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The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-
coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters,
offers a multitude of promising targets for drug development. Until today, drug
development in this area has nearly exclusively focused on (functional) antagonists at the
S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly,
the first-in class S1P1 receptor modulator, fingolimod, has been approved for the
treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional)
antagonists are being developed for autoimmune and inflammatory diseases such as
psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides
the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse
functions throughout the body. The S1P2 receptor, in particular, often exerts cellular
functions which are opposed to the functions of the S1P1 receptor. As a consequence,
antagonists at the S1P2 receptor have the potential to be useful in a contrasting context
and different areas of indication compared to S1P1 antagonists. The present review
will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their
opportunities as well as their potential risks. Open questions and areas which require
further investigations will be emphasized in particular.

Keywords: sphingosine-1-phosphate, G-protein-coupled receptors, vascular tone, endothelial barrier, insulin
sensitivity

INTRODUCTION

Sphingosine-1-phosphate (S1P), initially considered as an intermediate breakdown product
of complex sphingolipid catabolism, is meanwhile acknowledged as important bioactive
lipid (Maceyka et al., 2012; Kunkel et al., 2013; Blaho and Hla, 2014; Proia and Hla,
2015). S1P regulates crucial cellular functions such as proliferation and survival, migration,
and adhesion (Maceyka et al., 2012; Blaho and Hla, 2014). Systemic and local gradients
of S1P provide direction for migration and trafficking of various cell types (Olivera
et al., 2013a; Nishi et al., 2014). Metabolically, S1P resides in a dynamically balanced
equilibrium with sphingosine and ceramide (Hannun and Obeid, 2008; Newton et al., 2015).
Ceramide, derived from de novo sphingolipid synthesis, from breakdown of glycosphingolipids
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or via the sphingomyelin cycle, can be converted reversibly
into sphingosine, which in turn can be phosphorylated to S1P
by the sphingosine kinases, SphK1 and SphK2 (Hannun and
Obeid, 2008). S1P is a substrate of specific S1P phosphatases
and non-specific lipid phosphate phosphatases which direct the
equilibrium into the direction of sphingosine/ceramide (Hannun
and Obeid, 2008). S1P can also be cleaved by S1P lyase,
which generates hexadecenal and phosphoethanolamine and thus
catalyzes an irreversible step of sphingolipid breakdown (Aguilar
and Saba, 2012).

With regard to its complexity and to the multitude of options
for pharmacological interventions, the S1P signaling system
might well be compared to the adrenergic system. First of all,
there are five specific G-protein-coupled S1P receptors, which
are widely expressed and can act both in a redundant and
in an antagonistic manner by coupling to distinct G-proteins
(Blaho and Hla, 2014; Kihara et al., 2014), reminiscent of α1,
α2, and β adrenergic receptors (Bylund et al., 1994; Alexander
et al., 2015). Furthermore, the enzymes which catalyze the
formation and degradation of S1P, as well as the specific
and non-specific S1P transporters, represent promising drug
targets (Meyer zu Heringdorf et al., 2013; Orr Gandy and
Obeid, 2013; Nishi et al., 2014), reminiscent of the enzymes
of catecholamine synthesis and degradation as well as the
catecholamine transporters (Alexander et al., 2013). However,
drug development targeting the S1P signaling system has focused
almost exclusively on the S1P1 receptor until now (Roberts
et al., 2013; Bigaud et al., 2014; Gonzalez-Cabrera et al., 2014).
This is not least due to the success of the non-specific S1P
receptor agonist, fingolimod, which has been approved for the
treatment of multiple sclerosis in 2010/11 by the FDA and the
EMA, respectively (Kihara et al., 2015). In brief, phosphorylated
fingolimod, acting as a superagonist or functional antagonist
at S1P1, causes internalization and degradation of the receptor,
thereby rendering lymphocytes insensitive to the tissue-blood
S1P gradient with the consequence of lymphopenia (Bigaud et al.,
2014). Subsequent to the approval of fingolimod, novel S1P1
functional or competitive antagonists with improved properties
are presently being developed (Meyer zu Heringdorf et al.,
2013; Roberts et al., 2013; Bigaud et al., 2014; Gonzalez-
Cabrera et al., 2014). While the development of sphingosine
kinase and S1P lyase inhibitors has turned out to be not that
straightforward (see e.g., Schnute et al., 2012; Deniz et al., 2015,
and discussion in Meyer zu Heringdorf et al., 2013), the focus
on G-protein-coupled S1P receptors other than S1P1 might be
promising. Aside from causing immunosuppression, the effects
of S1P1 receptor antagonism are rather undesirable: elevation
of blood pressure, bronchial constriction, and on the long
term a disturbance of the vascular endothelial barrier (Bigaud
et al., 2014). Since the S1P2 receptor often acts contrarily to
S1P1, S1P2 antagonists might turn up as promising tools for
improving local blood flow in combination with tightening of
the endothelial barrier, as anti-inflammatory and anti-fibrotic
treatment options, and as potentially beneficial to treat the
metabolic syndrome. The current review will discuss this
therapeutic potential of S1P2 receptor antagonists and potential
risks.

OVERVIEW OF G-PROTEIN-COUPLED
S1P RECEPTORS AND SPECIFIC
FEATURES OF S1P2

There are five specific G-protein-coupled receptors with a high
affinity for S1P. According to the International Union of Basic
and Clinical Pharmacology (IUPHAR) receptor nomenclature,
they are named S1P1–S1P5 (human gene names S1PR1–S1PR5;
Kihara et al., 2014). S1P1−3 are expressed nearly ubiquitously,
whereas S1P4 is preferentially expressed in the hematopoietic
system, and S1P5 is found in the white matter of the brain as well
as in some other tissues (Blaho and Hla, 2014; Kihara et al., 2014,
2015; Pyne et al., 2015). S1P1 couples exclusively to Gi, while S1P2
and S1P3 couple to Gi, Gq, and G12/13. S1P4 and S1P5 couple to
Gi and G12/13. These receptors regulate cell growth and survival,
migration, and adhesion. Thereby they orchestrate for example
the circulation of lymphocytes, the formation and maturation of
blood vessels, vascular tone and permeability, as well as heart
rate (Blaho and Hla, 2014; Kihara et al., 2014). Furthermore,
they play a role in inflammation, fibrosis, and cancer (Maceyka
et al., 2012; Schwalm et al., 2013; Newton et al., 2015; Pyne et al.,
2015).

The S1P2 receptor, also referred to as EDG-5, H218, AGR16,
or lpB2, was originally cloned from rat aortic vascular smooth
muscle cells (Okazaki et al., 1993) and later identified as
high-affinity S1P receptor (Gonda et al., 1999). With a Kd
of 27 nM and an EC50 in GTPγS binding of 3.8–8.9 nM,
the affinity of S1P to S1P2 appears marginally lower than its
affinity to S1P1 (Kd of 8 nM and EC50 in GTPγS binding 0.4–
79; for review, see Spiegel, 2000; Kihara et al., 2014). S1P2 is
coupled via Gi, Gq, and G12/13 to phospholipase C, [Ca2+]i
increases, activation of mitogen-activated protein kinases, and
activation of Rho and/or Rho kinase (reviewed in Skoura
and Hla, 2009; Adada et al., 2013; Blaho and Hla, 2014).
Similar to S1P1, S1P2 can be internalized upon stimulation
with agonists (see e.g., Ter Braak et al., 2011; Imeri et al.,
2014). Mechanistically, this has been analyzed in zebrafish.
The zebrafish miles apart mutant, S1P2 R150H, which impedes
the migration of cardiac precursor cells to the midline, was
shown to be constitutively desensitized and internalized (Burczyk
et al., 2015). As this involved β-arrestin-2 and G-protein-coupled
receptor kinase (GRK)-2, S1P2 R150H receptor functionality
could be restored by reduced GRK2/3 expression (Burczyk et al.,
2015).

S1P2 can activate Akt (Means et al., 2007), but in most cells,
it inhibits Akt (Schüppel et al., 2008; Du et al., 2010; Michaud
et al., 2010; Green et al., 2011; Japtok et al., 2015, and many
other reports), and it can act pro- as well as anti-proliferative.
Similarly, S1P2 can both activate and inhibit Rac (Okamoto
et al., 2000; Sugimoto et al., 2003; Takashima et al., 2008;
Rapizzi et al., 2009). S1P2 inhibited the phosphatidylinositol-3-
kinase/Akt pathway by mediating Rho-dependent activation of
the phosphoinositide phosphatase and tensin homolog deleted
on chromosome 10 (PTEN) in fibroblasts and endothelial cells
(Sanchez et al., 2005, 2007), but in macrophages, S1P2-mediated
inhibition of Akt and migration were independent of PTEN
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(Michaud et al., 2010). Via G12/13 or Gq and activation of
Rho/Rho kinase, in conjunction with inhibition of Rac, S1P2
exerts its eminent anti-migratory effect, important, e.g., for
retention of B cells and follicular T helper cells in germinal
centers (Green et al., 2011; Moriyama et al., 2014). The S1P2
receptor can furthermore regulate cytoskeleton organization
via phosphorylation of ezrin/radixin/moesin (ERM) proteins
(Gandy et al., 2013). This pathway appears to be involved

in control of the endothelial barrier function and cancer
cell invasion (Adyshev et al., 2011; Adada et al., 2015).
Another signaling pathway recently discovered to be regulated
by G-protein-coupled receptors including S1P2 is the Hippo
pathway (Yu et al., 2012). S1P2, again via G12/13 and Rho,
activated the transcription coactivators, YAP and TAZ (Miller
et al., 2012; Yu et al., 2012). This occurred independently of
the core Hippo pathway kinases (Miller et al., 2012), or via

TABLE 1 | Overview of controversial publications on the role of the S1P2 receptor in anaphylaxis, inflammation and cancer.

Anaphylaxis Aggravation of
anaphylaxis by
S1P2

Attenuation of anaphylaxis by S1P2 Comments

Jolly et al., 2004 S1P2 augments degranulation by Fcε receptor-I.

Oskeritzian et al.,
2010, 2015

S1P2-KO and JTE-013 reduce histamine release and attenuate severity of
anaphylaxis.

Olivera et al., 2010, 2013b Severe hypotension and delayed plasma histamine clearance in S1P2-KO.

Cui et al., 2013 Impaired survival in S1P2-KO mice challenged with antigen;
only study to show vascular leak in S1P2-KO.

Inflammation Pro-inflammatory
role of S1P2

Anti-inflammatory role of S1P2 Comments

Siehler et al., 2001;
Blom et al., 2010;
O’Sullivan et al., 2014

S1P2 activates NF-κB.

Damirin et al., 2005;
Li et al., 2009; Völzke
et al., 2014

S1P2 induces COX-2 expression and PG synthesis.

Skoura et al., 2011 S1P2-KO and JTE-013 reduce cytokine levels in LPS-treated mice.

Stradner et al., 2013 S1P2 counteracts IL-1β in chondrocytes and cartilage.

Sammani et al., 2010 S1P2-KO reduces bronchial leakage in LPS-induced lung injury.

Roviezzo et al., 2007;
Trifilieff et al., 2009;
Fuerst et al., 2014

These studies show a principle role for S1P2 in allergic airway inflammation and
constriction.

Chiba et al., 2010 S1P2 is downregulated during sensitization, resulting in a loss of
bronchoconstriction by S1P.

Michaud et al., 2010 S1P2-KO increases number of peritoneal macrophages in
thioglycollate-induced peritonitis.

Roviezzo et al., 2011 JTE-013 reduces cell recruitment after subcutaneous injection of zymosan.

Cancer Pro-cancerous role
of S1P2

Anti-cancerous role of S1P2 Comments

Cattoretti et al., 2009 B cell lymphoma in homozygous S1P2-KO mice.

Yamaguchi et al., 2003 S1P2 overexpression and i.p. application of S1P reduce lung metastasis of
implanted B16 melanoma cells.

Du et al., 2010 Accelerated tumor growth in S1P2-KO mice.

Young and van
Brocklyn, 2007; Salas
et al., 2011;
Ponnusamy et al.,
2012; Kawahara
et al., 2013; Bi et al.,
2014

Role for S1P2 in metastasis and/or chemoresistance of diverse tumors and/or
tumor cell lines

Miller et al., 2012; Yu
et al., 2012; Adada
et al., 2015

Activation of pro-cancerous signaling pathways by S1P2

Li et al., 2015 Anti-tumor effect of an S1P2 antagonist

KO, knockout. This table does not claim to be exhaustive.
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inhibition of LATS1/2 (Yu et al., 2012). The Hippo pathway
regulates tissue proliferation and organ size, and plays a role in
tumorigenesis (Zhang et al., 2015; Ye and Eisinger-Mathason,
2016).

The S1P2 receptor itself might be regulated by signals other
than S1P. Thus, a recent report suggests that the well-known
effect of S1P2 on neurite retraction (MacLennan et al., 2000;
Toman et al., 2004) might be involved in neuronal Nogo-A
signaling (Kempf et al., 2014). It was shown that Nogo-A-120
directly activated S1P2 by binding to its extracellular loops 2 and
3 independently of the presence of S1P, and via S1P2/G13/RhoA
inhibited neurite outgrowth and repressed synaptic plasticity
(Kempf et al., 2014). The authors suggested that the S1P2 receptor
is a multi-ligand receptor, regulated by both lipid and protein
ligands (Kempf et al., 2014). Yet other potential agonists at S1P2
might be conjugated bile acids such as taurocholate (Studer et al.,
2012). Several reports show that effects of conjugated bile acids,
such as activation of ERK and Akt in primary rodent hepatocytes,
and cell growth, survival, induction of cyclooxygenase (COX)-2
and formation of prostaglandin (PG)E2 in cholangiocarcinoma
cells, are dependent on the S1P2 receptor, as they are blocked
by the antagonist JTE-013 and by knocking down S1P2 (Studer
et al., 2012; Liu et al., 2014, 2015). While these observations
do not preclude that preparations of conjugated bile acids
contain traces of S1P, taurocholate specifically induced ERK
phosphorylation in S1P2 but not S1P1 overexpressing HEK-
293 cells (data obtained with the other S1P receptors were not
shown; Studer et al., 2012), thereby rebutting the contamination
hypothesis. A direct interaction is furthermore supported by
molecular modeling of taurocholate into S1P2 (Studer et al.,
2012).

S1P2 RECEPTOR PHARMACOLOGY

S1P2 receptor pharmacology is still in its infancy as only few
S1P2 selective compounds have been identified so far. These
are still experimental tool compounds. Until recently, JTE-013
(Osada et al., 2002) was the only available S1P2 antagonist. Many
functional studies have made use of this compound and thus,
besides the results obtained with genetic approaches, the effects
of JTE-013 have shaped our present view of the physiological
roles of S1P2. However, JTE-013 has a low potency and lacks
selectivity. This is illustrated by the fact that JTE-013 inhibited
responses to S1P in S1P2 knockout mice, and it had effects
in cells that had no S1P2 mRNA transcripts (Salomone et al.,
2008; Li et al., 2012). Later, it was found that JTE-013 inhibited
not only S1P2 but also the S1P4 receptor (Long et al., 2010).
Furthermore, JTE-013 lacks stability in vivo (Li et al., 2015).
Recently, AB1 has been developed as derivative of JTE-013 with
improved stability in vivo, higher potency and better efficacy, but
the selectivity of the compound is not well defined so far (Li
et al., 2015). Other recently synthesized S1P2 antagonists require
further characterization (Kusumi et al., 2015). Interestingly, a
series of S1P2 agonists has also been described, of which at
least CYM-5520 acted at an allosteric site (Satsu et al., 2013).
While not much is known so far concerning the biological effects

of CYM-5520, the related compound CYM-5478 (Satsu et al.,
2013) reduced cisplatin-mediated cell death by reducing reactive
oxygen species (ROS) in C6 glioma cells (Herr et al., 2016). Taken
together, further development is required in the area of S1P2
receptor pharmacology.

ANTI-MIGRATORY EFFECT OF S1P2 AND
CONSEQUENCES FOR ANGIOGENESIS
AND B CELL HOMING

One of the main effects of the S1P1 receptor is induction of
migration and chemotaxis within gradients of S1P (Spiegel et al.,
2002). In contrast to S1P1, S1P2 inhibits migration in many cell
types, including vascular endothelial and smooth muscle cells
as well as tumor cells, via activation of Rho and inhibition of
Rac (Okamoto et al., 2000; Arikawa et al., 2003; Goparaju et al.,
2005; Lepley et al., 2005; Tamama et al., 2005; Takashima et al.,
2008). The S1P2 antagonist JTE-013 augmented S1P-induced
angiogenesis in vivo in a Matrigel implant assay (Inoki et al.,
2006). The S1P2 receptor appears to be upregulated in senescent
endothelial cells, such as pulmonary microvascular endothelial
cells from aged rats, and senescence-associated impairment in
chemotaxis and migration was attenuated by down-regulation
of S1P2 (Lu et al., 2012). In human umbilical vein endothelial
cells, the S1P2 receptor suppressed angiogenic sprouting via a
Gα12/13/leukemia-associated RhoGEF (LARG)/RhoC-signaling
cascade (Del Galdo et al., 2013). Nevertheless, both pro- and anti-
migratory S1P receptors, i.e., S1P1−3, are required for proper
development of the vasculature during embryonic development
(Kono et al., 2004). In the mouse retina, S1P2 was not required
for normal angiogenesis (Skoura et al., 2007). Interestingly,
S1P2 was induced by hypoxia, and its knockout reduced the
hypoxia-associated pathologic neovascularization in the vitreous
chamber, while it augmented the revascularization into the
avascular zones of the retina (Skoura et al., 2007). While these
observations suggest that antagonism at S1P2 might be useful
for treatment of pathologic neovascularization, S1P2 knockout
in fact went along with enhanced tumor angiogenesis (Du et al.,
2010), suggesting that this indication should be regarded with
caution.

Interestingly, similar to the pro-migratory effect of the
S1P1 receptor, which is required for lymphocyte egress from
secondary lymphatic tissues, the anti-migratory effect of the S1P2
receptor plays an eminent role in the regulation of lymphocyte
localization. By inhibition of migration and proliferation, S1P2
mediates the confinement of B cells and follicular T helper cells to
lymph node germinal centers (Green et al., 2011; Moriyama et al.,
2014). It is likely a consequence thereof that mice lacking the S1P2
receptor develop clonal B cell lymphomas with age (Cattoretti
et al., 2009). Furthermore, somatic mutations in the 5′ sequence
of the S1PR2 gene were detected in about 25% of human germinal
center-derived diffuse large B cell lymphomas (Cattoretti et al.,
2009). Importantly, mice which were heterozygous for the S1P2
receptor did not develop lymphomas (Cattoretti et al., 2009),
suggesting that treatment with a pharmacological inhibitor
would probably not cause this devastating condition, although
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this is clearly one of the critical facets in S1P2 antagonist
development.

CONTRACTILE EFFECT OF S1P2 IN
SMOOTH MUSCLE AND
CONSEQUENCES FOR VESSEL TONE,
BLOOD FLOW, AND INNER EAR
FUNCTION

The S1P2 receptor induces contraction of diverse types of
smooth muscle, including vascular, bronchial, intestinal, and
bladder smooth muscle, by inducing increases in intracellular
Ca2+ concentration and activation of Rho/Rho kinase (Ohmori
et al., 2003; Hu et al., 2006; Kendig et al., 2013). In the
vascular system, endothelial S1P1 and S1P3 receptors mediate
NO-dependent vasodilation, while smooth muscle S1P2 and S1P3
receptors mediate vasoconstriction, with differential responses
in different vascular beds (Igarashi and Michel, 2009; Kerage
et al., 2014). S1P2 knockout mice had normal mean arterial
pressure and left ventricular function, but reduced renal and
mesenteric vascular resistance which went along with an
enhanced blood flow in the affected areas (Lorenz et al., 2007).
Furthermore, the S1P2 receptor contributed to blood pressure
elevation and vasoconstriction after α-adrenergic stimulation
(Lorenz et al., 2007). In a mouse model of myocardial
infarction-induced heart failure, S1P2 knockout mice did not
develop enhanced myogenic responses (Hoefer et al., 2010).
While blood flow in cerebral arteries was dependent on S1P3
(Salomone et al., 2008), S1P2 appears to play a role in
perfusion of lung, liver, and kidney. Thus, S1P2 activation
increases pulmonary vascular resistance in isolated perfused
mouse lung (Szczepaniak et al., 2010). Another study suggested
that S1P-induced pulmonary vasoconstriction was mediated by
S1P4 (Ota et al., 2011), but it is a contradiction that JTE-
013, as a S1P2/S1P4 antagonist (Long et al., 2010), had no
effect in that study. Interestingly, hypoxia-induced pulmonary
hypertension in rodents was reduced by JTE-013 (Chen et al.,
2014). In agreement, S1P2 antagonists have been suggested for
the treatment of pulmonary hypertension (Xing et al., 2015).
In isolated perfused rat liver, S1P2 activation increased portal
pressure (Ikeda et al., 2004), and S1P2 antagonism reduced
portal vein pressure in cirrhotic rats after bile duct ligation
(Kageyama et al., 2012). Finally, S1P2-mediated vasoconstriction
in the isolated perfused kidney was enhanced in diabetic rats
(Bautista-Pérez et al., 2011).

While these results suggest that S1P2 antagonism could be
helpful to increase organ blood flow, there is also a caveat: S1P2
knockout mice are deaf and have a progressive loss of vestibular
function (MacLennan et al., 2006). Among the earliest lesions
in the cochlea of S1P2-deficient mice, there were defects in the
stria vascularis (Kono et al., 2007). These data suggest that the
absence of S1P2 caused a dysregulation of the spiral modiolar
artery tone, and subsequently an abnormal perfusion of the inner
ear, which is accountable for the phenotype (Kono et al., 2007).
In addition, the S1P2 receptor also contributes to cochlear hair

cell maintenance and survival (Herr et al., 2007, 2016). Thus,
it was shown recently that ROS accumulated in the cochlea
of S1P2 knockout mice (Herr et al., 2016). Furthermore, S1P2
inhibited NADPH oxidase-3 activity in a recombinant system,
and the S1P2 agonist, CYM-5478, reduced cisplatin-induced
ROS formation in C6 glioma cells (Herr et al., 2016). Also
very recently, the S1P2 receptor gene has been allocated to the
autosomal-recessive non-syndromic hearing impairment locus
DFNB68 on chromosome 19, and two pathogenic S1P2 variants
have been identified (Santos-Cortez et al., 2016). In conclusion,
S1P2 receptor agonists might be a treatment option for cisplatin-
or gentamicin-induced ototoxicity (Nakayama et al., 2014; Herr
et al., 2016), while S1P2 antagonists will have to be analyzed for
potential ototoxic effects.

VASCULAR PERMEABILITY AND
VASCULAR INFLAMMATION

While early studies reported that functional antagonists
at S1P1 improved the vascular endothelial barrier, e.g., in
lipopolysaccharide (LPS)-induced edema, it soon turned
out that this was due to the initial agonistic activity of the
compounds, which was however followed by an increase
in vascular permeability on the long term (Xiong and Hla,
2014). Here again, the S1P2 receptor plays an opposite role, as
activation of S1P2 causes a disruption of endothelial adherens
junctions and increased paracellular permeability. Consequently,
JTE-013 improved barrier integrity (Sanchez et al., 2007). An
improvement of the vascular barrier by knockout or inhibition
of S1P2 has been shown in endothelial cell cultures and in diverse
in vivo models including stroke (Kim et al., 2015), experimental
autoimmune encephalitis (EAE; Cruz-Orengo et al., 2014), and
anaphylactic shock (see below). Thus, JTE-013 attenuated the
H2O2-evoked vascular leak in the isolated perfused rat lung
(Sanchez et al., 2007). LPS and tumor necrosis factor-α (TNF-α)
upregulated S1P2 in endothelial cells. Importantly, vascular
inflammation induced by LPS or TNF-α, with NF-κB activation
and upregulation of vascular cell adhesion molecule (VCAM)-1,
intercellular adhesion molecule (ICAM)-1, E-selectin, and
monocyte chemoattractant protein (MCP)-1, was reduced by
inhibition and/or knockout of S1P2 (Du et al., 2012; Zhang W.
et al., 2013). In models of LPS-induced acute lung injury or
endotoxemia, both vascular and alveolar leakage were reduced
by these pharmacological or genetic approaches (Sammani
et al., 2010; Zhang G. et al., 2013). Taken together, a barrier
disruptive role of the S1P2 receptor, and thus a therapeutic
potential for S1P2 antagonists in diverse conditions of vascular
barrier breakdown, is supported by a broad range of studies.
However, it was also shown that S1P2 might be protective
against acute vascular barrier disruption in active anaphylaxis
and after injection of platelet-activating factor (Cui et al.,
2013; see below). These authors observed that the activities
of Akt and endothelial NO synthase were enhanced in S1P2
knockout aorta, lung, and endothelial cells, and the enhanced
NO release in turn compromised vascular barrier function (Cui
et al., 2013). Furthermore, S1P2 contributed to maintenance of
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adherens junctions in this study, in contrast to previous reports
(Sanchez et al., 2007). The reason for this, however, remains
unclear.

ATHEROSCLEROSIS

S1P occurs at high concentrations in blood plasma and serum,
where it is bound mostly to high-density lipoproteins and
albumin, and both pro- and anti-atherosclerotic activities of
S1P have been described (Levkau, 2015). The S1P2 receptor, in
particular, is significantly upregulated by inflammatory mediators
in the endothelium, and it mediates vascular inflammation
(see above), which might be a key factor for promoting
atherosclerosis. In fact, S1P2 is upregulated in atherosclerotic
endothelium (Estrada et al., 2008). However, after carotid
artery ligation, S1P2-deficient mice developed large neointimal
lesions, which went along with medial and intimal smooth
muscle proliferation (Shimizu et al., 2007), suggesting that
S1P2 on vascular smooth muscle cells was atheroprotective. In
agreement, S1P2, by inducing serum response-factor enrichment
of CArG box promotor regions, induced phenotypic modulation
of smooth muscle cells in response to S1P (Wamhoff et al.,
2008). On the other hand, atherosclerosis in the mouse aorta was
decreased by S1P2 knockout in apolipoprotein E-deficient mice
(Skoura et al., 2011). This study showed that body weight, plasma
cholesterol, plasma triglyceride, and lipoprotein profiles were
not altered in atherosclerotic S1P2 knockout mice, but that the
number of macrophages and foam cells infiltrating the vessel wall
was decreased, and that S1P2 in the myeloid cells was responsible
for the effect. It was concluded that S1P2 signaling retained
macrophages in the plaques, where they promoted inflammation
(Skoura et al., 2011). Recently, it was shown that a knockout of
both Gα12 and Gα13 in myeloid cells protected LDL receptor-
deficient mice from atherosclerosis, which is of importance
here, since the S1P2 receptor was identified as the major G12/13
activator in the relevant cells, which were identified as peritoneal
macrophages (Grimm et al., 2016). In brief, the authors showed
that the alternative, anti-inflammatory polarization of aortic
macrophages in those mice was an indirect effect, mediated
by activation of atheroprotective B cells through classical, pro-
inflammatory peritoneal macrophages. Importantly, in both
bone marrow-derived and peritoneal macrophages from myeloid
G12/13 knockout mice, pro-inflammatory cytokines were strongly
upregulated, and this was mimicked by JTE-013 in wild-type
macrophages (Grimm et al., 2016). Thus, the study suggested
that G12/13, and S1P2 as major G12/13 activator in macrophages,
decreased rather than increased pro-inflammatory cytokine
production, but nevertheless, atherosclerosis was attenuated by
inhibition of this pathway (Grimm et al., 2016). Taken together,
inhibition of S1P2 might be atheroprotective, but further studies
on the underlying mechanisms are clearly required.

MAST CELLS AND ANAPHYLAXIS

Early reports have shown that in mast cells, the S1P2 receptor
is involved in an autocrine loop that augments degranulation

induced by Fcε receptor-I crosslinking (Jolly et al., 2004).
However, recent studies on the role of S1P2 in anaphylaxis
yielded contradictory results (Table 1): One group observed
that JTE-013 and S1P2 knockout attenuated the severity of
anaphylaxis and reduced circulating histamine levels as well
as pulmonary edema and allergic lung infiltration in a mouse
model of immunoglobulin E (IgE)/antigen-triggered anaphylaxis
(Oskeritzian et al., 2010, 2015). Interestingly, after histamine
injection to shortcut mast cell degranulation, JTE-013 and S1P2
knockout did not attenuate the anaphylactic response, suggesting
that S1P2 acted primarily by augmenting histamine release from
mast cells during the onset of anaphylaxis (Oskeritzian et al.,
2010). Another group observed that the symptoms of histamine-
induced anaphylaxis were more severe in S1P2 knockout mice
(Olivera et al., 2010). Most importantly, they observed a poor
recovery after both histamine and IgE/antigen challenge in these
mice, which went along with a severe hypotension and a delay
in plasma histamine clearance (Olivera et al., 2010, 2013b). Yet
another group even questioned that S1P2 knockout improved
the vascular barrier breakdown, as deletion of this receptor
aggravated the vascular leak and strongly impaired survival
in mice challenged with antigen or platelet-activating factor
(Cui et al., 2013). As possible explanations for the discrepant
findings, differential responses of mast cell populations, the
respective activity of the IgE preparations, active versus passive
anaphylaxis as well as a role of the mouse strains were
considered (Cui et al., 2013; Olivera et al., 2013b; Oskeritzian
et al., 2015). Taken together, it remains open whether the
potential beneficial effects of S1P2 antagonists, i.e., inhibition of
mast cell degranulation, improvement of the vascular barrier,
and attenuation of airway constriction, would outweigh their
potential deleterious effect, i.e., aggravation of hypotension, in
human anaphylaxis.

INFLAMMATION AND FIBROSIS

As mentioned above, the S1P2 receptor plays a role in
vascular permeability and inflammation, atherosclerosis, mast
cell function, and anaphylaxis. Further studies suggest that the
S1P2 receptor acts pro-inflammatory also in other inflammatory
settings. In LPS-treated mice, elevated serum levels of interleukin
(IL)-1β and IL-18 were reduced by S1P2 knockout and JTE-
013 (Skoura et al., 2011). In diverse cell types, S1P2 activated
NF-κB (Siehler et al., 2001; Blom et al., 2010; O’Sullivan et al.,
2014) or induced COX-2 expression and PG synthesis (Damirin
et al., 2005; Li et al., 2009; Völzke et al., 2014). As mentioned
above, in a mouse model of LPS-induced lung injury, knockout
of S1P2 reduced protein leakage into the bronchoalveolar
lavage fluid (Sammani et al., 2010). On the other hand, in
primary human chondrocytes and osteoarthritis cartilage, S1P2
counteracted the pro-inflammatory signaling of IL-1β, including
IL-1β-induced upregulation of inducible NO synthase (Stradner
et al., 2013).

S1P generally induces airway smooth muscle contraction
(Rosenfeldt et al., 2003) and plays a role in airway hyper-
responsiveness and asthma (Kume et al., 2007; Roviezzo et al.,
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2010, 2015). Recently, it was shown that S1P repressed β2
adrenergic activity in airway smooth muscle cells by increasing
COX-2-mediated PGE2 production (Rumzhum et al., 2016).
S1P2 and S1P3 appear to be involved in these effects (for
review, see Lai et al., 2011). Thus, JTE-013 inhibited ovalbumin-
induced contraction of lung parenchymal strips from ovalbumin-
sensitized rats (Trifilieff et al., 2009). However, in isolated
bronchial rings, S1P augmented KCl-induced contraction in a
JTE-013-sensitive manner only in bronchi from control mice,
not from antigen-challenged mice, which was traced back to
a down-regulation of S1P2 during sensitization (Chiba et al.,
2010). In contrast, S1P2 and S1P3 were upregulated during
ovalbumin-sensitization in the study of Roviezzo et al. (2007).
Importantly, S1P2 and S1P3 receptors induced a steroid-resistant
pro-remodeling response in airway smooth muscle cells (Fuerst
et al., 2014). S1P2 furthermore had a pro-inflammatory influence
on the bronchial epithelium, as S1P-induced IL-8 release via NF-
κB was inhibited by JTE-013 in human bronchial epithelial cells
(O’Sullivan et al., 2014). The data suggest that S1P2 antagonists
might have a beneficial effect on airway inflammation and
remodeling in asthma.

Notably, the inhibitory influence of S1P2 on migration plays
an important role in the recruitment of inflammatory cells to
sites of inflammation. Thus, in thioglycollate-induced peritonitis,
knockout of the S1P2 receptor led to an increase in the number
of macrophages in the peritoneal cavity (Michaud et al., 2010).
On the other hand, cell recruitment after subcutaneous injection
of zymosan was reduced by JTE-013 (Roviezzo et al., 2011). These
seemingly contradictory observations suggest that the underlying
migratory events of the different cell types are regulated in a
complex manner by S1P2.

Some additional activities of the S1P2 receptor might be
important in inflammation. Thus, S1P2 reduced antigen capture
by murine Langerhans cells, thereby potentially alleviating
cutaneous contact hypersensitivity (Japtok et al., 2012). S1P2
furthermore suppressed macrophage phagocytosis, thereby
impairing host defense in sepsis (Hou et al., 2015). Finally, while
knockout and blockade of S1P2 improved the tightness of blood–
brain barrier and ameliorated EAE, the receptor was found to
be more abundant in female EAE mice and female patients
with multiple sclerosis compared to their male counterparts, and
it was suggested that this underlies the enhanced female CNS
autoimmune susceptibility (Cruz-Orengo et al., 2014). Taken
together, we are just beginning to understand the complex role
of S1P2 in infection, inflammation, and autoimmunity.

With regard to fibrosis, it has been shown that intracellular
S1P acts anti-fibrotic, while extracellular S1P has a pro-fibrotic
activity. However, the respective role of the different S1P receptor
subtypes appears to be less clear (Schwalm et al., 2013). In
bleomycin-induced lung injury, a prolonged exposure to S1P1
functional antagonists including fingolimod not only worsened
the vascular barrier function but also increased the fibrotic
response (Shea et al., 2010), suggesting that S1P1 acts anti-fibrotic
in pulmonary fibrosis. On the contrary, pro-fibrotic events
such as Smad activation, induction of connective tissue growth
factor (CTGF), and enhanced synthesis of extracellular matrix
components, were dependent on signaling pathways involving

G12/13 and/or Rho/Rho kinase, thereby pointing toward S1P2
and S1P3 as the main pro-fibrotic S1P receptors (Schwalm
et al., 2013). Indeed, in carbon tetrachloride-induced liver
fibrosis, S1P2 knockout mice showed reduced accumulation
of hepatic myofibroblasts and decreased induction of fibrotic
markers (Serriere-Lanneau et al., 2007; Ikeda et al., 2009).
Considering also the role of S1P2 in portal hypertension
(Kageyama et al., 2012; see above), S1P2 antagonists may turn
out to be helpful in liver fibrosis. Other reports suggest a role
for S1P2 and/or S1P3 in pulmonary, renal, or cardiac fibrosis
(Schwalm et al., 2013). Of note, also the S1P5 receptor appears
to be involved in fibrosis, as it has recently been shown to
induce CTGF expression in renal mesangial cells (Wünsche et al.,
2015).

DIABETES MELLITUS AND INSULIN
RESISTANCE

Function and survival of pancreatic β-cells, as well as the
responsiveness of insulin-sensitive tissues to insulin, play an
important role in diabetes mellitus, and both are regulated by
the SphK/S1P axis (Jessup et al., 2011; Fayyaz et al., 2014b).
While earlier work showed that S1P itself contributed to glucose-
stimulated insulin secretion and generally improved β-cell
survival (Fayyaz et al., 2014b), it was shown recently that the
S1P2 receptor had a rather negative impact on pancreatic β-cells.
In streptozotocin-induced diabetes mellitus, S1P2 knockout mice
had lower blood glucose levels, higher insulin/glucose ratios, less
β-cell apoptosis, and a better survival rate (Imasawa et al., 2010).
Furthermore, JTE-013 attenuated the development of diabetes in
streptozotocin-treated wild type mice (Imasawa et al., 2010). In
New Zealand obese mice, plasma concentrations of S1P increased
over 28 days of high-fat diet, and treatment with JTE-013 reduced
the concomitant β-cell loss (Japtok et al., 2015). Mechanistically,
S1P2 counteracted the anti-apoptotic and proliferative effects of
insulin by inhibiting Akt (Japtok et al., 2015).

Of the insulin-sensitive tissues, both skeletal muscle and
hepatocytes were regulated by S1P2 (Rapizzi et al., 2009;
Fayyaz et al., 2014a). In C2C12 myoblasts, S1P caused a
ROS-dependent transphosphorylation of the insulin receptor,
thereby increasing glucose uptake into the cells. S1P-induced
ROS production was inhibited by JTE-013, suggesting that
it was the S1P2 receptor which mimicked the activity of
insulin in myoblasts (Rapizzi et al., 2009). In hepatocytes,
however, S1P induced insulin resistance as it attenuated insulin-
stimulated Akt phosphorylation in primary rat and human
hepatocytes. This effect was sensitive to JTE-013, indicating an
involvement of S1P2 which was the prevailing S1P receptor
subtype on the mRNA level in hepatocytes. Importantly, in
New Zealand obese mice, JTE-013 attenuated the continuous
increase in blood glucose levels under high-fat diet, and partially
reversed the high-fat diet-mediated loss in phospho-Akt in
the liver of these mice (Fayyaz et al., 2014a). Thus, insulin
sensitivity was regulated by S1P2 in a different manner in
skeletal muscle and hepatocytes, respectively. Finally, it has to
be mentioned that not much is known about S1P2 receptor
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activity in adipocytes, but a recent study suggests that the receptor
had an anti-adipogenic effect in 3T3-L1 preadipocytes, as it
decreased the expression of peroxisome proliferator-activated
receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α and
adiponectin, and decreased the triglyceride content of the cells
(Moon et al., 2015). Consequently, the authors concluded that
activation of S1P2 might be helpful against obesity (Moon
et al., 2015). However, one has to keep in mind, that
activation of PPAR-γ is well-known to improve insulin sensitivity
and plasma lipid profiles, and to inhibit inflammation (Yki-
Jarvinen, 2004; Cariou et al., 2012). Thiazolidinediones, which
are PPAR-γ agonists, have been used for years as insulin
sensitizers in diabetes mellitus type 2, but they have been
gradually removed from the market because of hepatotoxicity,
increased cardiovascular risk, or increased occurrence of bladder
cancer (Yki-Jarvinen, 2004; Cariou et al., 2012). Presently,
pharmacologists aim at next-generation PPAR-γ agonists with
improved safety profiles (Sauer, 2015). In this context, it will
be interesting to study the potential of S1P2 antagonists as
inducers of PPAR-γ in relation to the reported negative effects
of thiazolidinediones.

SKELETAL MUSCLE

The SphK/S1P axis plays an important role in skeletal muscle
(patho)physiology, and the S1P2 receptor, in particular, is
involved in myogenic differentiation and muscle regeneration
(Donati et al., 2013). Thus, by antisense, silencing or
overexpression approaches, it was shown that S1P2 induced
differentiation of C2C12 myoblasts and contributed to
myogenesis by low doses of TNF-α (Donati et al., 2005, 2007).
Importantly, S1P2 knockout mice had no alteration in the soleus
muscle mass and morphology, however, as their body weight
increased during aging stronger than that of wild-type mice, their
muscle/body weight ratio decreased more strongly (Germinario
et al., 2012). In a model of soleus muscle degeneration by the
myotoxic compound notexin, knockout of or antagonism at S1P2
delayed muscle regeneration and decreased the expression of
the promyogenic marker myogenin (Germinario et al., 2012). It
was finally shown that S1P2 activated quiescent satellite cells and
facilitated muscle regeneration via STAT3 (signal transducer and
activator of transcription-3; Saba and de la Garza-Rodea, 2013).
Taken together, it will be important to analyze the impact of a
long-term treatment with an S1P2 antagonist on skeletal muscle
homeostasis.

CANCER

It appears obvious that inhibition of a receptor which acts anti-
migratory and often anti-proliferative would result in enhanced
tumorigenesis and particularly in metastasis. Indeed, lack or
mutation of S1P2 is linked to B cell lymphoma, as explained above
(Cattoretti et al., 2009). In an early study with B16 melanoma
cells which endogenously express only S1P2, pretreatment of the
cells with S1P before implantation as well as daily i.p. application

of S1P reduced lung metastasis, and stable overexpression of
S1P2 enhanced this effect (Yamaguchi et al., 2003). Remarkably,
this study not only shows an anti-metastatic role of S1P2,
but also contradicts the anti-tumor effect of anti-S1P-antibody
treatment reported in many studies (e.g., Ader et al., 2015, for
review see Sabbadini, 2011). Furthermore, lung carcinoma and
melanoma cells implanted into S1P2 knockout mice showed
accelerated tumor growth, enhanced angiogenesis and more
efficient recruitment of CD11b-positive bone marrow-derived
cells into the tumors (Du et al., 2010). However, several
reports underline a rather pro-cancerous role of S1P2 (Table 1):
although S1P2 inhibited migration of glioma cells, it enhanced
the expression of the matricellular protein CCN1/Cyr61 and
stimulated glioma cell invasiveness and adhesion (Young and van
Brocklyn, 2007). In chronic myeloid leukemia, S1P2 enhanced
Bcr–Abl1 stability via inhibition of protein phosphatase-2a,
and inhibition of SphK1/S1P2 restored the chemosensitivity
of leukemia allografts in mice (Salas et al., 2011). S1P2
also increased the chemoresistance of colon carcinoma cells
(Kawahara et al., 2013). Inhibition of S1P2 upregulated breast
carcinoma metastasis suppressor-1, which in turn suppressed
lung metastasis of bladder carcinoma cells (Ponnusamy et al.,
2012). Furthermore, pancreatic cancer cells implanted together
with S1P2 receptor-deficient pancreatic stellate cells showed less
cancer growth and metastasis in vivo (Bi et al., 2014). Moreover,
the above-mentioned phosphorylation of ERM proteins mediated
by S1P2 was suggested to take part in cancer cell invasion
(Adada et al., 2015). Finally, S1P2-mediated activation of the
Hippo pathway might be pro-cancerous (Miller et al., 2012;
Yu et al., 2012; see above). As metastasis of epithelium-derived
tumors has been linked to basal rather than apical epithelial
extrusion, it is interesting to note that the S1P2 antagonist, JTE-
013, preferentially inhibited apical extrusion (Gu et al., 2011),
although the proposed role of reduced S1P production in basal
extrusion of oncogenic K-Ras-expressing cells remains unclear as
S1P production by these cells has not been quantified (Slattum
et al., 2014). Taken together, apart from the specific situation with
S1P2 in B-cell lymphoma, the presently available studies suggest
that the S1P2 receptor controls mechanisms which both promote
and prevent tumor growth, invasion, and metastasis. Therefore,
for development of S1P2 antagonists, thorough studies with the
development candidates are required to address their potential
for promotion of tumor growth and metastasis.

CONCLUSION

As described in the present review, the S1P2 receptor plays
an important role in many tissues and organs, and therefore,
a therapeutic application of S1P2 antagonists will necessarily
cause unintended effects. Here, an attempt is made to suggest
potential therapeutic indications for S1P2 antagonists, and to
point out the potential risks that have to be taken into account
during drug development. First of all, the available data suggest
that selective S1P2 receptor antagonists might be helpful in
pulmonary hypertension, chronic obstructive pulmonary disease,
and lung fibrosis. Similarly, portal hypertension and liver fibrosis,
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which often occur in conjunction, might be an indication.
Although S1P2 antagonists will probably improve the vascular
endothelial barrier, they are likely to cause problems in conditions
with critical systemic arterial hypotension, such as sepsis
or anaphylaxis. Finally, an interesting approach will be to
test the therapeutic potential of S1P2 antagonists in diabetes
mellitus type 2 with insulin resistance and progressive β-cell
loss, and to see whether atherosclerosis is also attenuated in
these patients. As the proposed indications require a chronic
treatment, the potential long-term adverse effects need to be
carefully addressed. Potentially devastating effects in the central
nervous system, such as neuronal hyperexcitability, seizures,
memory deficits, and increased anxiety (MacLennan et al.,
2001; Akahoshi et al., 2011), suggested by observations with
S1P2 knockout mice or JTE-013 treatment, must be avoided
by appropriate chemical–pharmaceutical engineering, i.e., by
designing compounds that do not cross the blood brain
barrier. Other critical points are inner ear functionality and B
cell lymphoma. However, a full receptor knockout cannot be
compared to the activity that can be reached with a (competitive)
receptor antagonist. In this regard, it is important that mice
that were heterozygous for the S1P2 receptor did not develop
B cell lymphoma, and that hearing impairment due to S1P2
missense mutations in humans was autosomal-recessive. While
the potential of S1P2 antagonists to induce or exacerbate
tumor growth and metastasis has to be addressed carefully,
these agents might also act protective in cancer. For instance,

in a recent study with a novel S1P2 antagonist, which is a
derivative of JTE-013 with improved properties, the compound
inhibited the growth of neuroblastoma xenografts (Li et al.,
2015).

Indeed, a major problem in this research area is the lack
of appropriate tools. As discussed above, the widely used S1P2
antagonist, JTE-013 (Osada et al., 2002), has a low potency
and lacks selectivity and stability in vivo (Long et al., 2010; Li
et al., 2015). Other more recently synthesized S1P2 agonists and
antagonists still await further characterization (Satsu et al., 2013;
Kusumi et al., 2015; Li et al., 2015). In conclusion, the discovery
of novel highly selective antagonists with high affinity at S1P2
is urgently required to address pending questions regarding the
roles and effects of S1P2, and to enable definite conclusions with
regard to the therapeutic suitability of these drugs.
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