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Background
Brain regions are functionally diverse, and a given region may
engage in a variety of tasks. This functional diversity of brain
regions may be one factor that has prevented the finding of
consistent biomarkers for brain disorders such as autism spec-
trum disorder (ASD). Thus, methods to characterise brain regions
would help to determine how functional abnormalities contrib-
ute to affected behaviours.

Aims
As the first illustration of the meta-analytic behavioural profiling
procedure, we evaluated how the regions with disrupted
connectivity in ASD contributed to various behaviours.

Method
Connectivity abnormalities were determined from a published
degree centrality group comparison based on functional mag-
netic resonance imaging data from the Autism Brain Imaging
Data Exchange. Using BrainMap’s database of task-based neu-
roimaging studies, behavioural profiles were created for abnor-
mally connected regions by relating these regions to tasks
activating them.

Results
Hyperconnectivity in ASD brains was significantly related to
memory, attention, reasoning, social, execution and speech

behaviours. Hypoconnectivity was related to vision, execution
and speech behaviours.

Conclusions
The procedure outlines the first clinical neuroimaging application
of a behavioural profiling method that estimates the functional
diversity of brain regions, allowing for the relation of abnormal
functional connectivity to diagnostic criteria. Behavioural profil-
ing and the computational insights it provides can facilitate bet-
ter understanding of the functional manifestations of various
disorders, including ASD.
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Overview

Clinical neuroimaging seeks to find consistent differences between
control and patient brains in order to describe neural mechanisms
for behavioural differences between groups. Autism neuroimaging
has used structural and functional magnetic resonance imaging
(MRI) methods to describe neurological differences that contribute
to the autism spectrum disorder (ASD) behavioural phenotype. The
ASD behavioural phenotype is heterogeneous,1 but all people with
ASD share the same core symptoms evident in behaviour. Thus, a
method that allowed one to evaluate the relationship between con-
nectivity differences and core behavioural differences would be
useful. Functional connectivity, a method measuring functional
synchrony across brain regions, has been used to characterise the
degree of abnormal brain connectivity present in individuals with
ASD. The results of such brain connectivity analyses are often
related to behaviour by acknowledging abnormalities in regions
that have been previously implicated in behaviours involved in
the ASD phenotype. For example, ‘social’ brain networks contribute
to social deficits in ASD (or any other brain network/behaviour
combination). Although these evaluations are not inaccurate,
there is increasing realisation that certain brain regions are involved
in a wide variety of behaviours and cognitive tasks.2,3 Thus, statis-
tical measures that quantify the degree of involvement of specific
brain regions in behaviours affected by a disorder would be valuable.

Meta-analysis in brain mapping

Anderson and colleagues4 developed a meta-analytic approach to
quantify each brain region’s degree of involvement in various beha-
viours, but the method has not yet been applied in a clinical context.

Anderson described brain regions that participate in many tasks as
‘functionally diverse’ and characterised brain regions’ tendencies to
participate in certain tasks as ‘functional biases’, with the majority of
brain regions demonstrating some degree of functional diversity. This
method, which Anderson and colleagues termed ‘functional finger-
printing’, allows one to quantify a given brain region’s functional
biases. (Please note that this type of ‘functional fingerprinting’
meta-analysis is unrelated to the functional fingerprinting of Finn
et al5; to avoid confusion, we have adopted the term ‘behavioural pro-
filing’ for the work described here.) Using the methods described by
Anderson et al,4 one can plot a brain region’s behavioural profile as
the proportions of functional bias towards a set of behavioural
domains, giving insight to the involvement of brain regions across
a variety of behavioural domains.

Meta-analytic databases dominantly include data on healthy
participants, which can be useful for describing neural computa-
tions affected in a disorder. Task-based meta-analyses using the
Neurosynth (http://neurosynth.org) and BrainMap (http://brain
map.org) databases have made it possible to pool data from
many experiments to describe networks and brain regions, enab-
ling computation of additional metrics that would be unavailable
for single experiments (such as with functional diversity). Meta-
data relate tasks and foci activated under task conditions com-
pared with control conditions, and these task-based meta-data
form the basis for functional MRI (fMRI) meta-analyses.
Functional diversity reflects how brain regions are reused for
various tasks, and the neural reuse described by Anderson2 may
also reflect a reuse of neural computations. Meta-analysis of
healthy participant data can reveal the functional or task biases
of a brain region’s underlying computation. Characterising brain
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regions affected by a disorder would then reveal the functional
biases of healthy computations that the condition disrupts.

Application of behavioural profiling

Here, we apply a novel behavioural profiling method to establish
whether group differences in resting state functional connectivity
MRI (rs-fcMRI) between individuals with ASD and controls exist
in regions functionally biased towards behaviours disrupted in
ASD. We reasoned that if affected regions in the brains of
people with ASD were related to behaviours affected by ASD
(e.g. ‘social’ behaviours), it would be expected that foci landing
within the affected regions would tend to have meta-data aligning
with those behaviours (e.g. foci from ‘social’ tasks). In the present
study, we use meta-data derived from task-based meta-analyses to
quantify functional biases of atypically connected brain regions in
an ASD cohort. The data-driven behavioural profiling method,
adapted from the functional fingerprinting method of Anderson
et al4, used BrainMap meta-data to quantify functional biases of
brain regions. We expected that brain regions that showed atyp-
ical connectivity in ASD would exhibit functional biases towards
core ASD-affected behaviours. The following study proposes
behavioural profiling as a metric for quantifying clinical neuroi-
maging results to give insight into the neural underpinnings of
core symptoms.

Method

Overview of behavioural profiling

To reveal the functional biases of functionally connectivity abnor-
mality regions of interest (ROIs) in ASD, a data-driven behavioural
profiling approach, adapted from Anderson’s ‘functional

fingerprinting’ meta-analysis,4 was applied using BrainMap data.
The procedure (outlined in Fig. 1) involved determining ROIs
related to the disorder and quantifying each ROI’s functional bias
towards a set of behavioural domains with descriptive power for
brain function.

Determining ROIs: cohort and functional connectivity
differences

The focus of the current paper was not to identify novel regions asso-
ciated with connectivity differences in ASD. ROIs can be determined
based on connectivity differences that are determined from new or
existing results using a variety of resting-state connectivity analysis
methods. To emphasise the behavioural profiling method and not
ASD connectivity differences per se, we chose to implement this
behavioural profiling method on an established data-set of reprodu-
cible resting-state functional connectivity alterations.8 The cohort
used in determining functional connectivity differences included
299 ASD and 376 typically developed participants from the first
cohort for the multi-site Autism Brain Imaging Data Exchange
(ABIDE I).9 Participants included both male and female individuals
with IQ > 70, and were sampled from child, adolescent and adult
age ranges. ASD subjects included all ASD diagnoses in the ABIDE
database (autism, Asperger syndrome, or pervasive developmental
disorder not otherwise specified). Detailed subject demographics
can be found in Holiga et al.8 Voxel-wise degree centrality maps of
rs-fcMRI were computed by Holiga et al8 to compare functional con-
nectivity between the ASD and typically developed cohorts. Degree
centrality is a functional connectivity-based metric that is computed
for each voxel as the sum of the correlation coefficients (r) of that
voxel’s time series with all other voxels’ time series (for r > 0.25).8

Weobtained the unthresholded t-maps of voxel-wise degree centrality
comparisons (found in Fig. 1(c) of Holiga et al8) for our analyses.
To identify regions of significant hyperconnectivity (ASD > typically
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Fig. 1 Behavioural profiling pipeline using degree-centrality difference maps as ROIs.

Degree centrality group difference maps of hyperconnectivity and hypoconnectivity served as ROIs for behavioural profiling, generating one radially plotted behavioural profile per
group difference cluster. ROIs were input to the Sleuth application (first image in the Behavioural Profiling row)6 and meta-data were filtered with Sleuth’s filter tool created at our
request (available in v3.0a2 and above). The domain ‘social’ is shown as an example of a behavioural domainwithwhich theworkspace can be filtered (highlighted in green). Domain-
specific workspaces were exported (highlighted in red) for GingerALE meta-analysis, and activation likelihood maps determined the degree of functional bias towards behavioural
domains within the ROI’s behavioural profile. The degree centrality equation was adapted from Zuo et al7 and the description from Holiga et al.8

ALE, activation likelihood estimation; ROI, region of interest.
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developed) and hypoconnectivity (typically developed > ASD), we
performed a Gaussian random field cluster analysis on the unthre-
sholded t-maps, using the FSL cluster tool10 distributed by the
FMRIB Software Library (https://fsl.fmrib.ox.ac.uk/fsl/, v5.0, Mac).
Smoothness parameters were estimated with FSL’s smoothest utility
and resulting values were input into the cluster utility, with an input
threshold of t > 1.960 or t <−1.960 and a family-wise error (FWE)
cluster-wise threshold of P < 0.05. The regions of hyperconnectivity
and hypoconnectivity served as the inputs to behavioural profiling.

Quantifying functional biases: meta-data collection

Meta-data were collected using the BrainMap Sleuth (v3.0.3, Mac)
application.6 When an ROI is entered, the application returns foci
of task-based fMRI studies that demonstrate activity (relative to a
control task) within the ROI. The foci are all labelled with behav-
ioural domain meta-data, allowing for subsequent analyses to deter-
mine how likely a behaviour is to activate the ROI. As Sleuth
restricts ROIs to 1000 1 mm voxels, workspaces of ROIs that were
greater than 1000 voxels were produced by entering the ROI as mul-
tiple smaller subregions to create an aggregate workspace encom-
passing all meta-data relevant to the original full ROI. For each
input ROI, studies involving healthy participants and activations
lying within the ROI were retained in the workspace.
Hyperconnectivity clusters were input as one ROI, yielding a work-
space for hyperconnectivity meta-data, and hypoconnectivity clus-
ters were input as a second ROI, yielding a workspace for
hypoconnectivity meta-data.

The ability to filter the workspace was added to the Sleuth appli-
cation for the purpose of this study, allowing for the collection of
experiments and foci to be filtered for particular behavioural
domains. Experiments and foci for a particular ROI and behavioural
domain were exported as formatted text files within the Sleuth
application, with each text file being generated after filtering for a
behavioural domain. Anderson and colleagues’ multi-dimensional
behavioural domain vector4,11 was modified to a 30-dimensional
vector (largely based on Ref. 11) to include the following
domains: anger, anxiety, attention, audition, disgust, execution,
fear, gustation, happiness, imagination, inhibition, interoception,
learning, mathematic, memory, music, observation, olfaction,
orthography, phonology, preparation, reasoning, sadness, semantic,
social, somesthesis, space, speech, syntax and vision. The 30
domains were chosen for their presence in BrainMap meta-data,
their similarity to domains used in past work describing computa-
tional ability of brain regions, and the inclusion of domains relevant
to ASD (i.e. the social domain). In addition to the 30 text files for
hyperconnectivity ROIs and hypoconnectivity ROIs, 30 text files
for a whole-brain ROI were generated to serve as the null hypothesis
when performing inference on behavioural profiles.

The text files served as inputs to computationally rigorousmeta-
analyses. The amount of experimental data retained in text files
could not be efficiently handled by a high-performance computing
cluster during meta-analysis. So, a stratified random sample of 50%
of the experiments was taken from the whole-brain ROI text files.
Stratification allowed for a proportionate number of experiments
per behavioural domain to be retained for meta-analysis.
Experiments removed (i.e. not in the random 50% retained) from
whole-brain ROI text files were removed from the hyperconnectiv-
ity and hypoconnectivity ROI text files. The amount to retain was
set as 50% because previous meta-analyses using the high-perform-
ance computing cluster only succeeded when input with text files
slightly under half the size (<200 kB) of the largest whole-brain
ROI text file output by Sleuth. As the BrainMap database is in
essence a sample of all possible task-based fMRI experiments,
further sampling would not affect behavioural profiles. The

resulting text files still contained data from many experiments,
allowing for robust meta-analysis.

Quantifying functional biases: construction of
behavioural profiles

Behavioural profiles for each of the three hyperconnectivity ROIs
and each of the two hypoconnectivity ROIs were created using
the output of activation likelihood estimation (ALE).12–14 ALE
finds the likelihood that an activation occurred at a brain coordinate
given information on foci from experiments reporting activation
near the coordinate.15 For each ROI, ALE values were used to deter-
mine the likelihood that a behavioural domain activated the ROI.
ALE maps for each behavioural domain were produced for hyper-
connectivity, hypoconnectivity and whole-brain ROI text files.
BrainMap’s GingerALE12–14 command-line tools (v3.0.2, Mac)
were executed with Java (v1.8.0_181) on a high-performance com-
puting cluster to write cluster-level FWE-corrected ALE maps. The
cluster-level FWE method is considered to be the most appropriate
for meta-analysis inference.16 The parameters used for the FWE-
corrected ALE were a P-value threshold of 0.001, a secondary
cluster-forming threshold of 0.05 and 1000 permutations. As
Sleuth retains experiments with foci within ROIs but also retains
foci outside the ROIs (which are coactivation partners to within-
ROI foci), ALE maps from the hyperconnectivity text files were
masked by the three hyperconnectivity ROIs and ALE maps from
the hypoconnectivity text files were masked by the two hypoconnec-
tivity ROIs. The masking generated ALE maps that described the
likelihood that a behavioural domain would activate voxels in a
given ROI (where ROIs are the five clusters of hyper/
hypoconnectivity).

Behavioural profiles were calculated directly from masked ALE
maps using SPM (SPM12) in MATLAB (v2019a, Mac). Following
from published methods,4 an active voxel served as an observation,
and the weight of the observation was determined by the ALE value.
ALE values were summed from each ALE map to determine one

Whole-brain seed ASD > TD cluster 2

Fig. 2 Behavioural profiling of ALE maps.

ALE maps for each of 30 behavioural domains are overlaid for the whole-brain maps
and hyperconnectivity cluster 2 maps, with the blue ALE maps corresponding to the
‘social’ behavioural domain, and for all other behavioural domain ALEmaps shown in
red. The proportion of behavioural domain representation is computed based on the
sumof all voxels in the ALEmap, and the spatial extent of the ALEmaps in the images
can be used to roughly visualise the proportion. Hyperconnectivity (ASD > TD) cluster
2 is used here as an example to depict the relationship between ALE maps and
behavioural profile proportions. It can be seen that the social ALEmap is represented
in large proportion compared with the other ALEmaps in hyperconnectivity cluster 2
(right image) and that the social ALE map is in higher proportion in hyperconnectivity
cluster 2 than the social ALE map in the whole-brain seed (left image). The large
proportion compared with within-cluster ALE maps demonstrates that social
behaviour is dominantly represented in hyperconnectivity cluster 2, and the higher
proportion compared to the social ALE map in the whole-brain seed depicts the
significant overrepresentation of social behaviour in hyperconnectivity cluster 2.
ALE, activation likelihood estimation; ASD, autism spectrum disorder; TD, typically
developed.
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value per ROI per behavioural domain that represented the magni-
tude of the region’s involvement in the given behavioural domain
(Fig. 2). The 30 magnitudes for a region’s behavioural domains
were normalised to represent the proportions by which the behav-
ioural domains were involved in the brain region. The behavioural
profiles were corrected for the zero-occurrence issue using
Anderson’s4 smoothing methods based on the work of Jelinek and
Mercer.17 Summed ALE maps equal to zero could inaccurately
suggest that a brain region had zero involvement in a certain task
domain. Thus, following from published work,4 all behavioural
profile proportions for regions were smoothened based on the
whole-brain behavioural profiles, in which the whole brain acted
as a seed region for the Sleuth application. Calculations of smooth-
ened proportions for behavioural profiles used the following equa-
tion:

p̂ ¼ λpi þ (1� λ)qi,

where p̂ is the smoothened proportion, pi is the regional proportion
for domain i and qi is the whole-brain proportion for domain i. λ is a
sigmoidal function that allowed the proportions to be adjusted
according to how many active voxels, n, were observed from the
domain’s GingerALE map. The sigmoidal curve of Anderson4 was
used, as its exponent scaling also fit the data for this procedure.
The function was defined as:

λ(n) ¼ 0:5þ 0:5

1þ e(40�n)=10
:

An increased number of active voxels led to behavioural domain
magnitudes being based more on the region’s proportion, and a
decreased number of active voxels led to behavioural magnitudes
being based more on the whole brain’s proportion.

Analysis of behavioural profiles

Behavioural profiles were analysed to determine whether a behav-
iour was dominantly represented in the region and was more repre-
sented in the region compared to the whole brain. Behavioural
domains with the largest proportions and whose proportions
added to at least 60% were considered to be dominantly represented
in the brain region. The value of 60% was chosen as it did not
exclude any behavioural domains with large proportions (< 10%)
and would account for most of the behavioural representation.
A single-tailed one-proportion z-test was used to determine
whether increases in proportions in regions were significant
compared to the whole-brain null-profile. The z-score calculation

used the equation:

z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0(1� p0)

n

r ,

where p̂ is the normalised proportion for a given ROI and behav-
ioural domain, p0 is the proportion for which the null distribution
is involved in a behavioural domain and n is the total number of
voxels with ALE values greater than zero from all the ALE maps
for a given ROI. P-values were Bonferroni corrected as there were
significance tests for many behavioural domains.

Results

Clusters of atypical functional connectivity

Five clusters of atypical connectivity were output from the FWE-
corrected cluster analysis (Fig. 3). Three clusters of hyperconnectiv-
ity were observed. Cluster 1 extended across the middle frontal
gyrus and frontal pole. Cluster 2 extended across the anterior cingu-
late gyrus, paracingulate gyrus and superior frontal gyrus. Cluster 3
was contained within the cerebellum. Two clusters of hypoconnec-
tivity were observed. Cluster 1 extended across the inferior temporal
gyrus and lateral occipital cortex. Cluster 2 extended across the post-
central and precentral gyrus, central opercular cortex, parietal oper-
culum cortex, lateral occipital and middle temporal gyrus.

Behavioural profiles

Hyperconnected and hypoconnected brain regions had functional
biases toward various behavioural domains (Fig. 4). Although the
data from each of 30 behavioural domains were used to compute
behavioural profiles and evaluate significance for each behavioural
domain, only the behavioural domains that reached significance
in any of the five behavioural profiles constructed are shown in
Fig. 4 to highlight variation across clusters in the representation
of these most relevant behavioural domains. Hyperconnected
regions in ASD brains had functional biases towardsmemory, atten-
tion, reasoning, social, execution and speech behavioural domains.
Hypoconnected regions in ASD brains had functional biases
towards vision, execution and speech behavioural domains.

All significant functional biases were significant at P < 0.0001.
Memory was a significant functional bias for hyperconnected
cluster 1. It should be noted the zero-occurrence issue was encoun-
tered for all domains except memory in this region. Attention,
memory, reasoning and social were all significant functional
biases for hyperconnected cluster 2. Execution and speech were

Fig. 3 Autism spectrum disorder hyperconnectivity and hypoconnectivity clusters.

Hyperconnected clusters are highlighted in warm colours (yellow = cluster 1, orange = cluster 2, red = cluster 3), and hypoconnected regions are highlighted in cool colours (light
blue = cluster 1, dark blue = cluster 2). All hyper/hypoconnectivity overlays are in binary format, and the colours are only used to distinguish the clusters. Sagittal, coronal and axial
slices in the image correspond to x = 8, y = −17 and z = −1 in MNI152 coordinates.
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both significant functional biases for hyperconnected cluster
3. Vision was a significant functional bias for hypoconnected
cluster 1. Execution and speech were both significant functional
biases for hypoconnected cluster 2.

Discussion

We first identified regions of atypical connectivity in ASD brains
from a previously published resting state functional connectivity
comparison. We applied a novel behavioural profiling method to
the regions showing atypical connectivity to characterise the
degree to which these regions were implicated in behavioural
domains associated with ASD. The behavioural profiles of brain
regions with altered connectivity suggest that ASD brain hypercon-
nectivity may contribute to memory, attention, reasoning, social,
execution and speech deficits, whereas hypoconnectivity may con-
tribute to vision, execution and speech behavioural deficits. This
behavioural profiling method will also be valuable for investigating
a variety of behavioural domains in neurodevelopmental and psy-
chiatric disorders outside ASD.

Various quantitative reverse-inference methods have been
applied to understand disease and disorder, and behavioural profil-
ing represents one method designed in particular to investigate the
heterogenous pathology in ASD. Müller et al18 described one of the
first applications of meta-analysis to infer the function of brain

regions affected by depression; more recently, behavioural time
series were constructed to investigate brain disruptions in ASD.19

Other methods exist, but we distinguish behavioural profiling
from other forms of quantitative reverse-inference in how it repre-
sents the diversity of function for a given region, rather than the
behavioural domains that most significantly activate a region.
This is reflected in how the computed proportion of a behavioural
domain’s involvement in a behavioural profile is dependent on
the proportions of other behavioural domains. Thus, the mappings
of behaviour to brain regions in a behavioural profile reveal func-
tional biases, and the range of functional biases speak to the func-
tional capacity of underlying neural computations. We chose to
use hyperconnectivity and hypoconnectivity differences to
account for the relationships among connectivity, regional compu-
tations and behaviour. A combination of hyperconnectivity and
hypoconnectivity has been a repeated finding in the ASD litera-
ture.20 The present work sought to disentangle how brain regions
contribute to pathology. Connectivity abnormalities can sometimes
be associated with certain cognitive effects, such as hyperconnectiv-
ity being associated with hypersensitivity21 and the relative
decreased connectivity implied by hypoconnectivity being asso-
ciated with relative decreased social cognitive ability.22 Instead, we
found visual/sensory functional bias in hypoconnected regions
and social functional bias in hyperconnected regions. The results
indicate a potential role for hyperconnectivity in driving ASD
repetitive behaviours (execution), social cognitive deficits (social),
language deficits (speech) and other cognitive deficits (memory,
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extend indicates the proportion of the brain region’s involvement in the behavioural domain. The behavioural profiles visualise the overrepresented behavioural domains in each
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attention, reasoning); and a role for hypoconnectivity in driving
ASD repetitive behaviours (execution) and sensory hypersensitivity
(vision). The manner in which underlying brain computations are
affected may not be entailed by the directionality of the connectivity
deficit (hyper versus hypo), which emphasises the utility of quanti-
tative reverse inference methods such as behavioural profiling in
potentially dissociating features of connectopathies.

Anderson et al’s4 findings of brain region functional diversity
additionally challenged computational compartmentalisation theor-
ies of functional brain architecture, which are increasingly falling out
of vogue. A computational framework based on functional diversity
of brain regions may be useful for understanding a wide variety of
neurodevelopmental disorders. In this framework, underlying brain
computations are functionally biased by the brain region in which
they are located, but the computations are flexible in that they can
be recruited for various tasks. Computational reuse accounts for
functional diversity and processing biases, as computations can be
recruited for tasks in a variety of domains while also exhibiting
domain-preferences (i.e. biases) that reflect the tasks that the brain
regions are ‘best at computing’. Anderson23 (p. 59) has described
learning as a process by which the brain finds which brain regions
are best at computing certain tasks; these brain regions are more
likely to be recruited for those tasks and task-based networks
because of their functional biases. Functional biases demonstrate
how computationally biased a brain region is for a certain behav-
ioural domain, and tasks are therefore more often carried out via
brain regions suited to the task’s behavioural domain.

The computational reuse framework has important implica-
tions for features of neurodevelopmental disorders, and the behav-
ioural profiling approach provides novel insights into
computational reuse. The multicausality, multifinality and trans-
diagnostic features of neurodevelopmental disorders can be
accounted for in the framework. Multicausality reflects the conver-
gence of causal factors on common functional features of neurons or
neuron populations, thereby creating computation-specific func-
tional abnormalities. Multifinality, or behavioural heterogeneity,
as seen in ASD, could reflect individual differences in functional
biases of affected brain regions or could reflect computational
comorbidity, in which a single causal factor affects core computa-
tions of behaviours affected in ASD, while also affecting a variety
of other computations. Overlapping etiology24–26 and brain abnor-
malities27–30 across neurodevelopmental disorders may reflect
common computational deficits that are evident in common behav-
ioural deficits. The computational context of functional brain
abnormalities will be valuable for describing these features of neu-
rodevelopmental disorders, and the behavioural profiling method
described here allows fMRI experimental paradigms to give compu-
tational context to determined functional abnormalities. The
method can quantify the degree to which the determined affected
brain regions are computationally relevant to behaviours affected
by the disorder. Other methods have incorporated task-based neu-
roimaging data to either establish ROIs a priori31 or to determine
behaviours most related to affected ROIs;32 however, the behav-
ioural profiling method paradigmatically differs from the aforemen-
tioned methods in how it treats ROIs. An ROI is treated as a ‘black
box’ that can only be analysed by its functions, and the behavioural
profile of the ROI is not merely a probabilistic inference of the ROI’s
connection to behaviour but rather a holistic description of the
black box’s intrinsic functional capacities. For any ROI, healthy
subject data can be used to describe the brain-to-behaviour relation-
ship in terms of a behavioural profile. Applying a computational
reuse framework, the ROI performs some unknown (i.e. black
box) neural computation that is most relevant to certain behaviours.
If this brain region is affected in a disorder, the neural computation
is also likely to be affected. Therefore, by characterising ‘unhealthy’

ROIs with healthy participant data, we are indirectly characterising
the healthy neural computations that are disrupted in a disorder.
From there, it would be coherent that the neural computations,
through behavioural profiling, suggest an important role for beha-
viours known to be affected by the disorder.

This behavioural profiling method uses meta-analytic data
derived from a sample of typical/healthy brains. One might argue
that brain region-to-behaviour assumptions may not be valid in
patients with brain disorders and therefore this step should focus
on using meta-analytic data from disordered brains. However,
using ROIs based on meta-data from healthy brains actually allows
for the characterisation of the cognitive functions that the disrupted
regions should be engaged in. That is, if we assume that atypical
behaviours and cognitive functions in developmental disorders are
due to abnormal use of a given brain region, it follows that abnormal-
ities will occur in regions typically associated with behaviours
affected by the disorder. By finding which regions with functional
abnormalities are most relevant to the disorder in this manner, the
connections among the biological, computational and functional
(as seen at the fMRI level) manifestations of causal factors can be
made clearer. Thus, this behavioural profiling method may be espe-
cially useful when the condition studied is heterogeneous across
patients. Shared computational disruptions can be reflected in
behavioural profiles of shared connectivity disruptions.

Limitations

Although there may be biases in the type of meta-data reported to
BrainMap, we consider the database to provide a large enough
sample for behavioural domain meta-data to enable comparisons
of the degree of meta-data related to certain brain regions to be
validly compared to that of the whole brain. In addition, the 30
behavioural domains used for the brain region descriptions were
chosen to include as much meta-data as possible without domain
overlap, again with the intent of allowing valid statistical compari-
son of brain region sample meta-data with whole-brain sample
meta-data. The multidimensional behavioural domain vector was
adapted from the published work of Anderson and colleagues,4

who also employed statistical comparisons between behavioural
profiles. Healthy participant meta-data with no age restriction
were used because of the ubiquity of the data, especially in compari-
son with the relatively sparse ASD meta-data within the database.
We assumed that the gross localisation of functional brain architec-
ture was comparable between typically developed individuals and
individuals with ASD and among individuals of different ages
when employing the behavioural profiling method, but it may be
interesting to investigate the developmental trajectories of brain
regions’ behavioural profiles in future work.

There were a considerable number of zero-occurrence events in
constructing the ROIs’ behavioural profiles. However, there was
only one behavioural domain in the hyperconnected text files (fed
into ALE) and one in the hypoconnected text files for which there
were no experiments listed. Therefore, most of the zero-occurrence
cases were not because of a lack of data but because there were zero
positive ALE values in the behavioural domain ALE maps; this was
because either the cluster-level FWE ALE did not find any signifi-
cant clusters, or the significant clusters were outside the ROI
being investigated (e.g. hyperconnected cluster 1). The smoothing
procedure makes estimates of functional bias more conservative,
adding to the validity of the functional bias estimates when zero-
occurrence cases were present.

Future directions

Methods including regional homogeneity, between-ness centrality
of nodes, seed-based analysis, independent component analysis

Snyder & Troiani

6



(ICA)-dual regression, resting network and task network correl-
ation and graph theory have been applied to understand ASD
brain function, all giving different perspectives on the neural mani-
festation of ASD.21 As each method has varying implications for
what drives group-level differences in the brain, behavioural profil-
ing of functional differences as revealed by different methods can
further connect pathology to behaviour. Future work may extend
the frameworks of behavioural profiling and computational reuse
to the individual level. Anderson33 suggested analyses of individual
person’s brain region profiles over time as a way to investigate devel-
opmental trajectories, for example. Innovative methods that take
advantage of meta-analytic databases will be useful for the contin-
ued characterisation of ASD and other conditions at the group
and individual levels.
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