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Abstract: Edible coatings provide an alternative way to reduce packaging requirements and extend
the shelf life of foods by delaying oxidation and microbial spoilage. Hydrogels, oleogels and bigels
were applied as coatings on fresh sardine fillets. The effectiveness of these coatings as delivery
systems of rosemary extract (RE) was also evaluated. Three groups of sardine fillet treatments were
prepared: (i) the control (C), which comprised sardine fillets without coating, (ii) sardine fillets with
plain hydrogel (H), oleogel (O) or bigel (BG) coatings, and (iii) sardine fillets with RE incorporated
into the H, O and BG coatings. The different treatments were evaluated for lipid oxidation (TBA test),
total volatile basic nitrogen (TVB-N) and microbiological growth during cold storage at 4 ◦C. Results
showed that hydrogel, oleogel and bigel coatings delayed oxidation. The incorporation of RE into
coatings significantly retarded lipid oxidation but did not affect the proliferation of microorganisms
during storage. When RE was incorporated in the oleogel phase of the bigel coating, it produced
significantly lower TVB-N values compared to the control and BG treatments. The incorporation of
RE into the oleogel phase of the bigel coating may be a promising method of maintaining the storage
quality of the sardine fillets stored at refrigerated temperatures.

Keywords: sardine fillets; edible coatings; plant extracts; hydrogel; oleogel; bigel; lipid oxidation

1. Introduction

Sardina pilchardus, commonly known as European pilchard, is one of the most com-
mercially exploited fish species, with significant nutritional and economic importance. It is
rich in polyunsaturated fatty acids, mainly omega-3 fatty acids, and comprises an excellent
source of high biological value proteins, minerals and vitamins for human consumption [1].
However, owing to the great amount of omega-3 and omega-6 fatty acids, sardines are
highly susceptible to oxidation [2], resulting in degradation of organoleptic characteristics,
loss of nutritional value and shortening of shelf life. During storage, fresh sardines are par-
ticularly vulnerable to deterioration due to the combined effect of the metabolic activity of
microorganisms and the enzymatic processes [3]. Therefore, degradation of sardine quality
occurs rapidly throughout handling and storage periods, leading to limited shelf life.

Edible coatings present an effective and environmentally friendly alternative to en-
hance quality and extend food preservation during refrigerated storage. Coatings can be
prepared from various compounds, such as carbohydrates (starch, cellulose, alginates),
proteins (gelatin, whey protein, casein, zein) and lipids (waxes, oils, fats) [4]. Therefore,
systems such as hydrogels, oleogels or the combination of them, as bigels, could be used as
edible coatings. The process of coating includes the direct immersion of the food in a liquid
solution [5]. Edible coatings can act as a barrier to the ingress of oxygen and water in food,
resulting in slowing oxidation reactions and retaining moisture [6]. Various edible coatings
have been studied for the preservation of fishery products during refrigerated storage,
such as chitosan coatings on Indian oil sardine (Sardinella longiceps) [7], chitosan-gelatin
coatings on shrimp (Litopenaeus vannamei) [8], and sodium alginate or whey protein coatings
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on rainbow trout (Oncorhynchus mykiss) fillets [9,10]. The formation of a barrier between
atmospheric oxygen and food products can retard the oxidation process and extend the
shelf-life of foods. Thereby, the application of an edible coating could be effective, especially
during the storage of fishery products, as it could delay microbial growth and oxidative
deterioration [11]. The application of whey protein-based coatings, for example, has been
reported to inhibit lipid oxidation in Atlantic salmon (Salmo salar) fillets [12]. Regarding
microbial stability, the spoilage of fishery products mainly takes place due to the growth
of Gram-negative, psychotropic bacteria [13]. Pseudomonas spp. is considered the most
important psychotropic microorganism, causing fish spoilage when stored under aerobic
low temperatures [14].

Hydrogels are three-dimensional, hydrophilic macromolecular networks formed by
interactions among the polymeric chains of a gelling agent, retaining large amounts of
water [15]. In addition, most hydrogels are characterized as reversible, with the capability
to alter their rheological properties due to changes in external conditions (temperature,
pH, ionic solution strength, etc.) [16]. Gelatin is an ideal coating material due to its gelling
ability and resistance to dehydration, light and oxygen [17].

Oleogels are three-dimensional, anhydrous, viscoelastic gels developed through the
addition of low molecular weight or polymeric structures in edible oils, leading to the struc-
turing of the continuous phase of the system [18]. Waxes, fatty acids and alcohols, lecithin,
monoglycerides (MGs) and a mixture of phytosterols with oryzanol [19] or MGs [20] have
been used as low molecular weight oleogelators [21]. Studies have demonstrated that struc-
tured oil could efficiently replace animal fat in foods [22–26]. Oleogel and oleogel-based
systems have great potential as delivery vehicles of lipophilic bioactive compounds [21,27].

Bigels (hybrid gels) are biphasic systems where both the lipid and the aqueous phase
are structured in the form of oleogel and hydrogel, respectively [28]. Technically, bigels
resemble emulsions that include a gel network in both their aqueous and lipid phases, but
they confer better physicochemical stability over time compared to plain emulsions [29].
Bigels are structured through the dispersion of one phase into the other, mostly form-
ing oleogel-in-hydrogel bigel systems [30]. The fact that bigels consist of two structured
phases provides the advantage of the controlled delivery of both hydrophilic and lipophilic
bioactive substances [31]. In addition, their relatively easy preparation methods [32], spread-
ability [31], extended shelf-life, and the stability for 6–12 months at room temperature [33]
give these systems the opportunity to be utilized as edible coatings for foods. Currently,
some food-grade bigels have been used as potential fat substitutes in food products [34,35].

Increasing consumer demands for safer, high-quality food products with prolonged
shelf lives have led the food industry to the broad use of chemical preservatives, ensuring
the microbiological and oxidative stability of perishable foods. However, the use of syn-
thetic preservatives has raised concerns regarding potential health risks [36–38]. A new
trend in the food industry, called green consumerism, aims to develop alternative methods
of food preservation and is more focused on using natural ingredients [39]. Specifically,
essential oils and plant extracts attract interest as prospective preservatives due to their low
toxicity, high bioaccessibility and wide acceptance by consumers [40]. The functionality
of natural extracts and essential oils relies on inhibiting the growth of microorganisms
(food safety) and controlling the natural spoilage processes (food preservation) [41]. In
general terms, incorporating plant extracts into edible coatings could delay or prevent food
deterioration, by controlling lipid oxidation or microbial growth. Thus, edible coatings
enriched with plant extracts could be an approach to enhance the quality and extend the
shelf life of perishable foods, such as sardine fillets.

Rosemary (Rosmarinus officinalis, L.) is a common aromatic herb, approved as a natural
food antioxidant in the EU primarily due to its high concentration of antioxidant com-
pounds, such as rosmarinic acid, carnosol and carnosic acid [42]. Rosmarinic acid is a more
hydrophilic substance compared to carnosol and carnosic acid, which are more soluble
in hydrophobic solvents [43]. The antioxidant activity is achieved by donating hydrogen
atoms or electrons, which scavenge the free radicles. The rosmarinic acid exhibits strong
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antioxidant activity due to its structure, which is comprised of two phenolic rings [44].
In addition, the carnosic acid and carnosol, typically found in rosemary extracts, protect
against oxidation progress by stabilizing the hydroperoxides [45]. Specifically, these phe-
nolic compounds inhibit the decomposition of hydroperoxides into active forms, such
as malonaldehyde, and create a complex with Fe2+, ensuring the prevention of hydroxyl
radical formation [46]. Sarabi et al. (2017) reported the antioxidant effect of RE on coated
fried Escolar (Lipidocybium flavobrumium) fish fillets during frozen storage [47]. Peiretti et al.
(2012) investigated the effects of rosemary oil (RO) on the oxidative stability of minced
rainbow trout at 4 ◦C and found that treatments enriched with RO had lower TBARS values
than the control [48]. Furthermore, ice containing RE improves the oxidative stability and
extension of the shelf life of sardine (Sardinella aurita) [49]. Moreover, various microorgan-
isms are also vulnerable to the activity of rosemary oil, as it contributes to the increased
permeability of the microbial cell membrane [50]. According to Klančnik et al. (2009), the
antimicrobial activity could be affected by the concentration and the chemical nature of the
phenolic compounds in RE [51]. The antimicrobial activity of extracts is mainly attributed
to phenolic compounds, which can disrupt the bacteria’s cell wall and penetrate the cell,
leading to protein denaturation, cell membrane destruction and cell death. Considering the
above, the antimicrobial activity of extracts is expected to be lower against Gram-negative
bacteria because the additional outer membrane of Gram-negative bacteria surrounds their
cell wall, restricting the diffusion of hydrophobic compounds through the membrane and
reducing the effect of the antimicrobial compounds [52]. The direct application of rosemary
extract in fish flesh was effective in delaying lipid oxidation of gilt-head sea bream (Sparus
aurata) and salmon (Salmo salar) fillets [53,54].

To the best of our knowledge, the application of gelatin hydrogels, sunflower oil
oleogels, and bigels with or without rosemary extract for the preservation of the quality of
sardine fillets has not been studied to date. Thus, the objective of the present study was
to evaluate the efficacy of hydrogels, oleogels, and bigels as edible coatings and potential
delivery systems of rosemary extract by examining the chemical and microbiological
attributes of coated sardine fillets during refrigerated storage.

2. Results and Discussion
2.1. Evaluation of Gels as Edible Coatings
2.1.1. Thiobarbituric Acid (TBA) Analysis

Changes in TBARs of the sardine fillets throughout the storage period are shown in
Figure 1. Initial TBARs were found to be 1.55–2.35 mg MDA/kg. Control treatment (C)
had the highest TBARs during storage compared to coated treatments (p < 0.05). TBARs of
C increased faster compared to H, O and BG treatments. The oxidation process followed
an increasing course in all the sardine treatments up to 4th day, but lower values were
observed for the coated fillets (H, O and BG). The application of the different edible coatings
on sardine fillets showed statistically significant inhibition of lipid oxidation (p < 0.05).
Treatment O exhibited the lowest TBARs during the storage time, which were recorded
as 12.01 ± 2.88 mg MDA/kg on 4th day. The data illustrated in Figure 1 indicate that
the oleogel coating was effective in retarding the production of secondary lipid oxidation
products in sardine fillets by acting as a barrier to oxygen permeation and slowing oxygen
diffusion into the fish. In addition, the bigel (containing 80% hydrogel and 20% oleogel
phase) was a much more effective oxygen barrier that the plain hydrogel coating (H), which
exhibited the least effectiveness against lipid oxidation.
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Figure 1. Oxidation values of sardine fillets with edible coatings during storage at 4 ◦C. (•) C: control-
uncoated fillets; (�) H: hydrogel coating; (N) O: oleogel coating; (�) BG: bigel coating. a–c Different
letters in the same day indicate significant differences (p < 0.05).

Thiobarbituric acid values (TBARs) provide a measure of the concentration of sec-
ondary lipid oxidation products due to the auto-oxidation of peroxides to aldehydes and
ketones [55]. Mendes et al. (2008) reported that the partial dehydration process of the
fish and the oxidation of unsaturated fatty acids contributed to the increase in TBARs
under chilled storage [56]. The edible coatings, in addition to providing a barrier to oxygen
permeation, also prevented dehydration of the fillet surface, thus protecting the sardine
fillets from oxidative deterioration.

2.1.2. Microbiological Analysis

The changes in psychotropic counts (PTC), Enterobacteriaceae and Pseudomonas spp. of
sardine fillets during the refrigerated storage are shown in Table 1. The initial low microbial
counts indicated that the fish were of good microbiological quality. The PTC of all the
examined treatments increased gradually, as the storage temperature was optimal for these
bacteria to proliferate [57]. The hydrogel coating (H) resulted in lower (p < 0.05) microbial
counts than C and other coated treatments (O and BG) throughout the storage period
(Table 1). Control and coated treatments reached 8–9 log (CFU/g) in PTC on the seventh
day of storage.

During the storage period, the counts of Pseudomonas spp. showed an increasing
trend for C and coated treatments (H, O and BG) (Table 1). The increase was significantly
lower (p < 0.05) for H treatments compared to C. The observed antimicrobial activity of
gelatin hydrogel could be related to the oligopeptide chains derived from the hydrolysis
of collagen for the formation of gelatin and the presence of side-chain amino groups [58].
Analogous antimicrobial properties have also been reported for other hydrolyzed muscle
proteins [59]. The population of Pseudomonas spp. of the C, H, O and BG treatments reached
9.83, 9.25, 9.40 and 9.74 log (CFU/g), on 7th day, respectively.

Enterobacteriaceae bacteria constitute an indicator of the deterioration of the hygienic
conditions of fish. The application of coatings affected Enterobacteriaceae’s growth (p < 0.05).
Initial Enterobacteriaceae counts were about 1.9–2.5 log (CFU/g). After seven days of refrig-
erated storage, Enterobacteriaceae reached approximately 8.5 log (CFU/g) for uncoated and
BG sardine fillets. Generally, the hydrogel and oleogel coatings showed some antimicrobial
activity against this microorganism. The H treatment exhibited the lowest Enterobacteri-
aceae counts up to the fifth day of refrigerated storage, in agreement with the previous
observations for PTC and Pseudomonas spp.
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Table 1. Microbiological characteristics of sardine fillets coated with or without RE during storage at 4 ◦C.

Gels as Edible Coating Gels as Edible Coating and Delivery System

Days C H O BG HR OR BGHR BGOR

0 3.77 ± 0.54a 3.40 ± 0.08a 3.79 ± 0.06a 3.25 ± 0.15a 3.27 ± 0.05a 3.70 ± 0.14a 2.92 ± 0.2 5a 2.90 ± 0.26a

Psychrotrophic 1 4.74 ± 1.13a 4.32 ± 0.07ab 6.12 ± 0.03a 3.30 ± 0.11b 4.20 ± 0.18ab 5.87 ± 0.07a 3.27 ± 0.11b 3.22 ± 0.12b

Bacteria 3 7.12 ± 0.82a 5.00 ± 0.02b 7.40 ± 0.11a 6.74 ± 0.05a 5.04 ± 0.05b 7.42 ± 0.06a 6.53 ± 0.08a 6.12 ± 0.19ab

log (CFU/g) 5 8.50 ± 0.07ab 7.02 ± 0.07c 9.13 ± 0.06a 8.13 ± 0.11abc 7.03 ± 0.00c 8.97 ± 0.03a 8.03 ± 0.02abc 7.66 ± 0.07bc

7 9.86 ± 0.22a 8.32 ± 0.01d 9.15 ± 0.06c 9.64 ± 0.06ab 8.00 ± 0.03d 9.00 ± 0.02c 9.42 ± 0.11bc 9.15 ± 0.16c

0 3.63 ± 0.10a 3.22 ± 0.02cd 3.43 ± 0.02abc 3.55 ± 0.07ab 3.13 ± 0.02cd 3.34 ± 0.06bcd 3.29 ± 0.12cd 3.10 ± 0.10cd

Pseudomonas spp. 1 4.45 ± 0.47a 3.47 ± 0.05b 3.95 ± 0.06ab 3.95 ± 0.02ab 3.15 ± 0.04b 3.84 ± 0.07ab 3.82 ± 0.03b 3.72 ± 0.06b

log (CFU/g) 3 6.94 ± 0.67a 5.22 ± 0.12b 7.36 ± 0.11a 6.51 ± 0.11a 5.29 ± 0.07b 7.24 ± 0.01a 6.39 ± 0.06ab 6.20 ± 0.07ab

5 8.28 ± 0.74abc 7.19 ± 0.11d 9.19 ± 0.09a 7.89 ± 0.04bcd 7.09 ± 0.02d 8.71 ± 0.15ab 7.43 ± 0.04cd 7.19 ± 0.07d

7 9.83 ± 0.18a 9.25 ± 0.04bc 9.40 ± 0.11bc 9.74 ± 0.05a 9.19 ± 0.06bc 9.04 ± 0.08c 9.46 ± 0.04b 9.27 ± 0.05bc

0 2.48 ± 0.41a 1.92 ± 0.11ab 2.46 ± 0.06ab 2.52 ± 0.09a 1.69 ± 0.12b 2.22 ± 0.15ab 2.39 ± 0.06ab 2.21 ± 0.08ab

Enterobacteriaceae 1 3.26 ± 0.74a 2.45 ± 0.03a 3.74 ± 0.09a 2.94 ± 0.03a 2.33 ± 0.07a 3.56 ± 0.08a 2.84 ± 0.06a 2.75 ± 0.08a

log (CFU/g) 3 5.93 ± 0.52a 4.40 ± 0.11bc 4.58 ± 0.02bc 5.30 ± 0.12ab 4.38 ± 0.01bc 4.30 ± 0.06c 5.11 ± 0.06bc 4.91 ± 0.05bc

5 6.96 ± 0.86ab 6.52 ± 0.01abc 7.75 ± 0.04a 5.92 ± 0.26bc 6.48 ± 0.02abc 7.69 ± 0.02a 5.23 ± 0.08c 5.00 ± 0.04c

7 8.40 ± 0.30a 7.59 ± 0.03b 7.17 ± 0.01bc 8.57 ± 0.06a 7.42 ± 0.08b 6.72 ± 0.01c 8.43 ± 0.04a 8.19 ± 0.08a

Values represent means ± standard error. a–d Different letters in the same row indicate significant differences (p < 0.05). C: control-uncoated fillets; H: hydrogel coating; O: oleogel coating;
BG: bigel coating; HR: hydrogel coating with RE; OR: oleogel coating with RE; BHRG: coating with added RE in aqueous phase; BGOR: bigel coating with added RE in lipid phase.
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2.2. Evaluation of Gels as Delivery Systems of Rosemary Extract
2.2.1. Thiobarbituric Acid (TBA) Analysis

TBARs of C and treatments with RE during storage at 4 ◦C are shown in Figure 2.
MDA measurements showed that the initial oxidation of the sardine fillets was low on
0 day. It was found that incorporating RE in edible coatings affected TBARs development
(p < 0.05). There was a progressive increase of lipid oxidation in C and the treatments
with the RE-enriched coatings throughout storage. However, significantly lower (p < 0.05)
TBARs were found for HR, OR, BGHR and BGOR treatments in comparison with the C
treatments. Moreover, lower oxidation levels were measured in coated treatments enriched
with RE (HR, OR, BGHR and BGOR) compared to the coated treatments without RE (H,
O, BG). Results support that incorporating RE in different types of coatings can retard the
oxidative deterioration of the refrigerated sardine fillets.
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It has been established by several researchers that the incorporation of phenolic
compounds into protein-based coatings may lead to the formation of hydrogen bonds
between phenols and protein functional groups, resulting in the improvement of the
mechanical attributes and water barrier properties of these type of coatings [60]. Thereby,
the incorporation of the phenolic-rich RE in HR, is likely to enhance the barrier properties
of the gelatin-based coating, delaying the oxidation deterioration of the fillets.

For the evaluation of the functionality of RE in the different phases (aqueous or lipid),
the extract was incorporated into either the hydrogel or the oleogel phase of the bigel
coatings. The TBARs of the sardine fillets with bigel coatings were significantly lower than
the control samples (p < 0.05) and the RE showed a strong antioxidant activity (Figure 3).
Even though the oxidation levels of the BGOR treatment were lower in absolute values than
the BGHR treatment after the second day of storage, these differences were not statistically
significant (p > 0.05). Therefore, the incorporation of RE into the oleogel or the bigel
inhibited the lipid oxidation of sardine fillets in a comparable manner. The main active
ingredient of the RE is rosmarinic acid, a water-soluble compound that would tend to
partition into the aqueous phase of the bigel, even when the RE was incorporated into
the lipid phase. Apart from rosmarinic acid, rosemary extracts also contain less polar
ingredients, like carnosol (a phenolic diterpene) [61], that can be found in a propylene
glycol extract [62]. When the RE is added in a complex matrix such as a bigel, the less polar
ingredients could be transferred to the lipid fraction and a part of rosmarinic acid could
partition into the aqueous phase of the bigel during mixing. It should be noted that the
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two phases of the bigel are mixed together when they are in a molten state, facilitating the
partitioning process. The antioxidant activity of RE probably depends on the polarity of the
edible coatings, as the coatings with a lipid phase seemed to be more efficient as delivery
and controlled release systems of the RE. The better performance of the OR, BGHR and
BGOR treatments compared to the HR could also be attributed to the better oxygen barrier
properties of these gels compared to the gelatin hydrogel (H), as discussed in the previous
section. Furthermore, these results could be associated with the fact that the diffusion
rate of RE is slower in the oleogel system resulting in a gradual release of the antioxidant
compound throughout the whole experiment [63].
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2.2.2. Microbiological Analysis

As previously observed in the other treatments, the psychotropic counts (PTC),
Pseudomonas spp. and Enterobacteriaceae of sardine fillets increased progressively with
the storage time for HR, OR, BGHR and BGOR. The initial PTC of sardine fillets was
2.90–3.77 log (CFU/g) on day 0. On day 7, the PTC of C, HR, OR, BGHR and BGOR
treatment reached 9.86, 8.00, 9.00, 9.42 and 9.15 log (CFU/g), respectively (Table 1). Lower
final PTC of sardine fillets were observed for HR treatment compared to C and other coated
treatments, while in the early days of storage, lower values were observed in bigel-coated
treatments. Refrigerated storage resulted in an increase in Pseudomonas spp. and Enter-
obacteriaceae of the fillets with RE coating (Table 1). Even though the RE treatments had
lower microbial counts than the plain coatings, these differences were not statistically
significant (p > 0.05). It has been reported that the incorporation of 1.5% rosemary extract
in refrigerated Nile tilapia (Oreochromis niloticus) fillets had no protective effect against
Pseudomonas spp. [39].

2.2.3. Total Volatile Basic Nitrogen (TVB-N)

Small-sized molecules, such as volatile nitrogenous compounds, biogenic amines
and organic acids, are produced by the metabolism of basic spoilage microorganisms in
fresh fish and serve as spoilage indicators. Specifically, total volatile basic nitrogen (TVB-
N) represents many different nitrogenous compounds, such as ammonia and primary,
secondary and tertiary amines, formed by enzymatic action, and is widely used as an
important indicator of fish and seafood deterioration [64,65]. According to Connel (1995),
the concentration of TVB-N in a fresh fish is typically between 5–20 mg TVB-N/100 g,
while the acceptability limit is 30–35 mg TVB-N/100 g of fish flesh [66]. The TVB-N
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determination revealed significant differences between the control and bigel treatments.
TVB-N concentrations of the various treatments are shown in Figure 4.
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On the fourth day of storage, the TVBN values of C, BG, BGHR and BGOR were
26.6, 14.7, 10.5 and 7.7 mg/100 g, respectively. The bigel coatings significantly delayed
TVB-N formation compared to the control (C) (Figure 4) (p < 0.05). According to the results,
the TVB-N content of all treatments gradually increased during storage, but the level of
30 mg/100 g was exceeded only in treatment C, at the end of the storage period. The BGHR
and BGOR treatments reached significantly lower TVB-N values of 14.0 mg/100 g and
9.1 mg/100 g in comparison to C treatments (p < 0.05). Based on the TVB-N results, it can be
concluded that the RE has a more intense effect on inhibiting the TVN-N production when
added in the oleogel phase of the bigel (BGOR). Similar studies reported that fish fillets
coated with edible films containing extracts or essential oils in multiple concentrations
showed lower TVB-N values than non-coated samples stored under refrigeration [67].
Based on these observations, it can be concluded that, even if the composition of BGHR and
BGOR is identical, the incorporation phase of RE plays an essential role in the functionality
of the edible coating.

3. Conclusions

Hydrogels, oleogels, and bigels were applied as edible coatings of sardine fillets. The
edible coatings had a significant effect on inhibiting sardine fillets oxidation, while they of-
fered a marginal benefit in microbial growth control. These gel systems were also evaluated
for their functionality as delivery systems of rosemary extract. Sardine fillet spoilage, as
indicated by lipid oxidation and TVB-N levels, was further limited when rosemary extract
was added into the edible coatings. Bigels offered good functionality as delivery systems of
rosemary extract. Delivery system functionality can be differentiated, depending on the
polarity of the bioactive compounds and whether the bioactive compounds are solubilized
in the aqueous or the lipid phase of the bigels. The efficiency of RE increased when it
was incorporated in the oleogel phase of bigel, inhibiting the oxidative changes and the
production of TVB-N of the coated fillets. Gels used as edible coatings could extend the
shelf life of fishery products, regarding the lipid oxidation process. Bigels in particular can
be used as coatings and potential delivery systems of bioactive substances in sardine fillets
during cold storage.
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4. Materials and Methods
4.1. Sardine Fillet Preparation

Sardines were purchased fresh from the local fish market (Nea Mihaniona, Greece)
and transferred to the laboratory in a cooled box covered with crushed ice within 30 min.
Upon arrival, each fish was eviscerated, filleted by hand, and carefully washed with cold
water. Two fillets were obtained from each fish after removing the head and bones. The
weight of each sardine fillet was approximately 8 g.

4.2. Preparation of Coating Solution and Treatment of Fish Fillets

To prepare the gelatin hydrogel, 10% w/w gelatin from bovine and porcine bones
(Type A Gelatin, Sigma-Aldrich, Germany) was hydrated under constant stirring in distilled
water at room temperature for 10 min. Then, the gelatin suspension was heated at 80 ◦C
for 10 min until gelatin was fully dissolved.

For oleogel preparation, sunflower oil (Minerva S.A., Metamorphosis, Greece) was
heated at 90–95 ◦C, and then 15% w/w monoglycerides (MGs, HARI 95 distilled monoglyc-
erides Rikevita SDN BHD-Malaysia) were added to the hot sunflower oil as structurants.
The mixture was continuously stirred at 90–95 ◦C for 60 min [23].

Bigels were prepared by slowly incorporating the molten sunflower oil oleogel into
the gelatin hydrogel at 70 ◦C at a 20:80 ratio, under constant stirring for 15 min, using a
magnetic stirrer at 300 rpm. The concentrations and the mixing ratio of hydrogels and
oleogels were selected so that the coatings remained fluid at a temperature (45 ◦C) that did
not affect the viability of the natural microflora of the sardine fillets.

A commercially produced rosemary extract (RE) (AquaROX, Vitiva, Slovenia) was
incorporated at a concentration of 2% into the individual gels (at 50 ◦C) under constant
stirring. The commercial rosemary extract (RE) solution consisted of 90% propylene glycol
and 10% rosemary extract, with rosmarinic acid as the main active ingredient, according to
manufacturer’s specifications. The same concentration of propylene glycol (2%) was added
to all other coatings (gels) that did not contain the extract, to ensure the greatest possible
uniformity among coatings.

Sardine fillets were randomly separated into three groups. The first group of fillets
was untreated and uncoated, and was used as the control treatment (C). A part of the
second group of fillets was coated by dipping in gelatin hydrogel (H), another in sunflower
oil oleogel (O) and another in bigel (BG). The direct coating was applied by immersion
of the sardine fillets in each type of gel for approximately 10 s at 45 ◦C and the excess
coating was drained for 2 s before the fillets were stored. Additionally, sardine fillets were
also coated with gels containing 2% RE as a potential antioxidant and antimicrobial agent.
Four different sardine fillets treatments were obtained, one with RE into the oleogel (OR),
one into the hydrogel (HR), one in the hydrogel phase of bigel (BGHR) and another into
the oleogel phase of bigel (BGOR). Finally, all treatments were stored in sterile, plastic
petri dishes at 4 ◦C for seven days. The different coating formulations and their respective
composition is shown in Table 2.
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Table 2. Composition and coding of the different gel coatings of the refrigerated sardine fillets.

Coding Composition of Coatings Total RE * in the Coating

C No coating 0%
H Hydrogel: 10% w/w gelatin in H2O 0%

O Oleogel: 15% w/w monoglycerides in
sunflower oil 0%

BG 20% oleogel + 80% hydrogel 0%

HR Hydrogel: 10% w/w gelatin in H2O 2%

OR Oleogel: 15% w/w monoglycerides in
sunflower oil 2%

BGHR 20% oleogel + 80% hydrogel 2% (added in the aqueous phase)
BGOR 20% oleogel + 80% hydrogel 2% (added the lipid phase)

* RE = rosemary extract.

4.3. Chemical Analysis
4.3.1. Thiobarbituric Acid (TBA) Analysis

The TBA (2-thiobarbituric acid) test is a valuable chemical index of lipid oxidation,
measuring malonaldehyde (MDA), a secondary lipid oxidation product. For the test, 10 g of
each treatment of sardine fillets were mixed with 25 mL of deionized water, and the mixture
was homogenized for 1–2 min using Ultra Turrax T18 basic (IKA Works Inc. Wilmington,
NC, USA) at 14.000 rpm. Then, each sample was transferred into the distillation flask and
5 mL HCl 2N and 3–4 drops of silicone anti-foaming solution (Sigma-Aldrich, St. Louis,
MO, USA) were added. Each sample was steam-distilled on a distillation unit (UDK 127,
VELP Scientifica, Usmate, Italy) until 50 mL of distillate was collected. A 5 mL aliquot
of the distillate was transferred into a test tube, and 5 mL of 0.02 M TBA solution was
added. All samples were heated in a water bath for 35 min and then cooled with cold
tap water. The absorbance at 532 nm (A532) was determined against a blank containing
5 mL of deionized water instead of the distillate, with a spectrophotometer (Shimadzu
UV-1700, Europe GmbH, Duisburg, Germany). All analyses were performed in duplicate
and the results were expressed as TBARs (mg MDA per kg sardine fillets). Analyses were
performed when dip-coating of sardine fillets took place and on the first, second, third and
fourth days of storage.

4.3.2. Total Volatile Basic Nitrogen (TVB-N)

To determine total volatile basic nitrogen (TVB-N), the official EU method 95/149/EC
(EC, 1995) was used. Briefly, 10 g of fish fillet were homogenized with 90 mL of 0.6 M
perchloric acid (Chem-Lab NV, Zedelgem, Belgium) using an Ultra-Turrax homogenizer
(IKA, Staufen, Germany). Then, the homogenate was filtered through Whatman No. 2 filter
paper, and 50 mL of the filtrate was transferred into a distillation flask. The filtrate was made
alkaline by the addition of 6.5 mL of 20% NaOH solution. A few drops of phenolphthalein
and silicon anti-foaming agent were added to the flask to ensure sufficient alkalinization and
prevent excessive foaming, respectively. Steam distillation was performed on a distillation
unit (UDK 127, VELP Scientifica, Usmate, Italy) until 100 mL of distillate were collected
in a flask containing 100 mL of 3 % aqueous solution of boric acid and Tashiro mixed
indicator (2 g methyl-red and 1 g methylene-blue dissolved in 1000 mL 95% ethanol).
TVB-N was determined by titrating the distillate with 0.01 N HCl. TVBN levels on the day
the dip-coating of sardine fillets took place and on the fourth and seventh day of storage,
in duplicate.

4.4. Microbiological Analysis

Twenty-five grams of each fish treatment was aseptically transferred into sterile stom-
acher bags with 225 mL of sterile Ringer solution (Ringer Solution 1/4 Strength, Lab M.,
Limited, Lancashire, UK). The mixture was homogenized in a stomacher mixer (BagMixer
400, Interscience, St. Nom, France) for 120 s, and further appropriate dilutions were pre-
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pared for the following microorganism counts: (i) psychrotrophic counts (PTC) on Plate
Count Agar (PCA, Lab M) incubated at 10 ◦C for seven days, (ii) Pseudomonas spp. on
Pseudomonas Agar Base (PAB, Lab M) supplemented with cephaloridine-fucidin-cetrimide
(CFC, Lab M) incubated at 25 ◦C for 48 h, (iii) Enterobacteriaceae on Violet Red Bile Glu-
cose Agar (VRBGA, Lab M), incubated at 37 ◦C for 24 h. All microbiological counts were
performed in duplicate, and the results were expressed as the log of the number of colony-
forming units per g (log (CFU/g)). Microbiological analyses were conducted on the 0, first,
third, fifth and seventh day of storage.

4.5. Statistical Analysis

All experiments were replicated twice and duplicate determinations were performed
for each analysis. All the results, expressed as mean ± standard deviation, were analyzed by
ANOVA, using the general linear model, at the significance level of 0.05. Differences among
the samples were identified using Tukey’s multiple range test. All statistical analyses were
performed using the Minitab 16 statistical software (Minitab, Inc., State College, PA, USA).
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