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Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities.
Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools
need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated
invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria
immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have
been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and
liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and
malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-
Plasmodium falciparum immunity and highlight potential future research avenues.

Keywords Unconventional Tcells . γδ Tcells . MAITcells . Vaccination . CHMI .Malaria .Plasmodium falciparum

Malaria biology, disease burden
and pathogenesis

Malaria remains one of the most devastating infectious dis-
eases with 228 million malaria cases globally (95% confi-
dence interval 206–258 million) resulting in 405,000 deaths
in 2018 [172]. P. falciparum is the most prevalent malaria
parasite in theWHOAfrican Region, responsible for 99.7% of
the malaria cases in 2018 [172]. Scale-up and improvements
of diagnostics and access to treatment combined with vector
control measures based on insecticide treated bed-nets, indoor
residual spraying and larviciding have resulted in a significant
reduction of malaria prevalence and deaths between 2000 and
2015 [172]. The incidence rate of malaria declined globally
between 2010 and 2018; however, this progress seems to have
slowed down with 251 million cases reported in 2010 and 231

million cases in 2017 [172]. Sub-Saharan Africa is especially
strongly affected by malaria – about 90% of both cases and
deaths occur in this region. The most vulnerable population
are children under the age of 5 years, accounting for 70% of all
malaria deaths [172].

Malaria is caused by parasites of the Plasmodium genus
and is transmitted to humans through bites of infected
Anopheles mosquitoes [4]. The majority of malaria cases
and deaths in humans are caused by P. falciparum, a species
that is particularly prevalent in sub-Saharan Africa. During a
blood meal, infected mosquitoes inject a small number of
sporozoites into the skin of the human host [16, 111]. Most
sporozoites will leave the skin through blood or lymph, but
recent evidence frommouse models suggests that a fraction of
the sporozoites can remain in the skin for several days [62].
Sporozoites can move by gliding motility, and a fraction of the
injected sporozoites will invade a blood vessel, enter the blood
stream and reach the liver. Interaction between sporozoites
and human hepatocytes involves circumsporozoite protein,
the main surface protein of sporozoites [22]. The parasites
use cell traversal to escape from the liver sinusoids into the
liver parenchyma, where they can traverse several hepatocytes
before setting up residence inside a parasitophorous vacuole
(PV) inside a hepatocyte [109]. Within the PV, the sporozoite
develops into a spherical liver stage that grows extensively
and ultimately gives rise to thousands of merozoites that will
then enter the blood stream. For this purpose, the parasite
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induces cell death of the hepatocyte and manipulates the he-
patocyte membrane, leading to formation of parasite-filled
vesicles (merosomes) containing hundreds of merozoites
[150]. The duration of liver-stage development is variable
between few days to several weeks in different Plasmodium
species, but for P. falciparum, it takes about 6 days to com-
plete [110]. The erythrocytic stage of development is charac-
terized by repeated cycles of erythrocyte invasion, parasite
replication, egress and invasion of other erythrocytes.
Invasion of erythrocytes by merozoites is facilitated through
specific interaction between parasite proteins and receptors on
the erythrocyte surface [120]. Inside an erythrocyte, the para-
site sets up residence inside a PV and develops into the ring-
stage, while it starts to actively remodel the host cell. It feeds
on haemoglobin as well as nutrients from blood plasma and
develops into a trophozoite [11]. The trophozoite stage is char-
acterized by extensive parasite growth, sustained by ingestion
of large amounts of haemoglobin, leading to accumulation of
toxic haem groups, which the parasite converts into the crys-
talline haemozoin form and stores in its food vacuole [151].
Then, the parasite undergoes a few rounds of nuclear divi-
sions, leading to generation of 16–32 merozoites [11].
Finally, the merozoites escape through lysis of the erythrocyte
and PV membranes in a protease-dependent process [138].
The free merozoites then go on to infect other erythrocytes,
completing the cyclic erythrocyte development. Successful
transmission of the parasite from the human host to a mosqui-
to involves formation of a sexual parasite stage [89]. This
involves the formation of male and female gametocytes, a
process that only a small fraction of blood-stage parasites
undergoes. During gametogenesis, the parasite develops
through five morphological stages, of which only the last
one is detectable in peripheral blood. The other stages occur
within erythroid precursor cells in the bone marrow, enabling
early gametocytes to avoid splenic clearance [3, 85]. When
gametocytes are taken up by a mosquito during a blood meal,
they sense a change in temperature, pH and chemical environ-
ment, inducing their development into gametes within the
mosquito midgut [18]. There, male and female gametes fuse
to form a short diploid stage, the zygote, which then develops
into an ookinete. In the ookinete stage, meiotic recombination
occurs, and the parasite traverses the epithelial cell layer in the
mosquito midgut and transforms into an oocyst [12].
Ultimately, the oocyst ruptures, releasing sporozoites into
the haemocoel of the mosquito from where they migrate to
the salivary glands and are ready to be injected into the human
host [30].

Clinical malaria is characterized by cyclic episodes of fever
that are caused by synchronized rupture of infected erythro-
cytes, releasing large amounts of parasites and parasite-
derived molecules that induce a strong pro-inflammatory re-
sponse. Most symptoms are relatively unspecific and include
chills, headache, nausea, diarrhoea and anaemia [121]. First

symptoms of P. falciparum malaria appear 7–10 days after
infection, indicating that pre-erythrocytic stages are clinically
silent, while most clinical symptoms and complications occur
only upon blood-stage parasitaemia [121]. A certain degree of
anaemia is induced by rupture and destruction of infected
erythrocytes by blood-stage parasites. However, it has become
clear that the majority of cleared erythrocytes are uninfected
[83, 171]. Plasmodium parasites extensively remodel the
erythrocyte and its plasma membrane by expressing a range
of parasite-encoded proteins on the erythrocyte surface [178].
This leads to increased rigidity of the membrane, to binding of
infected erythrocytes to endothelial cells as well as to forma-
tion of aggregates of infected and uninfected erythrocytes
(rosetting) and helps the parasite to avoid splenic clearance
[54]. Adherence of erythrocytes to the microvasculature leads
to obstruction of blood flow, endothelial injury and increased
inflammation [26].

P. falciparum has been estimated to be older than
100,000 years resulting in an exquisite coadaption of both,
the parasite and the human host [68, 117]. Older children
and adults residing in malaria-endemic countries usually de-
velop over time naturally acquired immunity induced by re-
peated exposure, leading to decreasing disease severity with
age [121]. Rodent and non-human primate animal models for
malaria have provided essential insights into the biology of
this parasite [177]. To date, no good immunological correlates
of protection have been identified for malaria infection out-
come or vaccination in humans [13]. It is generally accepted
that studying malaria immunity in different human popula-
tions and age groups is essential for detailed understanding
of this intricate host-pathogen interaction.

Controlled human malaria infections

By using controlled human malaria infections (CHMI), it is
hoped to identify effector mechanisms and correlates of pro-
tection that could guide next-generation malaria vaccine de-
velopment [27, 153]. Human challenge models for malaria are
defined as the intentional infection of adult volunteers with
Plasmodium parasites under controlled conditions within a
well-defined and restricted ethical framework (https://www.
who.int/biologicals/expert_committee/Human_challenge_
Trials_IK_final.pdf). CHMI based on P. falciparum and P.
vivax inoculations were used as early as in the beginning of
the twentieth century to treat neurosyphilis known as
malariotherapy, which was rewarded with the Noble Price in
Physiology and Medicine in 1927 to Julius Wagner-Jauregg
(https://www.nobelprize.org/prizes/medicine/1927/wagner-
jauregg/lecture/). Since the 1980s, volunteers can be
reproducibly infected by the bite of reared malaria-infected
mosquitoes in several centres in the USA and Europe [25,
131]. With the advent of the development of sterile, purified,
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metabolically active, cryopreserved P. falciparum sporozoites
by Sanaria Inc. that can be injected intradermally [25, 130,
145], intramuscularly [74, 144] and intravenously [57, 113],
the number of clinical trial centres able to perform malaria
CHMI studies globally has expanded rapidly. This novel ap-
proach has been particularly essential for conducting clinical
studies in malaria pre-exposed populations in sub-Saharan
Africa [60, 73, 87, 88]. Intravenous inoculation of parasitized
erythrocytes infected with P. falciparum and P. vivax has
added to the variety of CHMI approaches available for the
scientific community [61, 122]. CHMI models have played
major roles in clinical vaccine and drug development [39,
140], testing and validation of diagnostic markers and tools
[34, 142] and research in parasite biology [8, 9, 75]. CHMI
studies allowed the description of impact of malaria pre-
exposure [1, 91, 118], HIV, co-infections (https://
c l in i ca l t r i a l s .gov /c t2 / show/NCT03420053) and
haemoglobinopathies [101] on elicited immune responses.
The main strength of CHMI relates to the defined infection
timing, P. falciparum strain [23, 97] and inoculum dose and
route chosen. In summary, CHMI enable the study of malaria
immunity in different human populations representing an
essential “human model” for this disease.

T cells in human malaria immune responses

T lymphocytes are key components of the immune system
contributing to the anti-P. falciparum immunity and are of
major interest in malaria research. The vast majority of studies
dedicated to T cell-mediated immunity have focused on “con-
ventional” adaptive CD4+ and CD8+ T cells [31, 95, 96].
Those cells express αβ T cell receptors (TCR) that recognize
peptide antigens presented by highly polymorphic major his-
tocompatibility complex (MHC) class I and II molecules.
Once activated, CD4+ and CD8+ T cells undergo clonal ex-
pansion and differentiation into special subsets with unique
functions to orchestrate key aspects of innate and adaptive
immunity during P. falciparum infections (reviewed in [96]).
CD8+ T cells develop into cytotoxic T cells with the ability to
target and kill mainly the Plasmodium-infected hepatocytes
but not infected erythrocytes as they lackMHC class I expres-
sion. CD4+ Tcell subsets provide help to CD8+ Tcells, B cells
and activation of antigen-presenting cells (APC) such as den-
dritic cells and macrophages [95, 96]. Clinical trials to induce
strong and durable anti-P. falciparum T cell responses by sub-
unit and whole parasite vaccination approaches have yielded
so far limited success, thought to be based on diversity of
antigen expression during different development stages, het-
erogeneity in the P. falciparum strains and suboptimal vaccine
formulations and delivery [27, 108]. One of the barriers that
needs to be overcome rests with the donor-specific, highly
polymorphic MHC (human leucocyte antigen (HLA))

molecules presenting distinct peptide repertoires to diverse T
cell populations [42, 43]. In addition, DCs and macrophages
were shown to fail in upregulating HLA-DR expression upon
P. falciparum infection [162, 163] limiting their capacities to
activate conventional antigen-specific T cells.

In contrast, unconventional T cells target highly conserved,
monomorphic MHC class Ib and MHC-I like molecules and
other ligands. These include unconventional αβ T cells such
as MAIT and NKT cells that are restricted to metabolite-
presenting MHC class I-related proteins (MR1) and lipid-
presenting cluster of differentiation 1 (CD1) molecules, re-
spectively [53, 165]. In addition, some γδ T cells can recog-
nize MR1 and CD1 molecules, while the vast majority recog-
nizes butyrophilin (BTN) and BTN-like (BTNL) proteins or
stress-induced ligands [36, 53, 80] allowing them to partici-
pate in health and diseases.

Mucosal-associated invariant T cells

MAIT cells are a special subset of MR1-restricted T cells
carrying features of the innate immunity. They are present
mainly in mucosal tissues, the liver and lymphoid tissues but
also recirculate in peripheral blood [114, 158]. The highest
frequencies are found in liver and peripheral blood in which
they represent up to 45% and 10% of T cells, respectively [44,
51, 98, 154], while they are less frequent in lymphoid tissues
and comprise around only 1% of splenic αβ T cells [158].
MAIT cells are characterized by the expression of the semi-
invariant TCR composed of the Vα7.2 chain rearranged with
Jα33, Jα12 and Jα20, paired with a constrained TCRβ rep-
ertoire (enriched for TRBV6 and TRBV20-1) and high levels
of surface expression of CD161 [102, 119, 125, 157]. They
are restricted to MR1 [159] and depend on the presence of
commensal microbiota and their metabolites for development
and activation [100, 159]. The canonical, activatingMAITcell
antigens presented by MR1 were identified as ligands gener-
ated from precursors to riboflavin in the riboflavin synthesis
pathway of bacteria and fungi [93]. Further characterization
revealed the diverse nature of these antigens – they are derived
from 5-amino-6-d-ribitylaminouracil (5-A-RU), an intermedi-
ate of the riboflavin biosynthesis pathway. 5-A-RU reacting
with glyoxal or methylglyoxal leads to generation of potent
MR1 - l i g a nd s 5 - ( 2 - o xo e t h y l i d e n e am i no ) - 6 -D -
ribitylaminouracil and 5-(2-oxopropylideneamino)-6-D-
ribitylaminouracil, respectively [28]. These antigens are insta-
ble in solution but get stabilized in the antigen-binding pocket
of MR1 by formation of a Schiff base with lysine amino acid
residue 43 [28]. This interaction possibly influences their po-
tency, which is high compared with non-stabilized 6,7-di-
methyl-8-D-ribityllumazine [107, 141]. Blood-derived
MAIT cells respond to different antigens by distinct changes
in the surface marker expression [107, 141]. Further studies
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showed the existence of a broader MR1 ligand repertoire in-
cluding ligands derived from riboflavin-auxotroph bacteria
[56, 67], mammalian cells [103] and drugs [92]. Some metab-
olites of folic acids such as 6-formylpterin (6-FP) and acetyl-
6-FP as well as bacterial ligands do bind to MR1 but act as
antagonists [45, 67, 93] suggesting that the function is modu-
lated depending on the specific antigen-MR1 interaction.
Therefore, MAIT cells are predominantly activated by cells
infected with riboflavin-synthetizing bacteria and fungi, but
not by uninfected or virus-infected cells [166]. In the absence
of TCR engagement, MAIT cells can be activated by IL-12
and IL-18 resulting in IFNγ-and TNFα production [105,
166], an effect that is conserved across many CD161-
expressing T cells [47, 164]. In summary, MAIT cells are
rapidly responding innate-like T cells with a restricted TCR
repertoire that recognize metabolite-derived antigens and
show high responsiveness to pro-inflammatory cytokines.

Few reports have described a potential involvement of
MAIT cells in malaria immunity. Tanzanian volunteers under-
going intradermal CHMI by purified P. falciparum sporozoites
developed asexual blood-stage parasitaemia [116]. We exam-
ined the frequency of MAIT cells (CD3+Vα7.2+CD161hi) on
study days 0 and 9 post-infection and then after the malaria
treatment on days 28, 56 and 168. Using a single-cell RNA-
seq approach, we found that the MAIT cell population
displayed a distinct RNA expression profile suggesting that
they responded to the malaria challenge by day 9 after sporo-
zoite inoculation and did not return to baseline transcriptional
status by day 28. Durable expansion of circulating CD8+MAIT
cells for several months after parasite infection might be possi-
bly driven by homeostatic expansion [116]. In a follow-up
study conducted in Tanzanian volunteers, ex vivo MAIT cell
activation (upregulation of CD38) and expansion after asexual
blood-stage parasitaemia were confirmed [137]. This data sug-
gest that MAITcells might contribute to immune responses, but
the underlying molecular and cellular mechanism remains un-
known. There are currently no defined antigens inP. falciparum
known to be presented by MR1; MAIT expansion and activa-
tion could be indirectly driven by cytokines produced by acti-
vated APC.

Dendritic cells and monocytes/macrophages are known to
produce IL-12 and IL-18 in response to danger- and pathogen-
associated molecular patterns. Elevated pro-inflammatory cy-
tokines including IL-12 and IL-18 have been detected in se-
vere cases of malaria-infected individuals [94, 106], and IL-12
has been shown to be involved in cellular immune responses
to blood-stage infections [32]. Indeed, in vitro MAIT cell pro-
liferation and activation were induced by co-culture of infect-
ed red blood cells (iRBCs) with autologous DCs and PBMCs
collected from these malaria pre-exposed volunteers [137].
MAIT cells from P. falciparum-infected humans were still
responsive to IL-12, IL-15 and IL-18 activation and produced
IFNγ, IL-17A and Granzyme B (grzB) [116] and did not

succumb to malaria-induced immunosuppression [116].
Alternatively, activation of MAIT cells might be a conse-
quence of impaired gut barrier integrity and function during
malaria. Histopathological sections in severe malaria cases
indicated intense adherence and sequestration of iRBC into
the gut [123, 143] possibly resulting into gut tissue damage
and microbial translocation, thus activating gut- and liver-
homing MAIT cells.

Hence, MAIT cells are emerging as an unconventional T
cell population involved and possibly contributing to anti-
P. falciparum T cell immunity.

CD1-restricted T cells

Humans express four CD1 antigen-presenting molecules, di-
vided into two groups: CD1a, CD1b, CD1c (group 1) and
CD1d (group 2) [53, 165]. CD1 molecules are MHC class I-
like molecules expressed on APCs, and they present distinct
lipid-based antigens of a diverse origin [53, 165]. Group 1
CD1molecules are differentially expressed in APCs with high
expression of CD1a in skin-resident DCs and Langerhans
cells, CD1b in myeloid DCs in lymphoid tissue and CD1c in
DCs and B cells. In contrast, CD1d is widely expressed on
many cells types including monocytes, B cells and epithelial
cells [53, 165]. CD1d-presented lipid antigens are recognized
by the iNKT cell TCR comprised of an invariant Vα24Jα18
chain and a TCRβ chain of a limited repertoire [53, 165].
iNKT cells recognize the model antigen αGalCer, and al-
though many foreign lipids are recognized by these T cells,
it is not clear whether NKT cells encounter them under non-
experimental conditions [17].

CD1c expression was increased on monocytes and inflam-
matory CD16+ DC during blood-stage infection in malaria
naïve volunteers after CHMI [156] suggesting that CD1 mol-
ecules have the capacities to present P. falciparum or self-lipid
antigens to CD1-restricted T cells. A comprehensive lipid
analysis of asexual blood-stage P. falciparum profiled 300
lipids [64], which might – if presented by group 1 and/or 2
CD1 molecules – activate unconventional T cells in the liver
or other organs. Moreover, as endogenous lipids presented by
CD1 group 1 molecules can activate T cells [38],
P. falciparum infection might have an influence on this subset
of unconventional T cells.

Very few studies have addressed the role of CD1d-
restricted iNKT cells in human malaria infections, natural or
experimental during CHMI. One study demonstrated that the
proportion of blood-derived unconventional T cells with NK
phenotype (CD3+CD56+ or CD3+CD57+) is increased in ma-
laria patients, especially in adults [169]. In contrast, a more
recent study demonstrated that the frequency of invariant
CD3+ Vα24Jα18+ NKT cells did not change significantly
following controlled malaria infection in peripheral blood
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[116]. This might be due to the lack of stimulating CD1d
antigens and/or lipid presentation during malaria in blood-
stage infections but does not exclude iNKT cells from having
an antiparasitic role and/or participating in anti-P. falciparum
immunity in other organs such as the liver. In order to deter-
mine their anti-malaria potential, further studies should inves-
tigate CD1-restricted T cells in individuals experimentally
challenged by CHMI or naturally infected in endemic areas.

γδ T cells

T cells, defined by their expression of the γδ TCR, are a
heterogeneous population of lymphocytes and are not limited
to antigen presentation by MHC proteins, CD1 and MR1.
They represent up to 5% of T cells in the lymphoid and non-
lymphoid organs in humans [168]. Furthermore, the rapid
activation of γδ T cells [69] may critically regulate tissue
immunogenicity by modulating the microenvironment so as
to accommodate time-delayed adaptive responses of B cells
and αβ T cells [70] in response to infections and vaccines.

Human γδ T cells have a reduced number of Vand J gene
segments to select from during rearrangement, but γδ TCR
diversity is largely achieved through extensive junctional di-
versity. The Vγ chains mainly pair with Vδ1, Vδ2 and Vδ3
chains although more δ chains exist [2]. Moreover, some Vγ
pseudogenes have been described in the γ locus without
“functional” rearrangement found so far in humans [2].
Interestingly, the length of the complementarity determining
region 3 (CDR3) of the γδ TCR is much less constrained
compared to the αβ TCR repertoire, especially the CDR3 of
the TCR δ chain can be significantly longer. This is reminis-
cent of the CDR3 length distribution of antibodies, and it has
been implied that γδ Tcells recognize antigen in an antibody-
like manner [129]. The CDR3-driven ligand recognition al-
lows the γδ T cell to interact with target cells in an MHC-
unrestricted manner [115] and therefore does not require ex-
pression of CD4 and CD8 coreceptor [90]. Knowledge of
molecular mechanisms leading to γδ TCR recognition of an-
tigens and functional consequences for γδ T cell physiology
remain scarce. γδ TCRs might recognize and directly interact
with several host-derived ligands expressed on the surface of
human cells [69, 173]. Various γδ T cell subsets are modulat-
ed in their activation upon interactions with B7-like BTN and
BTNL proteins [6]. Innate-like Vγ9Vδ2 T cells, highly pres-
ent in peripheral blood, are activated by human cells express-
ing the BTN3A1 molecule, which is essential for binding
phosphorylated antigens [139, 167]. A recent study further
demonstrated that BTN2A1 is a direct ligand for the
Vγ9Vδ2 TCR acting in unison with BTN3A1 to licence γδ
T cell responses to phosphorylated antigens [128]. Another
study showed direct binding of human Vγ4+ TCR to
BTN3L resulting in T cells activation in a superantigen-like

binding mode, while endothelial protein C receptor (EPCR)
binds to Vγ4Vδ5 TCR in a CDR3-dependent and antibody-
like binding mode that mediates adaptive immunity [175].
The non-Vδ2 T cells responsive to the autoantigen EPCR
respond to CMV-infected fibroblast and endothelial cells by
direct interactions of the TCR to the ligand and other
costimulatory ligands [174]. Thus, for full activation, Vδ1 T
cells might rely on integration of several signals, both TCR-
mediated and TCR-extrinsic. Other Vδ1 T cells have been
shown to recognize phycoerythrin [179], monomorphic CD1
molecules presented on APCs [10, 135, 148, 161] and MR1
overexpressed in cell lines [99]. Because of low abundance of
CD1-, MR1- and PE-recognizing γδ T cells in humans, it
seems unlikely that these Vδ1 T cells represent expanded ef-
fector Vδ1 clonotypes in diseases such as malaria. There is
evidence that γδ T cells can get activated by cytokines in a
TCR-extrinsic fashion [49, 50] increasing the possibilities of
γδ T cells to participate in bridging innate and adaptive im-
mune responses.

An important feature of γδ T cells is their capability to
home to epithelial and mucosal surfaces [19]. In the liver,
preferentially Vδ1 and Vδ3 T cells are present with high di-
versity of the TCR repertoire after durable and subject-specific
expansion [36, 37, 77]. Their physiological roles might in-
clude production of pro-inflammatory cytokines and growth
factors to recruit immune cells, activate phagocytic cells and
promote DC maturation [19] as well as tissue repair and re-
generation [84]. γδ T cells are able to provide B cell help and
present antigens to other T cell subsets further contributing to
protection against infectious diseases, wound healing and ep-
ithelial cell maintenance [19].

A number of studies support the idea that γδ T cells are
involved in immunity during P. falciparum infections. First,
γδ T cells home to organs including skin, blood and liver-
body sites which are preferentially exposed to P. falciparum
parasites. Second, γδ T cells expand upon P. falciparum in-
fections in children and adults frommalaria-endemic and non-
endemic regions [71, 72, 79, 132, 133, 176]. Third, γδ T cells
express a broad range of effector cytokines including IFNγ
and TNFα secretion and display cytotoxic activities in re-
sponse to the parasite [29, 49, 82].

The most abundant γδ TCR expressed in humans is Vδ2,
preferentially paired with Vγ9 [146], and these T cells prolif-
erate extensively in malaria infections [71, 72, 79, 132, 133,
176]. During CHMI, but not repeated immunizations with
live, purified, attenuated P. falciparum sporozoites delivered
intravenously, expansion of Vδ2 T cells in individuals devel-
oping asexual blood-stage infections has been observed [71,
137] supporting previous observations that asexual blood-
stage infections drive Vγ9Vδ2 T cells expansion. Vγ9Vδ2
T cells likely respond to different stimuli expressed by infect-
ed RBC and merozoites [14, 41, 59, 81, 86, 104, 149, 170].
Further characterization of ligands revealed that stressed cells

Semin Immunopathol (2020) 42:265–277 269



and P. falciparum produce phosphoantigens including
isopentenyl pyrophosphate and E-4-hydroxy-3-methyl-but-2-
enyl pyrophosphate (HMBPP) with the capacity to activate
Vγ9Vδ2 Tcells [14, 15, 55]. Recognition of phosphoantigens
requires the expression of BTN3A and BTN2A molecules on
target cells critical for Vγ9Vδ2 T cell activation [66, 127,
167]. P. falciparum-infected RBC do not express butyrophilin
3, and Vγ9Vδ2 T cell activation does not require direct cell-
to-cell contact involving TCR engagement [63].

Similarly, the mechanisms by which free merozoites are
recognized by Vγ9Vδ2 T cells remain unknown [29]. One
possible mechanism might be antibody-dependent cellular cy-
totoxicity, as Vγ9Vδ2 T cells can express the Fc receptor
CD16 [5]. Dendritic cells and possibly other cell types might
recognize iRBC and merozoites by presentation of self- or
pathogen-derived phosphoantigens in context of by BTN3A/
BTN2A.

Despite their effector functions in malaria, Vγ9Vδ2 T cells
are also known to express surface molecules with the potential
to mediate immune regulation [24, 126]. After CHMI in ma-
laria pre-exposed volunteers, Vγ9Vδ2 T cells did not upreg-
ulate the programmed cell death 1 (PD1) and lymphocyte-
activation gene 3 [137]. This data suggested either the lack
of sufficient TCR stimulation or differences in the kinetic of
γδ T cells in peripheral blood after CHMI, as zolodronate
induced activation of Vγ9Vδ2 T cells induced PD-1 expres-
sion in vitro [76]. In addition to the production of pro-
inflammatory cytokines such as TNFα, IFNγ and cytotoxic
mediators including granulysin [33, 82], Vγ9Vδ2 T cells can
produce GM-CSF [81] and might thereby influence monocyte
differentiation into DCs and recruitment of other immune cells
including T cells [147]. Overall, the data suggests that innate-
like Vγ9Vδ2 T cells might participate in anti-malaria immu-
nity in various ways.

In contrast, adaptive-like Vδ1 T cells are highly abundant
in peripheral epithelial tissues including skin, gut and liver
[20, 40, 65, 77]. In the liver, Vδ1 T cells represent the largest
population of γδ T cells with unique characteristics indicative
for resident and circulating T cells [77]. Early work published
in the 1990s indicated an increased frequency of Vδ1 T cells
circulating in peripheral blood of healthy individuals living in
a malaria-endemic region in Ghana as well as a rapid but
transient expansion of Vδ1 T cells upon malaria chemothera-
py in children [78, 79]. Further studies showed that Vδ1 T
cells and other non-Vδ1 T cell subsets were expanded in ma-
laria children and/or adults in Thailand, Ethiopia and Laos
[72, 155, 176]. Vγ2,3,4 were the most common chains among
expanded Vδ1 T cells, and the diverse usage of TCRγ chains
indicated a polyclonal response of Vδ1 and Vδx T cells from
malaria-exposed individuals [79, 155]. Length spectra-typing
of the CDR3δ of these Vδ1 T cells did not reveal a dominant
public clonotype to be expanded across all patients in a cross-
sectional analysis [79]. Recent data suggested that non-Vδ2

and Vγ9-Vδ2+ T cell subsets seem to have an unfocused,
highly diverse and donor-specific TCR repertoire as in naïve
Vδ1 T cells [35–37, 77, 124]. Clonal selection of naïve Vδ1 T
cells that might respond tomicrobial/nonmicrobial stress upon
infection might be the main driver of Tcell expansion. Indeed,
a proportion of Vδ1 T cells expanded oligoclonally and
displayed a unique signature of surface molecules in individ-
uals frommalaria-endemic regions [137]. Expansion and phe-
notypic differentiation of Vδ1 T cells were only present in
individuals with asexual blood-stage infections [136]. Clonal
expansion of Vδ1 T cells was shown to be associated with
differentiation from naïve CD27+ Tcells into long-lived effec-
tor CD27− T cells with phenotypical and functional changes.
These T cells displayed an effector phenotype based on low
expression of CD27, CCR7, CD28, IL-7R and CD62L as well
as rapid activation and proliferation in response to TCR sig-
nalling [35]. In line with these observations, activated Vδ1 T
cells had low expression of CD27, lacked CD57 indicating
activation and differentiation from naïve CCR7+ Vδ1 T cells
into early effector CCR7− Vδ1 T cells [137]. Further pheno-
typic characterization of these expanding Vδ1 Tcells revealed
a distinct pattern by co-expressing CD38 and PD1 which is
distinct from other unconventional T cells. These molecules
are associated with an exhausted phenotype in CD4+ T cells
during malaria infection [21] and might influence Vδ1 T cell
function by modulating inflammatory cytokines production
and cytotoxicity during liver- and blood-stage infections.
The diversity in expression of a range of surface markers
points towards a so far unappreciated heterogeneity in Vδ1
T cell responses [20, 40, 65, 77, 137]. Vδ1 T cells produced
selectively ex vivo IFNγ in response to hepatocyte-derived
cell lines [7, 46, 48, 124]. Whether circulating asexual
blood-stage parasites represent an immune stimulus for liver
resident Vδ1 Tcells resulting in clonal expansion remain to be
investigated. It has been shown that established clonotypes are
long-lived and persist for several months to years in human
peripheral blood [35, 124]. A population of Vδ1 T cells, char-
acterized by the expression of CD38 and PD1, displayed du-
rable expansion of clonally distinct T cells after CHMI [137].
Studying the TCR repertoire of Vδ1 T cells and characteriza-
tion of expanded clonotypes are essential steps to determine
how Vδ1 T cells actually respond to malaria.

So far, few γδ TCR ligands have been identified, and there
is no evidence that Vδ1 T cells recognize directly asexual
blood-stage parasites [58, 72], which is in line with our obser-
vation that Vδ1 T cell expansion depended on the presence of
iRBC and autologous DCs [137]. Expansion of Vδ1 T cell
clones might have been facilitated by cytokines produced by
monocyte-derived DC, monocytes or activated non-Vδ1 cells
in PBMCs [137]. Indeed, IL-15 produced by activated mono-
cytes, fibroblasts and epithelial cells [152] and hepatocyte cell
lines [134] might promote activation and proliferation of γδ T
cells. In addition, P. falciparum-activated non-Vδ1 T cells
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might produce IL-2 contributing to the observed response
ex vivo.

The massive polyclonal B cell activation during malaria
infections might lead to subsequent reactivation of CMVand
Epstein-Barr virus (EBV) and further B cells proliferation,
which might in turn induce Vδ1 T cell proliferation [80]. It
might be of interest to screen volunteers involved in malaria
immunity studies for pre-existing viral co-infections like
CMV and EBV which might impact indirectly on type and
size of ensuing γδ T cell activation after malaria infection.

Interestingly, a Vδx T cell clone expressing a Vγ4Vδ5
TCR can recognize EPCR [174]. EPCR is present on many
different cells in various organs such as liver and blood vessels
[52] and can bind lipids such as phosphatidylcholine or
lysophosphatidylcholine and platelet-activating factor [112].
This γδ TCR engages with EPCR when the intercellular ad-
hesion molecule 1 (ICAM-1) is co-expressed, but this interac-
tion is independent of displayed lipids. In malaria,
P. falciparum erythrocyte membrane protein 1 expressed on
iRBC binds to EPCR with increased binding of parasites iso-
lated from patients suffering from severe malaria [160].
Therefore, EPCRmight represent a molecule displaying stress
such as viral infections and other stress conditions. Whether
asexual blood-stage infections represent such stress stimuli
and modulate EPCR expression and subsequent TCR-
mediated T cell activation remains open. Clearly, identifica-
tion of ligands recognized by Vδ1 and Vδx T cells during
malaria will provide a more comprehensive understanding of
γδ TCR ligand activation.

Summary

Cell-mediated immune responses are critical for anti-
P. falciparum immunity. It has long been recognized that
unconventional T cells, especially γδ T cells, respond to
asexual blood-stage infections. The fact that MAIT and γδ
T cell frequencies and selective clonotypes expand during
asexual blood-stage infections suggests that these cells
have a role in malaria immunity. While innate-like T cells
including Vγ9Vδ2, NKT and MAIT cells have the ability
to rapidly respond and elicit effector functions without
clonal expansion and differentiation, Vδ1 and Vδx T cells
d isp lay more fea tures of adapt ive- l ike T ce l l s .
Unconventional T cells home to non-lymphoid tissue sites
such as skin, liver, spleen and gut, which are key tissues in
the context of malaria infections. The involvement of other
unconventional T cells restricted to non-polymorphic anti-
gen presenting molecules like HLA-E, HLA-G and CD1 in
malaria immunity remains to be defined. The incorporation
of innate-like and adaptive-like unconventional T cells into
research studies has the potential to provide novel

approaches for vaccine development and immunotherapy
in malaria.

Concluding remarks and outlook

In malaria research, unconventional T cells gain growing at-
tention due to their diverse and specific functions in bridging
innate and adaptive immunity. Unconventional innate-like T
cells respond rapidly to infections and stress-induced signals
and have the capacity to become T cell populations with
tissue-resident and/or circulating features. Therefore, targeting
these cell populations might provide an opportunity to in-
crease efficacy of currently pursued experimental vaccine ap-
proaches. To unravel mechanisms of protection or participa-
tion in pre-erythrocytic anti-P. falciparum immunity, getting
access to liver biopsies for characterization of liver residing T
cells at the single-cell level is essential. Technological ad-
vances for improved gene coverages and simultaneous char-
acterization of the TCR by scRNA-seq have become avail-
able. These approaches will help to understand the intrinsic
heterogeneity among antigen-specific T cells and their tissue-
specific roles in malaria. Vδ1 T cells recognize stress-induced
molecules and respond to cytokines induced by viruses, and
therefore investigating viral co-infections in volunteers under-
going CHMI might provide new insights into the well-known
heterogeneity of anti-malaria immunity. Futhermore, the
microbiome has been shown to impact communicable and
non-communicable diseases, and certain intestinal communi-
ties might even promote protection against P. falciparum in-
fections. Inclusion of microbiome studies in future field trials
might unravel important new mechanisms driven by the inter-
action with unconventional T cells. CHMI studies can now be
conducted safely in more clinical research centres than ever
before in the field of malaria. This opens exiting new possi-
bilities to address critical knowledge gaps in different human
populations with several degrees of malaria pre-exposure, ge-
netic background and co-infection status.

What are unappreciated ligands and stimuli of non-
Vγ9Vδ2 T cells, MAIT cells and NKT cell subsets in human
malaria?

Are unconventional T cells stage specific in malaria immu-
nity and do they develop memory?

Does malaria induce tissue-specific metabolic changes that
can be sensed by unconventional T cells?

Which micro-environmental changes are induced by the
long-lasting clonal expansion of unconventional T cells after
asexual blood-stage infections?

Do chronic malaria infections promote dysregulation of
unconventional T cells leading to variations of clinical
outcomes?

How do unconventional T cells communicate with innate
immune cells and conventional lymphocytes?
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