scheme)
1-D CNN (17-class scheme)

Modified U-net architecture

CNN + LSTM (without dropout
regularization)

CNN +LSTM (2-dropout)

CNN + LSTM (3-dropout)

ABC-DAG-LSTSVMs classifier with
16-class scheme

ABC-DAG-LSTSVMs classifier with
5-class scheme

Unidimensional residual NN

One-vs-one SVM (beat-based
scheme)

One-vs-one SVM (record-based
scheme)

K-nearest neighbors + SVM

Wavelet neural network (WNN)

Sequential minimal optimization

(SMO)-SVM (cubic kernel) with EMD

for MIT-BIH data

SMO-SVM (RBF kernel) with EEMD
for MIT-BIH data

SMO-SVM (cubic kernel) with EEMD

for INCART data

EVALUATION OVERALL
METHODS ACCURACY (%)
10-fold cross- 98.90
validation

10-fold cross- 98.91
validation

NR 95.30
NR 96.30
NR 95.90
NR 95.20
NR 92.51
NR 91.33
10-fold cross- 97.32
validation

10-fold cross- 98.42
validation

10-fold cross- 97.88
validation

10-fold cross- 98.10
validation

14-fold cross- 99.21
validation

22-fold cross- 90.08
validation

NR 92.55
10-fold cross- 99.70
validation

10-fold cross- 81.47
validation

10-fold cross- 99.78
validation

NR 98.78
10-fold cross- 99.20
validation

10-fold cross- 96.45
validation

10-fold cross- 97.57

validation

(Continued)
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Table 4. (Continued)

YEAR STUDY

2018 Yang et al38
2019 Hannun et al'®
2014 Park and Kang'®
2021 Ullah et al3®
2022 Irfan et al’©
2020 Shahin et al*°
2022 Ma et al*!

2021 Sabut et al*2

2020 Wang et al*?

2022 Anbarasi et al'!

2022 Zubair and
Yoon#4

2022 Hu et al*®

2022 Feyisa et al*®

PRE-PROCESSING

METHODS

Db 8 WT for noise removal,
Pan—-Tompkins algorithm for
R-peak detection, ECG
heartbeat segmentation,
min-max normalization

NR

Pan—Tompkins algorithm for
QRS detection

ECG heartbeat
segmentation

DWT for noise removal, data
standardization and
normalization, PCA for
feature reduction

ECG segmentation, Z-score
normalization

Db 6 WT for noise removal,
Pan—Tompkins algorithm for
R-peak detection, ECG
heartbeat segmentation

Noise removal, Z-score
normalization, heartbeat
segmentation with 5s
window

Data normalization

CWT for noise removal,
ECG segmentation

Noise removal, Pan—
Tompkins algorithm for
peaks detection, ECG
heartbeat segmentation

Z-score normalization,
wavelet, and Pan—-Tompkins
for QRS detection,
heartbeat segmentation

Standard normalization,
2.5-s segmentation

PREDICTION METHODS

Linear SVM,
K-nearest neighbors,
Random Forest,
Backpropagation NN
(Noisy data)

Linear SVM,
K-nearest neighbors,
Random Forest,
Backpropagation NN
(Noise-free data)

Deep CNN with sequence level,
Deep CNN with set level

Decision tree with J4.8 algorithm
(personalized scheme)

Decision tree with J4.8 algorithm
(non-personalized scheme)

CNN

CNN+LSTM

CNN + LSTM + attention method
CNN + LSTM with MIT-BIH database

CNN + LSTM with UCI arrhythmia
dataset

Multi-task adversarial network

ResNet + Bi-LSTM + attention
method

Deep NN

Multi-scale fusion CNN

Combined CNN and LSTM

CNN for inter-patient classification

CNN for intra-patient classification

Transformer-based CNN for 8 classes

Transformer-based CNN for 4 classes

Transformer-based CNN for 2 classes

Multi-receptive field CNN for 41 classes
Multi-receptive field CNN for 20 classes

Multi-receptive field CNN for 5 classes

EVALUATION
METHODS

10-fold cross-
validation

10-fold cross-
validation

NR
10-fold cross-
validation

10-fold cross-
validation

NR
NR

NR

NR

NR

NR

NR

NR

5-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

NR
NR
NR

OVERALL
ACCURACY (%)

97.77
97.10

96.01
96.95

97.08
96.27
95.22
95.89

97.8
97.7
85.26

89.95

99.12

99.3
99.29
99.35

99.05

86

99.4

99.2

NR

98.7

96.36

99.81

99.12

99.49

99.23

98
96.2
89.7
(Continued)
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Table 4. (Continued)

YEAR 51194 PRE-PROCESSING PREDICTION METHODS EVALUATION OVERALL
METHODS METHODS ACCURACY (%)
2019 Ju et al*’ Noise removal, Deep bidirectional GRU network 5-fold cross- 99.51
dimensionality reduction validation
with PCA
2022 Wang et al*® NR Dual-path recurrent neural network 5-fold cross- 84.5
(RNN) validation
2021 Wang*® 2-s segmentation CNN +improved BGRU for MIT-BIH NR 97.9
data
CNN + improved BGRU for CPSC NR 98.3
data
2021 Luo et al®° 0.65-s segmentation, Hybrid convolutional RNN 10-fold cross- 99.01
Z-score normalization validation
2022 Iftene et al5! PQRST detection, data 1-D CNN with pre-processing NR 98
segmentation, data
normalization 1-D CNN NR 95
Bayesian NN NR 90
GRU network NR 94

Abbreviations: BGRU, Bidirectional Gated Recurrent Unit; CPSC, China Physiological Signal Challenge; CNN, Convolutional Neural Network; CWT, Continuous Wavelet
Transform; DL-CCANEet, Dual-Lead Canonical Correlation Analysis Network; DWT, Discrete Wavelet Transform; EEMD, Ensemble Empirical Mode Decomposition; EMD,
Empirical Mode Decomposition; GBM, Génie Bio-médical; GRU, Gated Recurrent Unit; HOS, Higher-Order Spectra; INCART, St. Petersburg Institute of Cardiological
Techniques; LSTM, Long Short-Term Memory; LSTM-WS, Long Short-Term Memory Wavelet Sequence; MIT-BIH, Massachusetts Institute of Technology-Boston’s Beth
Israel Hospital; NN, Neural Network; NR, Not Reported; RBF, Radial Basis Function; SVM, Support Vector Machine; UCI, University of California Irvine.

% Open access databases: MIT-BIH databases, QT data-
base, INCART database, PTB diagnostic ECG data-
base, CU tachyarrhythmia  database,
Computing in Cardiology Challenge 2017, China
Physiological Signal Challenge 2018, PTB-XL dataset.
More details about these databases are found on
PhysioNet Bank.1?

% UCI arrhythmia dataset: An open access database avail-
able on the ML repository of the UCI university.>

& Telehealth Network of Minas Gerais (TNMG) dataset:
Data collected under the scope of the CODE (Clinical
Outcomes in Digital Electrocardiology) study in the
Telehealth Network of Minas Gerais which is a public
telehealth system in Minas Gerais, Brazil. Publicly avail-
able on TNMG dataset.>*

% ProSim simulator dataset: An industry-leading patient
simulator for monitoring and preventive testing, devel-

ventricular

oped by Fluke Biomedical. It is a commercial paid
solution.!

% Zio monitor dataset: Non-free ambulatory monitoring solu-
tion developed by iRhythm Technologies Inc, San Francisco,
CA.The solution provides FDA-cleared, single-lead, patch-
based ECG monitor that continuously records data from a
single vector, the recording can be up to 14days.?”

% Holter monitor dataset: Private data collected from
wearable device which records heartbeats for diagnosis.
It is a noninvasive solution that can be worn up to 2 days.

As shown in Table 2, 33 out of 40 studies used the MIT-BIH
arrhythmia database.

To diagnose arrhythmia, the studies relied on the multi-
class prediction. Most of the studies predicted the occurrence
of more than 2 types of the arrhythmic heartbeat, yet not all of
the studies using 12-class prediction and more recorded the
highest performances as in literature.618.2226,30,33 This can be
explained by the imbalance of datasets; some heartbeat types
have a small number of records which affect negatively the
classification rate.

However, 33 out of the 40 selected studies performed the
classification with input signal equal to 30minutes’ length
(Table 2). Only 1 study used variable length duration,3! and a
special U-net architecture was developed for this purpose to
handle the variable-size data.

As of the ECG recording format, only literature!®19:43:46
used 12-lead ECG signal which is the standard technique
in the real clinical settings. Although literature®® pro-
vided the largest datasets among all the selected studies
which can improve the model ability of generalization, they
did not reach the highest performances due to the imbal-
ance of data. Also, Hannun et al’ did not apply any pre-
processing methods on the data which can increase the
error rate.

Data augmentation is used to tackle the issue of data
imbalance. While some techniques help to mitigate the over-

fitting in the training stage, such as SMOTE technique and
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Overall Accuracy in study [1]

Overall Accuracy in study [4]

Overall Accuracy in study [9]

mmm MIT-BIH Arrhythmia
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mmm MIT-BIH Arrhythmia
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Fluke ProSim
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Figure 3. Overall accuracy recorded in some datasets.

80 90 100

GAN network, other methods allow only to increase the vol-
ume of data without having a measurable effect on the per-
formance and the variance of the dataset since they rely on a
simple resampling or the addition of Gaussian noise and
interpolation as in Iftene et al.>!

It is logical to analyze the use of different datasets in the
same study since it used the same pre-processing and predic-
tion methods. The comparison of the same database used in
different studies will not be relevant.

Figure 3 shows that INCART database in Chen et al'
reached the highest accuracy among the other databases, given
that all of them were imbalanced. This good performance can
be explained by the fact that INCART is 12-lead and the study
combined features from all these leads to ensure classification.
However, Yang et al?? showed better accuracy for MIT-BIH
database than INCART, from which were extracted only 2
leads (II and V1). Irfan et al'® and Wang® recorded better
results on MIT-BIH database because the other databases
were highly imbalanced.

Taking everything discussed above into account, we assume
that:

MIT-BIH still is one of the best and most complete
databases used in arrhythmia classification as it provides
annotations, signal characteristics, and different lead
recordings.

The combination of 12-leads can help increasing the
accuracy because the model will be fed with various
information.

It is essential to tackle the imbalance data issue because
it can hinder good pre-processing and prediction tech-
niques from achieving higher performances. SMOTE

technique is recommended for this end.

Feature selection and extraction

Table 5 indicates the types of some extracted features from
the selected studies. The most used features are RR intervals,
which represent the time-domain, and the amplitude of R
wave, which represents the space-domain. Moreover, the
WT and the PCA methods are the most used in the feature
extraction stage, given that PCA provides low-dimension
features while preserving as much of the data variation as
possible and WT allows to capture both frequency and time
information.

Sabut et al*? extracted various features having temporal, sta-
tistical, and spectral information, such as filter leakage measure,
covariance, kurtosis, skewness, threshold crossing interval,
Shannon Entropy, etc to improve the accuracy of classification.

For the studies based on DL models, such as CNN as in
literature,340:41:45 the extraction is held by the DL model itself,
by sliding multiple convolutional windows over the ECG and
performing multiple convolutional operations on the local
features.

There is no doubt that feature extraction allows a better
understanding of the model as it helps setting an explicit fea-
ture design of the ML model but when it is embedded in the
DL model, it decreases the consumption of resources and time.
For instance, we can rely on the strength of CNN for dealing
with the extraction stage even if CNN can be time-consuming
when a high number of layers are used.

Pre-processing methods

According to Table 4, only 1 study was not subject to data pre-
processing. The most used techniques are ECG heartbeat seg-
mentation (17 studies), noise removal (13 studies), data



14

Bioinformatics and Biology Insights

Table 5. Types of extracted data.

DOMAIN FEATURE

Frequency Signal phase angle of the FFT
Signal wave power spectrum of the FFT
DWT frequency
Mean of wavelet coefficient
Min of wavelet coefficient
Max of wavelet coefficient
SD of wavelet coefficient
QRS duration
Time Skewness of RR intervals
Kurtosis of RR intervals
SD of RR intervals
Interval RR
Interval PR
Position of R point
Position of P point
Local RR interval
Average RR interval

Energy

Ratio between the distance RR following the previous one

Space Amplitude of R wave
Amplitude of Q wave
Amplitude of P wave
Amplitude of S wave
Amplitude of K1
Amplitude of K2
Highest voltage value
Lowest voltage value
Average amplitude
Variance of amplitudes

Nonlinear Variance

Permutation entropy

Abbreviations: DWT, Discrete Wavelet Transform; SD, Standard Deviation.

normalization (8 studies),and QRS detection (6 studies). However,
4 studies relied on R-peak detection and this detection reached an
accuracy of 99.3% in Oh et al.3! Furthermore, the most used algo-
rithms in the pre-processing phase are the Pan—-Tompkins algo-
rithm to detect accurately R peaks and QRS complexes, and the
WT to reduce the cost of continuous wavelet computation.

STUDIES

Chen et al®

Chen et al®

Chen et al®

Lietal™

Lietal®

Lietal®

Lietal®

Benali et al®®

Chen et al'®

Chen et al'® and Raj and Ray32
Raj and Ray3?3

Anwar et al6,Raj and Ray?3, Elhaj et al?® and Park and Kang'®
Park and Kang'®

Park and Kang'®

Park and Kang'®

Anwar et al?® and Raj and Ray?32
Anwar et al?® and Raj and Ray?32
Anwar et al?® and Raj and Ray?32
Benali et al®®

Chen et al'®, Sumathi et al®, Benali et al3® and Park and Kang'é
Sumathi et al®

Park and Kang'®

Sumathi et al®

Sumathi et al®

Sumathi et al®

Chen et al'®

Chen et al'®

Chen et al®

Chen et al®

Chen et al®

Raj and Ray33

Table 6 below summarizes the pre-processing methods,
their application, and the objective from their usage.

The ECG signal segmentation is applied with different
sample-long segments that vary between 100- and 500-sample
long. The samples are centered either around the detected R
peaks or the detected QRS complexes. The segmentation can
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Table 6. Pre-processing methods

and their applications.

PRE-PROCESSING METHOD  APPLICATION/TYPE

Signal segmentation

Noise removal

Data normalization

QRS detection

R-peak detection

Signal compression

Dimensionality reduction

[100, 140, 150, 200, 250,
252, 256, 260, 300, 360,
400, 500] sample long.
Power line interference,
muscle noise, motion

artifact, baseline wander,
high-frequency artifacts.

Signal rescaling

QRS mid-point, RR
markers

R point recognition

Segmented ECG data

Feature space reduction

OBJECTIVE

Infer the hidden states of signal at each
time,
Subsequent signal classification.

Improve the interpretability and
perception of multi-dimension
information,

Reduce the probability of error in QRS
detection,

Enhance the classification accuracy.

Eliminate the offset effect,

Standardize the ECG signal amplitude,
Improve the backpropagation process
by speeding up the convergence rate.

Subsequent rhythm classification,
Identify features characteristics.

Facilitate features’ extraction

Reduce the signal size of beats with the
minimum loss,

Reduce the storage cost of the large
amount of data.

Reduce the overhead of computing,
Improve accuracy.

TECHNIQUE

Annotated R peaks, annotated
QRS complexes, cardiologists’
annotations.

DWT with its different
distributions, band-pass filter,
median filter, low-pass filter,
mathematics equations.

Min-max normalization, Z-score
normalization

Pan—Tompkins algorithm, SVMs,
Symlet WT, original algorithm by
GBM at Tlemcen University.
Pan—Tompkins algorithm

Deep CAE

PCA, vector cardiogram linear
transformation.

Abbreviation: GBM, Génie Bio-médical.

also rely on the extraction of T-to-T segments as in Zubair and
Yoon,* or can simply rely on the database annotation files.

Noise removal method is applied to remove different types
of noise that can result from patient motion or respiration,
power line interference, muscle artifacts, baseline drift, elec-
trode motion artifact or data-collecting device noise. To the
fact that each noise source resides in a characteristic frequency
band, different filters and techniques are used depending on
the type of noise.

Data normalization can be considered one of the most
interesting methods due to its important influence on the clas-
sification process. Namely, signal rescaling improves signifi-
cantly the backpropagation process by speeding up the
convergence rate.

Most of the studies where pre-processing was applied to
data showed a better performance on the classification as in
Iftene et al®* where CNN model reached an accuracy of 95%
without pre-processing vs 98% when applying data augmenta-
tion and normalization.

The other pre-processing methods used in the selected
studies are shown in Table 6.

To show the correlation between the use of pre-processing
methods and the obtaining of better accuracies, we plot the per-
formance corresponding to different pre-processing methods.

We compare between noisy data and noise-free data. Figure
4 shows that when cleaning data from noise, better accuracy
can be obtained. Yet, Yang et al3® demonstrated its ability to
detect successfully noisy heartbeats with different ML meth-

ods. This is due to the use of PCA filters when extracting fea-
tures, which can remove implicitly unwanted noise.

We notice that all the studies which recorded accuracies
lower than 90% did not undergo noise removal.

As result, we affirm that the use of one or many combined
pre-processing methods can decrease the error rate. It is highly
recommended to realize data augmentation and noise removal
to avoid misclassifications and improve the detection ability of
arrhythmia.

Prediction methods

As shown in Table 4, CNN and LSTM network are the most
used techniques, followed by the SVM in 22% of the studies.
Indeed, more than half of the studies used DL techniques to
improve the accuracy. CNNs are used with different variants in
the convolutional blocks as in literature.*4-46

Some studies reported the computation time in the learning
phase; Yang et al?? recorded the lowest training time with a
value equal to 68.8seconds using leads II and V1. The use of
CCANet in the feature extraction phase has definitely reduced
the computation cost and improved the accuracy and specific-
ity which reached, respectively, 99.4% and 99.6%.

Shahin et al*® reported a very interesting DL technique; the
architecture of the adversarial multi-task model consists of 3
networks: the generator network, the heartbeat-type discrimi-
nator which discriminates between 5 types of heartbeats, and
the subject discriminator which discriminates between 39
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different subjects. This design has increased the performance
allowing double discrimination and forcing the system to take
into account only the heartbeat variations. Yet, it can be
improved by changing the method of synthetic data genera-
tion; generating new data with GAN network or SMOTE
technique instead of upsampling which generates duplicated
data.

Sabut et al*2 used a fusion of 2 CNN branches with differ-
ent scales and an Attention module to mine the discriminative
features. In fact, the attention mechanism boosts the classifica-
tion performance as shown in Hu et al* where the attention
helped to capture the inter-beat dependencies.

The combination of residual convolutional blocks and bidi-
rectional LSTM model with Attention method in Ma et al*
seems to be effective since it allows a local and global feature
extraction, and high accuracy that reached 99.4%. Zubair and
Yoon* mitigated the problem of imbalanced data in CNNs by
designing a novel cost-sensitive loss function in the network.
This learning strategy is based on training efficiently the
model without changing the distribution of the data. Besides,
the aforementioned study highlighted the use of 2 different
paradigms: the intra-patient and inter-patient classifications
to show how the latter achieves better generalization
capability.

Luo et al®® used a hybrid model combining CNN layers,
LSTM, and GRU networks. Indeed, the authors took advan-
tage of every network’s strength: the high ability of temporal
and spatial information extraction of CNN, acquiring sequen-
tial information by LSTM, retaining only relevant information
by the GRU, and avoiding the gradient disappearance issue.

As for the development tools, Python was used with its dif-
ferent ML libraries, such as TensorFlow, PyTorch, Scikit-learn,
and Keras. MATLAB is also employed in some studies. Iftene
et al’! developed the prediction technique in the Amazon Web
Services platform using an integrated DL model.

We gather the prediction methods used in this review in the
scheme below (Figure 5).

General Al can be divided into 2 categories:

% Symbolic AI which is based on a system of “rules,” the
machine therefore does not improvise by itself, it acts
according to the rules it has received. One of the most
important algorithms in symbolic Al is the genetic algo-
rithm used in Li et al.13

% ML is a form of Al where based on more data and com-
puters can learn without being explicitly programmed to
do so instead of programmers teaching the machines
what tasks they need to perform.

We visualize the accuracy of CNN and SVM networks in
Figure 6.

As it can be shown, the average accuracy over all the studies
that used CNN is 97.82% vs 98.41% for SVM. When running
through literature, we find that SVMs when preceded with

feature extraction stage can achieve promising results. The
selected studies in this review used PCA filters, DW'T, and
convolutional layers for the extraction which definitely have
boosted the SVM performance.

Taking everything into consideration:

o The CNN and LSTM are the most used techniques in
the last years; they allow the extraction of temporal, spa-
tial, and sequential information from the ECG signal
and they analyze deeply the extracted features which
result in high accuracy.

o The attention method can boost the classification per-
formance and the generalization ability.

o Pre-processing combined with DL techniques can help
achieving promising results.

o To achieve high performance, DL methods need high-
performance computing.

o When high computational resources are not provided,
the use of SVM can be a good alternative for arrhythmia
detection but should be preceded with relevant feature
extraction methods which can be time-consuming.

Evaluation and performances

First, we compare the studies that used the same datasets. We
sort 7 different datasets available on the PhysioNet reposi-
tory:?3 MIT-BIH arrhythmia database, QT database, MIT-
BIH supraventricular arrhythmia database (SV), INCART,
MIT-BIH atrial arrhythmia database, Malignant ventricular
arrhythmia database, and PTB diagnostic ECG database,
besides 4 non-open datasets collected during studies!31>-16.18
either from simulation devices or Holter monitor or ECG
recorder as indicated in Table 2. However, 2 studies!®2¢ used
SV database, Anwar et al2¢ combined the data from both MIT-
BIH arrhythmia database (MIT-BIH) and SV database to
apply class-oriented prediction (based on different sub-catego-
ries of beats depending on the used datasets) with 18 classes
and subject-oriented prediction (main category classification
with beat’s annotation according to ANSI/AAMI standard)
with 5 classes while Chen et al” applied class-oriented scheme
with 4 classes. As shown in Figure 4, the model combining
MIT-BIH and SV databases achieved a high accuracy of
99.8%, whereas the model relying only on SV database achieved
an accuracy of 97.6% (Figure 7). Nevertheless, both the results
were promising.

Studies!??237 enrolled the learning phase using INCART
database for 4-class, 7-class, and 5-class prediction, respectively.
The highest accuracy of 99.8% was achieved by the first study
where they used 12-lead ECG recording format vs an accuracy
of 98.76% with 2-lead format and 97.57% for the 2 other stud-
ies. For the rest of the studies where they used MIT-BIH
arrhythmia database, all of them reached an accuracy above 90%.

Second, we carry on a comparison between studies using the

same prediction methods. Regarding the studies applying SVM,
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Figure 4. Accuracy of noisy data vs noise-free data.
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they used different kernel functions and some of them were com-
bined with other ML algorithms, but most of them yielded an
accuracy greater than 94%. This can be explained by the powerful
methods used for feature extraction and data pre-processing,
including the use of DL techniques,?*?238 in these studies. When
comparing the studies that applied CNN, all of them attained
high accuracy rates above 94%. The lowest metrics (accuracy, spec-
ificity, and sensitivity) were obtained by Qin et al3* that performed
SVM on record-based training scheme where the classifier was
trained and tested on separate records from different individuals.

Regarding the studies with smaller signal durations
(between 7 and 30seconds), they achieved good F1-score val-
ues but the highest scores were obtained by 30-minute dura-
tion studies. And yet, the increase in ECG signal length does
not guarantee the highest accuracy rates. Indeed, in this review,
the studies with the lowest signal duration'>163% could perform
better, especially when they applied deep CNNs; however, they
either did not proceed data pre-processing®® or they used
imbalanced data®® for the classification.

In Irfan et al,’9 the DL model achieved better results on the
second dataset, this is due to the highly imbalanced data in the
first dataset. Only the accuracy of the best model was reported
in Table 4 (an overall accuracy of 99.35% for balanced data vs
93.33% for imbalanced data).

For Shahin et al,*0 the adversarial multi-task model achieved
an overall accuracy of 86% on the validation set and 87% on the
test set, which are lower comparing to other techniques, due to
the imbalanced data.

Zubair and Yoon** achieved a high accuracy of 99.81% in
the intra-patient paradigm with CNN with different size ker-
nels and cost-sensitive function. Hu et al*5 reached an accu-
racy of 99.49% for 4 class-categorization with transformer

encoder—decoder network with CNN layers and attention
mechanism. The use of CNN with different kernel sizes (to
capture different segment and interval lengths) allowed to
obtain an accuracy of 98% for 41 arrhythmias classification.
Wang* used a novel method of premature ventricular con-
traction (PVC) detection where they modified a GRU network
to avoid the redundancy of information in the forward and
backward connections. This improved version of GRU yielded
an accuracy of 97.9% on MIT-BIH data and 98.3% on CPDB.
Most of methods relying on DL, ML, statistical Al tech-
niques, or a combination of them had performed high accuracies
because all of the selected studies in this review realized rigor-
ously the feature extraction phase and the pre-processing phase.
Among the studies selected, there are many that have used
variety of approaches/databases/methods. Depending on each
criterion, we linked the use of pre-processing and prediction
methods to the accuracies which they are shown in Table 4.

Contributions and comparison to other literature
reviews results

We compare our review to other review papers in literature that
focus on reviewing studies with ML methods for arrhythmia
classification.

Some papers focused only on describing the DL techniques
and neglected the effect of the pre-processing stage and the type
of datasets on the performance as in review*> which conducted
a shallow description of the papers. Unlike Ebrahimi et al,
where they realized a well-organized overview to the existing
papers in literature starting from 2017. Yet, they basically
selected papers using the public PhysioNet databases which can
be useful when producing and comparing works between
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Figure 5. Used Al methods.
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Figure 6. Accuracy of CNN and SVM models.
CNN, Convolutional Neural Network; SVM, Support Vector Machine.

researchers, but it neglects the DL performance that can be
recorded on wearable monitoring devices. In the same review,
they presented papers that used variants of GRU, RNN, and
CNN: models with very promising results in the literature.
One of the strong points of Annam et al*’ is the presenta-
tion of the inter-patient vs the intra-patient paradigms in
heartbeat classification with both DL and ML techniques.
However, they did not discuss the pre-processing methods
used in the selected papers. Jensen et al*® and Tamariz et al®
focused on the study of papers handling the validation of,
respectively, AF occurrence and ventricular arrhythmias while
focusing on the validation metrics and the used datasets with-
out dedicating special attention to the classification methods

which were reported as administrative codes. Jensen et al’®
reported only 16 studies which can question the relevance of
this review. Sanamdikar® reported feature extraction, pre-pro-
cessing, and prediction techniques for arrhythmia classification
with description of the used databases. However, the review
was limited in terms of the reported techniques, especially for
the pre-processing where they mentioned only noise removal.

One of the most interesting reviews in literature is Luz
et al.®! They relied on a good search strategy and succeeded to
report information about used databases, feature extraction,
pre-processing, and prediction methods.

Parvaneh et al®? presented an overview on arrhythmia detec-
tion with respect to the following aspects: used datasets, type of
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Figure 7. Average classification accuracy on SV database.
SV, supraventricular arrhythmia database.

input data, model architecture, and evaluation metrics. Due to
the shallow analysis of the selected papers, this review is con-
sidered to be conceptual. The DL architecture and feature
extraction were briefly stated. Another gap is the absence of
pre-processing methods which should be discussed because
they affect the performance of the DL model. However,
Houssein et al® focused on the studies related to arrhythmia
classification by artificial neural network (ANN) and SVMs.
The review presented the 3 main stages prior to classification:
pre-processing, feature extraction, and feature selection.
Detailed information about every phase was given while relat-
ing to the used methods in every study. Thus, this can be an
interesting review for reference but since they focused only on
2 models, ANN and SVM, more papers should have been
included to the analysis.
The strengths of our review can be mentioned as follows:

% We presented the search method and the inclusion crite-
ria that we rely on, to select the studies analyzed in our
review.

% We reported and analyzed papers using either DL or
ML or both, to emphasize the good performance that
can be reached when combining different techniques.
Moreover, we want to provide the reader with other
alternatives when high computing resources are not
provided.

% We established a deep description of the papers; explora-
tion of used datasets, feature extraction, pre-processing,
prediction methods, and performance evaluation.

% We pointed out the advantages and limitations of the
used methods.

% We analyzed the relationship between the high perfor-
mance and the use of pre-processing methods, especially
noise removal and data augmentation which help avoid-
ing misclassifications.

We believe that this review can help in defining the scope of
future research work when planning to apply ML or DL tech-
niques for arrhythmia classification to given datasets.

In the future, we plan to follow up this literature by the
developing an Al model to classify ECG heartbeats and pre-
dict the occurrence of arrhythmia.

Conclusions
This review synthetizes and interprets some of the papers in
the literature that deal with arrhythmia detection using ECG-
based models.

Taking everything into account, we summarize the findings
of this review as follows:

> The selected studies relied on a multi-class prediction of
arrhythmia with no other cardiovascular disease diagno-
sis, to keep the focus on the irregularity of heartbeat
types related to the arrhythmic aspect. Most of the stud-
ies used a 30-minute signal length and a single- or dual-
lead ECG recording format.

> ECG heartbeat segmentation relies on the signal slid-
ing based on the position of R peaks with equal-size
segment. Therefore, variable-size segments should be
used more frequently, especially when detecting
arrhythmias to capture the intra-beat and inter-beat
irregularities.

> Most of databases contain imbalanced data which result
in heartbeat misclassification for the minority classes.
Therefore, strong methods for data augmentation
should be used as SMOTE or GAN network.

> It is found that the use of data augmentation tech-
nique is proportional to the use of DL techniques
which need balanced data to emphasize their
performance.

> The most performing models used arrhythmia data-
bases from the PhysioNet repository mainly the
MIT-BIH databases because they are properly anno-
tated and organized. Moreover, the most used fea-
tures were RR intervals and the amplitude of R waves
which indicate the importance of these time-domain
and space-domain features, respectively, in the pre-
diction of arrhythmia.

> Opverall, 96% of the selected studies applied pre-process-
ing methods among which there are noise removal, nor-
malization, and QRS detection. These methods
demonstrated their efficiency in decreasing the computing
cost and increasing the accuracy rate.

> All selected studies used either ML techniques or DL
techniques, indicating that Al is becoming an important
twist in the health care and telemedicine field. The most
used technique is CNNs followed by SVM and the
combination of CNN and LSTM. The use of SVM,
with the combination of DL techniques in the feature
extraction and the pre-processing phases, recorded very
important results.
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In Table 7, shown all techniques that are used in arrhythmia
classification in this review. We present the advantages and
limitations of each classification method as they are identified
by the authors of each study.

We notice that the most common limitations for the use of
DL methods are that they are time-consuming and computa-
tionally expensive and require very efficient hardware resources.
Otherwise, they can perform accurately the classification of
heartbeats with the end-to-end learning besides they can be
robust to noise. For the traditional ML methods, they can be
simply implemented and are computationally efficient and
provide faster training time.

To sum up, we cannot give a decisive recommendation of the
best model, based on the analysis made in the “Discussion” sec-
tion because none of the 40 selected studies applied the exact
same feature extraction, pre-processing, or prediction techniques
in all the stages. Besides, the input information, the ECG signal
information, the development tools, and the computing capaci-
ties vary from one study to another. However, when taking into
consideration all these variants and the results of the studies’anal-
ysis, we can presume that the usage of DL solely or the usage of
ML combined with DL techniques can achieve very promising
results.
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Appendix 1

Table A1. Evaluation metrics.

DATABASE/ DATA TYPE/

METHOD

ACCURACY
(%)

SENSITIVITY
(RECALL) (%)

SPECIFICITY
(%)

PRECISION

F1-SCORE
(%)

Chen et al'®

Acharya et al2°

Yildirim et al?!

Yang et al??

Yildirim23

Sumathi et al®

Gao et al?*

Martis et al25

Lietal

Anwar et al?6

Liu27

Elhaj et al?®

Kim et al?®

SV,
MIT-BIH,
QT,
INCART

Augmented noisy data,
Augmented free-noise
data,

Original noisy data,
Original free-noise data

LSTM,
CAE-LSTM

MIT-BIH,
INCART (Il and V1),
INCART (V1 and V5),
INCART (Il and V5),
INCART (Il, V1, and V5)

DULSTM-WS,
DBLSTM-WS

(ANFIS) model

LSTM with focal loss,
LSTM with cross-entropy

LSTM-FL with noise-free
data,
LSTM-FL with noisy data

Feedforward NN (with
HOS + PCA),
Least-square SVM (with
HOS + PCA),
Feedforward NN

(DWT +HOS + PCA),
Least-square SVM
(DWT +HOS + PCA)

MIT-BIH arrhythmia
database,

ECG acquisition
experimental platform

Class-oriented scheme
with 18 classes,
Subject-oriented scheme
with 5 classes

MIT-BIH arrhythmia
database

SVM-RBF with PCA-
DWT +ICA-HOS,

NN with PCA-DWT + ICA-
HOS,

SVM-RBF with PCA-DWT,
NN with PCA-DWT,
SVM-RBF with ICA-HOS,
NN with ICA-HOS

GoogleNet deep NN with
1-inception,

GoogleNet deep NN with
2-inception,

GoogleNet deep NN with
CNN + 1-inception

97.6,
99.3,
99.6,
99.8

93.47
94.03
89.07
89.03

99.23
99.11

994,
98.31,
98.26,
98.31,
98.76

99.25,
99.39

98.24

99.26,
98.70

99.26,
99.07

94.52,
94.30,
93.61,
93.76

98.80,
97.30

99.75,
99.8

96.4

98.91,
98.90,
88.04,
93.48,
97.83,
94.57

95.3,
96.3,
95.9

97.6,
99.3,
99.6,
99.8

96.01
96.71
95.90
95.90

99.0
99.0

94.6,
90.89,
90.74,
90.38,
92.71

99.0,
100

NR

99.26,
98.70

99.26,
99.07

98.61,
99.72,
98.51,
99.46

98.50,
97.50

98.7,
99.7

NR

98.91,
98.90,
NR
NR

NR

NR

NR

91.64
91.54
88.35
88.39

NR

99.6,
98.85,
98.84,
98.87,
99.16

NR

NR

99.14,
98.05

99.14,
98.99

98.41,
96.69,
97.80,
97.36

99.69,
99.32

99.9,
99.9

NR

99.0
99.0

NR

100,
100

NR

99.30,
98.75

99.30,
99.13

NR

NR

NR

NR

NR

NR

97.6,
99.3,
99.6,
99.8

NR

99.0
99.0

NR

100,
100

NR

99.27,
98.36

99.27,
99.09

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR
NR

NR

NR

NR

NR

NR

NR

NR

(Continued)
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Table A1. (Continued)

DATABASE/ DATA TYPE/

METHOD

ACCURACY
(%)

SENSITIVITY
(RECALL) (%)

SPECIFICITY
(%)

PRECISION
(%)

Yildirim3°

Oh et al®

Oh et al®2

Raj and Ray?32

Ribeiro et al's

Qin et al®*

Rajagopal and
Ranganathan3s

Benali et als®

Rajeshand
Dhuli®?

Yang et al38

Hannun et al'®

Park and Kang'®

Ullah et al®®

Irfan et al'®

Shahin et al*°

CNN (13-classes),
CNN (15-classes),
CNN (17-classes)

Modified U-net architecture

CNN + LSTM without
dropout,

CNN +LSTM with
2-dropout,

CNN +LSTM with
3-dropout

Category-based scheme,
Personalized scheme

Unidimensional residual
NN

Beat-based training
scheme,
Record-based training
scheme

Combined KNN and SVM

WNN

SMO-SVM with EMD
(linear, RBF, cubic kernels)
for MIT-BIH data

SMO-SVM with EEMD
(linear, RBF, cubic kernels)
for MIT-BIH data

SMO-SVM with EEMD
(linear, RBF, cubic kernels)
for INCART

Linear SVM,
KNN,

BP-NN,

RF (noisy data)

Linear SVM,

KNN,

BP-NN,

RF (noise-free data)

CNN with sequence-level,
CNN with set level

Decision tree for non-
personalized scheme,
Decision tree for

personalized scheme

CNN,

CNN+LSTM,

CNN + LSTM + Attention
method

CNN +LSTM for MIT-BIH
database,

CNN +LSTM for UCI
arrhythmia dataset

Multi-task adversarial
network

95.2,
92.51,
91.33

97.32

98.42,
97.88,
98.10

99.21,
90.08

NR

99.70,
81.47

99.78

98.78

97.44,
98.58,
99.2

89.86,
96.45,
94.68

96.59,
97.46,
97.57

97.77,
9710,
96.95,
96.01

97.08,
96.27,
95.89,
95.22
NR

89.95,
85.26

NR

99.35,
99.05

86

93.52,
88.57,
83.91

94.44
98.07,

97.26,
97.50

99.21,
NR

93.48

99.82,
44.40

92.56

NR
93.06,
96.48,
98.01
72.18,
85.80,
86.71
93.2,
94.92,
95.15

NR

NR

NR

94.61,
97.99

99.12,
99.3,
99.29

98.37,
89.11

NR

99.61,
99.39,
99.41

98.26
98.76,

98.50,
98.70

NR
98.4

99.82,
88.88

99.53

NR

98.66,
99.00,
99.49
93.10,
98.81,
96.67
97.73,
98.30,
98.37

NR

NR

NR
85.28,

72.52

NR

99.59,
99.40

NR

92.52,
90.48,
89.52

NR
NR

NR
92.36

NR

NR

NR
NR

NR

NR

NR

NR

NR
NR
99.12,

99.3,
99.29

NR

NR

F1-SCORE

(%)

92.45, NR
89.28,

85.38

NR NR
NR NR
99.21, NR
NR

92.55 NR
NR NR
94.5 NR
NR NR
NR NR
NR NR
NR NR
NR NR
NR NR
80.7, 97.8,
83.7 97.7
NR NR
99.12, NR
99.3,

99.29

NR NR
NR NR

(Continued)
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Table A1. (Continued)

DATABASE/ DATA TYPE/ ACCURACY SENSITIVITY SPECIFICITY PRECISION F1-SCORE
METHOD A (RECALL) (%) (%) A A
Ma et al*! ResNet + Bi- 99.4 98.4 99.3 NR NR NR
LSTM + Attention method
Sabut et al*? DNN 99.2 98.8 99.3 NR NR NR
Wang et al*? Deep multi-scale fusion NR 82.2, NR 83.8, 82.8, NR
NN (CPSC dataset, CINC 82.9 85.6 84.1
dataset)
Anbarasi et al' Combined CNN and LSTM 98.7 98 98 NR NR NR
Zubair and CNN (intra-patient, 99.81, 88.82, 99.54, NR NR NR
Yoon#4 inter-patient) 96.36 70.60 96.16
Hu et al*® Transformer-based CNN 99.12, 97.53, 99.83, 98.54, 98.03, NR
(8, 4, 2 classes) 99.49, 92.51, 99.84, 95.38, 93.88,
99.23 99.23 99.23 99.23 99.23
Feyisa et al*® Multi-receptive CNN (41, 98, 31, NR 28, 29, 92,
20, 5 classes) 96.2 56, 42, 46, 92,
89.7 76 73 72 93
Ju et al¥’ Deep bidirectional GRU 99.51 929 NR 98 98 NR
Wang et al*® Dual-path RNN 84.5 NR NR NR 82.91 NR
Wang#? CNN + improved BGRU 97.9, 98, 97.8, NR NR NR
(MIT-BIH, CPDB) 98.3 98.4 98.2
Luo et al®° Hybrid convolutional RNN 99.01 99.58 NR NR 99.51 NR
Iftene et al’! 1-D CNN with pre- 98, NR NR NR NR NR
processing, 95,
1-D CNN, 90,
Bayesian NN, 94

GRU network

Abbreviations: ANFIS, Adaptive Neuro-Fuzzy Inference System; AUC, Area Under Curve; BP-NN, Back-Propagation Neural Network; CAE, Convolutional Auto-encoder;
CINC, Computing in Cardiology Challenge; CPDB, China Physiological Signal Challenge database; CPSC, China Physiological Signal Challenge; CNN, Convolutional
Neural Network; DBLSTM-WS, Deep Bidirectional Long Short Term Memory network based Wavelet-Sequences; DNN, Deep Neural Network; DULSTM-WS, Deep
Unidirectional Long Short Term Memory network based Wavelet-Sequences; DWT, Discrete Wavelet Transform; EEMD, Ensemble Empirical Mode Decomposition; EMD,
Empirical Mode Decomposition; GRU, Gated Recurrent Unit; HOS, Higher-Order Spectra; ICA, Independent Component Analysis; INCART, St. Petersburg Institute of
Cardiological Techniques; KNN, k-nearest neighbors; LSTM, Long Short-Term Memory; LSTM-FL, Long Short-Term Memory with Focal Loss; MIT-BIH, Massachusetts
Institute of Technology-Boston’s Beth Israel Hospital; NR, Not Reported; PCA, Principal Component Analysis; RBF, Radial Basis Function; SV, supraventricular arrhythmia
database; SVM, Support Vector Machine; UCI, University of California Irvine.

Table A2. ECG beats categorized as per ANSI/AAMI EC57; 2012 standard.

N S \% E Q
e Normal e Atrial premature e PVC e Fusion of ventricular e Paced
e Left bundle branch block e Aberrant atrial e Ventricular escape and normal e Fusion of paced and
e Right bundle branch premature normal
block e Nodal (junctional) e Unclassifiable
e Atrial escape premature

e Nodal (junctional) escape e Supraventricular
premature
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Table A3. Beat annotations by PhysioBank. Appendix 2
CODE DESCRIPTION Table of acronyms.
N Normal beat (displayed as “” by the PhysioBank ATM, ACRONYM SIGNIFICATION
LightWAVE, pschart, and psfd)
ABC Artificial bee colony
L Left bundle branch block beat
. Al Artificial intelligence
R Right bundle branch block beat
i AUC Area under curve
B Bundle branch block beat (unspecified)
. CAE Convolutional auto-encoder
A Atrial premature beat
. CNN Convolutional neural network
a Aberrated atrial premature beat
. ) DAG Directed acyclic graph
J Nodal (junctional) premature beat
. . . Db Daubechies
S Supraventricular premature or ectopic beat (atrial or
nodal) DL-CCANet Dual-lead canonical correlation analysis
. . network
\Y Premature ventricular contraction
. . DCT Discrete cosine transform
r R-on-T premature ventricular contraction
. . DOST Discrete orthogonal stockwell transform
F Fusion of ventricular and normal beat
. DST Discrete sine transform
e Atrial escape beat
. . . DWT Discrete wavelet transform
j Nodal (junctional) escape beat
. . FFT Fast Fourier transform
n Supraventricular escape beat (atrial or nodal)
. GBM Génie Bio-médical
E Ventricular escape beat
HOS Higher-order spectrum
/ Paced beat
) ICA Independent component analysis
f Fusion of paced and normal beat
" INCART St. Petersburg Institute of Cardiological
Q Unclassifiable beat Techniques
? Beat not classified during learning KICA Kernel-independent component analysis
LDA Linear discriminant analysis
LSTM Long short-term memory
LSTM-WS Long short-term memory wavelet sequence
LS-TSVM Least-square twin support vector machine
MIT-BIH Massachusetts Institute of Technology-Boston’s

Beth Israel Hospital

MLP Multilayer perceptron

NN Neural network

PCA Principal component analysis

PCANet Principal component analysis network
RBF Radial basis function

RF Random forest

SD Standard deviation

SV Supraventricular

SVM Support vector machine

TL-CCANet Triple-lead canonical correlation analysis

network



