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Abstract: Dyslipidemia is characterized by increasing plasma levels of low-density lipoprotein-
cholesterol (LDL-C), triglycerides (TGs) and TG-rich lipoproteins (TGRLs) and is a major risk factor
for the development of atherosclerotic cardiovascular disorders (ASCVDs). It is important to un-
derstand the metabolic mechanisms underlying dyslipidemia to develop effective strategies against
ASCVDs. Angiopoietin-like 3 (ANGPTL3), a member of the angiopoietin-like protein family ex-
clusively synthesized in the liver, has been demonstrated to be a critical regulator of lipoprotein
metabolism to inhibit lipoprotein lipase (LPL) activity. Genetic, biochemical, and clinical studies
in animals and humans have shown that loss of function, inactivation, or downregulated expres-
sion of ANGPTL3 is associated with an obvious reduction in plasma levels of TGs, LDL-C, and
high-density lipoprotein-cholesterol (HDL-C), atherosclerotic lesions, and the risk of cardiovascular
events. Therefore, ANGPTL3 is considered an alternative target for lipid-lowering therapy. Emerging
studies have focused on ANGPTL3 inhibition via antisense oligonucleotides (ASOs) and monoclonal
antibody-based therapies, which have been carried out in mouse or monkey models and in human
clinical studies for the management of dyslipidemia and ASCVDs. This review will summarize
the current literature on the important role of ANGPTL3 in controlling lipoprotein metabolism and
dyslipidemia, with an emphasis on anti-ANGPTL3 therapies as a potential strategy for the treatment
of dyslipidemia and ASCVDs.
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1. Introduction

Dyslipidemia is often characterized by increases in low-density lipoprotein-cholesterol
(LDL-C), triglycerides (TGs), and TG-rich lipoproteins (TGRLs) levels in circulation and
is associated with obesity, type 2 diabetes, and metabolic syndrome. This condition is a
major risk factor for the development of atherosclerotic cardiovascular diseases (ASCVDs)
and myocardial infarction (MI) [1,2]. Although the pharmacological reduction of LDL-C by
statins, ezetimibe, or PCSK9 inhibitors could effectively treat ASCVDs, a notable residual
risk remains, and these disorders are still the leading cause of death in industrialized
societies [3–5]. In addition, the efficacy of therapeutic medication for LDL-C-lowering
agents is poor in patients with familial hypercholesterolemia-related mutations affecting
functional LDL receptors. Therefore, in addition to reducing LDL-C levels, exploring
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novel molecular targets of dyslipidemia therapy is ongoing (Figure 1). Recently, new
pharmacological approaches for CVD treatment have focused on the regulation of plasma
TGRLs, which carry dietary and synthesized TGs, cholesterol, and cholesterol ester in
blood vessels [1,6].
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Figure 1. The pharmacological targets of current or potential lipid-lowering agents for dyslipidemia therapy. ACL,
ATP-citrate lyase; ANGPTL3, angiopoietin-like protein 3, Apo(a), Apolipoprotein(a); ApoC-III, Apolipoprotein C-III;
ASO, antisense oligonucleotides; CM, chylomicrons; HDL, high-density lipoproteins; HMG-CoA, 3-hydroxy-3-methyl-
glutaryl-coenzyme A; HMGCR, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; IDL, intermediate-density lipoprotein;
LDL, low-density lipoproteins; LDLR, low-density lipoprotein receptor; LPL, lipoprotein lipase; Lp(a), lipoprotein (a);
NPC1L1, Niemann-Pick C1-like 1 protein; PCSK9, proprotein convertase subtilisin/kexin type 9; VLDL, very-low-density
lipoproteins. The approaches for inhibition of targets in lipid/lipoprotein metabolism are highlighted in the boxes (created
with BioRender.com, accessed on 2 July 2021).

TGRLs are envisioned to play essential roles on the progression of ASCVDs [6]. Vari-
ants of gene mutations in TGRL metabolism with high TG concentration in plasma exhibits
strong correlation with magnitude of ASCVD risk [7]. TGs are present in the core of TGRLs,
which encompass a mixture of chylomicrons and very-low-density lipoprotein (VLDL)
particles, and their lipolytic remnants. The TGs could be hydrolyzed to free fatty acids
by lipoprotein lipase (LPL), which is anchored on the luminal surface of capillaries [8].
When LPL-mediated TGs hydrolysis is impeded, accumulation of substrate TGRL particles
in plasma occurs. Regulation of LPL activity represents an ideal strategy to prevent or
treat hypertriglyceridemia and ASCVDs [9]. Recently, angiopoietin-like 3 (ANGPTL3), a
member of the angiopoietin-like protein (ANGPTL) family, is shown to inhibit LPL activity
and be involved in the regulation of lipoprotein metabolism. Thus, ANGPTL3 is considered
a promising pharmacological target for treatment of dyslipidemia [10,11]. In this article,
we review the current understanding of ANGPTL3, focusing on its role in the modula-
tion of lipoprotein metabolism, dyslipidemia, and cardiovascular events, and discuss its
application as a therapeutic target for the treatment of dyslipidemia and ASCVDs.

2. Molecular Features of ANGPTL3

Angiopoietin-like proteins (ANGPTLs) are a family of secreted glycoproteins com-
prising eight members (ANGPTL1–8). ANGPTLs possess high homology to angiopoietins,
which are critical regulators of angiogenesis. However, ANGPTLs could not interact with
the angiopoietin receptors Tie1 and Tie2 on the endothelium [12]. Among these ANGPTL
members, ANGPTL3, ANGPTL4 and ANGPTL8 share high sequence homology and are
involved in the regulation of LPL activity and TGRL metabolism. Current studies in
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murine models have suggested that ANGPTL3 is a better pharmacological target than
ANGPTL4 for the treatment of dyslipidemia and atherosclerosis [13–15]. ANGPTL8 acts in
concert with ANGPTL3 to inhibit LPL activity and reduce hydrolysis of TGs in capillaries
of muscles and adipose tissue [16].

2.1. Discovery of ANGPTL3

In 1999, based on the EST databases, Conklin et al. cloned and identified an angiopoie-
tin-like gene, ANGPTL3 [17]. The effect of ANGPTL3 on lipid metabolism was identified
by studying the mutations associated with the hypolipidemic phenotype in KK/San mice
(a sub-strain of KK obese mice) [18]. Compared with wild-type KK mice, KK/San mice
possess a 4-bp insertion in exon 6 of the ANGPTL3 gene, which introduces a premature
stop codon, given the low mRNA levels of ANGPTL3 in these mice. Both overexpression
through adenovirus-mediated ANGPTL3 gene transfer and injection of the recombinant
ANGPTL3 protein in KK/San or C57BL/6J mice could raise the plasma levels of total
cholesterol, TGs, and non-esterified fatty acids (NEFA) in these mice [18]. These data indi-
cated that ANGPTL3 is responsible for hypolipidemia and could regulate lipid metabolism
in vivo.

2.2. The Structural Features of ANGPTL3

ANGPTL3 is a 70 kDa glycoprotein principally expressed and secreted by hepato-
cytes. The protein structure of ANGPTL3 is comprised of a 460-amino-acid polypeptide
with the characteristic structure of angiopoietins, such as a signal peptide with 16 amino
acid residues, an N-terminal coiled-coil domain, a linker region, and a fibrinogen-like
C-terminal domain [19,20] (Figure 2). ANGPTL3 can be cleaved at amino acid residues
221RAPR224↓TT226 within the linker region to yield an N-terminal coiled-coil region and
a C-terminal fibrinogen-like domain by the proprotein convertase furin (also known as
PCSK3) in hepatocytes and by the PACE4 protein (also known as PCSK6) through extracel-
lular cleavage [19,21]. The cleaved N-terminal region of ANGPTL3 could increase plasma
TG levels in animal studies and has been found to interact with LPL and endothelial lipase
(EL) to inhibit their catalytic activities and TG lipolysis [22–24], suggesting that the coiled-
coil domain of ANGPTL3 is critical for its activation in vivo. Both a full-length protein and
a cleaved N-terminal form of ANGPTL3 were found to circulate in plasma. This truncated
ANGPTL3 was found to increase the inhibitory effect on EL but not LPL, indicating that
furin-mediated cleavage of ANGPTL3 is more important for EL inhibition [25].
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Figure 2. The structural features of ANGPTL3 protein. ANGPTL3 is composed of a signal peptide
(SP), an N-terminal coiled-coil domain (CCD) involved in a specific epitope 1 (SE1) for LPL binding
and inhibition, a linker region (LR), and a C-terminal fibrinogen-like domain (FLD) with angiogenic
properties. The amino acid residues 221RAPR224↓TT226 within the LR could be cleaved by furin to
yield a N-terminal CCD and a C-terminal FLD in hepatic cells (created with BioRender.com, accessed
on 2 July 2021).
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In addition to protein cleavage, ANGPTL3 undergoes O-linked glycosylation by liver-
expressed N-acetylgalactosaminyltransferase 2 (GalNAc-T2), encoded by GALNT2 [26].
The glycosylation at the threonine 226 residue (T226) by GalNAc-T2 is adjacent to the
cleavage site of proprotein convertase in ANGPTL3, and this glycosylation hinders protein
processing at arginine (R224) [27,28]. These findings suggest that GalNAc-T2-mediated
O-glycosylation could modulate ANGPTL3 activation and plasma TG levels.

2.3. The Expression of ANGPTL3

The human ANGPTL3 gene is located on chromosome 1p31.1 and is expressed mainly
in the liver at the early stage during liver development, and its expression is maintained in
adults [17]. The expression of ANGPTL3 is mainly controlled by the transcription factors
liver X receptor-α (LXRα) and hepatocyte nuclear factor-1α (HNF-1α). The ANGPTL3
promoter contains an LXR response element (LXRE). The synthetic LXR agonist T0901317
could increase promoter activity and augment ANGPTL3 mRNA and protein expression
in hepatic cells [29–31]. In animal studies, treatment of mice with T0901317 promoted TGs
accumulation in the liver and plasma, which was accompanied by increases in hepatic
lipogenic gene and ANGPTL3 expression. However, in ANGPTL3-null mice, an LXR
agonist could not induce hypertriglyceridemia but did induce the accumulation of TGs
in the liver [30]. These findings suggest that the ANGPTL3 gene is a direct target of LXRα
and that hypertriglyceridemia associated with LXR activation is due to overexpression of
hepatic ANGPTL3.

Fugier et al. reported that ANGPTL3 mRNA was markedly reduced by approximately
70% in a thyroid hormone receptor (TRβ)-dependent manner after a subcutaneous injection
of thyroid hormone (T3) in hypothyroid rats. In contrast, this inhibitory effect of T3 on
ANGPTL3 mRNA expression was not observed in TRβ-deficient animals. Mutation of the
HNF-1α binding site within the ANGPTL3 promoter completely abolished TRβ-mediated
promoter repression [32]. However, TRβ antagonized HNF-1α without interrupting its
DNA-binding capacity, suggesting that TRβ can sequester a coactivator recruited by HNF-
1α upon the ANGPTL3 promoter. Additionally, several studies have found that other
factors, such as insulin, leptin, and statins, could suppress ANGPTL3 expression in mice
or hepatic cell lines [33–36]. In addition to lipid metabolism, these findings suggest that
ANGPTL3 may also be involved in glucose metabolism in diabetic patients.

3. ANGPTL3 and Lipid Metabolism
3.1. The Function of ANGPTL3 in Lipoprotein Lipase (LPL) Inhibition

The lipoprotein lipase family consists of pancreatic lipase (PL), LPL, hepatic lipase
(HL), and EL. The lipolytic processing of TGRLs by LPL plays a critical role in transporta-
tion and metabolism, providing lipids for fuel or storage. The free fatty acids released
from TGRLs are taken up to generate energy by peripheral tissues such as heart and
muscles or fat storage by adipose tissue [37,38]. Figure 3 shows the role of ANGPTL3
in TGRLs metabolism. LPL is produced and secreted by myocytes and adipocytes and
then attaches to the cell surface through heparan sulfate proteoglycans (HSPGs) [39]. The
protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1
(GPIHBP1) is responsible for the transportation of LPL from the cell surface to the endothe-
lium and flipping into the lumen of capillaries [40,41]. ANGPTL3 functions as an inhibitor
of LPL to suppress the hydrolysis of the TG portion in TGRLs on the capillary endothelium.
The function of ANGPTL3 is enhanced by ANGPTL8 [16]. Studies have shown that the
ANGPTL3 overexpression-mediated increase in plasma TG levels could be attenuated in
the absence of ANGPTL8. During feeding, the action of ANGPTL3 is driven by ANGPTL8,
which forms a functional ANGPTL3/8 complex to enhance the ANGPTL3-mediated in-
hibitory effect of LPL activity [10,42,43]. Recently, Jin et al. reported that ANGPTL3/8
interacts with LPL and promotes furin-mediated LPL cleavage [44]. More insight into the
roles of the ANGPTL3/8 complex and its molecular mechanism of action in LPL inhibition
should be provided in molecular modeling studies in the future.
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Figure 3. Overview of the role of ANGPTL3 in LPL inhibition and TGRL metabolism. Dietary
lipid is transported via the blood as part of TG-rich lipoproteins (TGRLs) such as chylomicrons and
VLDL, and the TGs are hydrolyzed by lipoprotein lipase (LPL). LPL is synthesized by myocytes
or adipocytes and transferred to the cell surface by heparan sulfate proteoglycans (HSPGs). LPL
is further transported to the glycosylphosphatidylinositol-anchored high-density lipoprotein bind-
ing protein 1 (GPIHBP1) upon the capillary endothelium. ANGPTL3 and ANGPTL8 proteins are
produced and secreted by the liver. The ANGPTL3 protein alone or forming a functional complex
with ANGPTL8 could markedly inhibit LPL activity (created with BioRender.com, accessed on
2 July 2021).

ANGPTL3 also exerts its action in adipose tissue and muscles. In adipose tissue,
ANGPTL3 activates lipolysis, increasing the release of free fatty acids and glycerol from
adipocytes. Wang et al. reported that ANGPTL3 plays a critical role in promoting the
uptake of VLDL into white adipose tissue (WAT) and regulating energy homeostasis in the
feeding state [45]. In Angptl3-/- mice, the uptake of glucose into WAT and insulin sensitivity
are elevated, resulting in conversion to fatty acids in WAT [45]. ANGPTL3 also inhibits LPL
activity in muscles and elevates TGRL levels in circulation. In the feeding state, ANGPTL8
is induced, and the ANGPTL3/8 pathway is activated to inhibit LPL in cardiac and skeletal
muscles, resulting in TG absorption by WAT [46]. These findings reveal the important role
of ANGPTL3 in regulating LPL activity for energy substrate storage and utilization in WAT
and muscle.

3.2. The Genetics of ANGPTL3 in Plasma Lipids

Several genetic studies support the critical role of ANGPTL3 in the regulation of
plasma TGs in humans. By genome-wide association studies (GWAS), three single-
nucleotide polymorphisms (SNPs), rs12130333, rs1748195, and rs2131925, at specific
chromosomal loci near the ANGPTL3 gene were linked to TG levels [47,48]. ANGPTL3
rs12130333 is also markedly associated with Fredrickson hyperlipoproteinemia type 5,
which is characterized by hyperlipidemia with high levels of chylomicrons and VLDL
in plasma [49]. By exon sequencing analysis, a multiethnic sample of 3551 individuals
from the Dallas Heart Study identified multiple loss-of-function nonsynonymous (NS)
mutations in the ANGPTL3 gene that were associated with low TG levels in plasma but
not with other metabolic phenotypes. Functional studies of these NS variants in HEK293A
cells showed that several mutant alleles of ANGPTL3 strongly attenuate the secretion of
the protein or its activity for inhibiting LPL [50]. Another study by exome sequencing of
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15,994 genes from two individuals of a family with hypobetalipoproteinemia identified two
novel compound heterozygotes carrying the loss-of-function mutations S17X and E129X
in the first exon of ANGPTL3 [51]. There are almost no ANGPTL3 proteins, and very low
plasma LDL-C and TG levels can be detected in these two carriers. The S17X mutation in
ANGPTL3 resulting in familial hypobetalipoproteinemia was first reported in an Italian
family in 1991 [52]. Individuals homozygous for S17X have almost no detectable ANGPTL3,
notably higher LPL activity, and an obvious reduction in lipid levels in their plasma. The
ANGPTL3 S17X mutation is not associated with any changes in hepatic and endothelial
lipase activities [53–55]. In the DiscovEHR human genetics study by exon sequencing
of ANGPTL3 in 58,335 participants, individuals carrying heterozygous loss-of-function
mutations in ANGPTL3 had markedly lower serum levels of TGs, HDL-C, and LDL-C
than participants without these mutations [56]. Several studies have also demonstrated
that homozygous or compound heterozygous variants encompassing nonsense, missense,
splicing, and frameshift mutations in ANGPTL3 gene cause familial combined hypolipi-
demia [57–61]. Notably, no evidence was found of an association between the risk of liver
abnormalities or CVD and familial combined hypolipidemia [53].

In addition to lowering TGs, ANGPTL3 homozygous variants were found to strongly
reduce the levels of plasma total cholesterol, LDL-C and HDL-C [62]. In a meta-analysis
of 21,980 patients with CVD and 158,200 control individuals, the results showed that
total cholesterol and LDL-C levels were notably lower in carriers with loss-of-function
mutations in ANGPTL3; however, HDL-C was not significantly different between carriers
and noncarriers [58]. These data are consistent with the results from a GWAS, which found
no association between mutations in the ANGPTL3 gene and plasma HDL-C concentration,
suggesting that ANGPTL3 may not be involved in the regulation of plasma HDL-C levels
in humans. These findings suggest that mutations in ANGPTL3 differentially affect lipid
metabolism. It is possible that the diverse effects of ANGPTL3 on the different lipoproteins
and cholesterol levels may be conferred by distinct functional domains in the ANGPTL3
protein. In addition to affecting the levels of plasma TGs and cholesterol, low NEFA levels
were found in individuals with loss-of-function mutations in ANGPTL3 in a mouse study,
suggesting that ANGPTL3 could regulate plasma NEFA levels and lipolysis in adipose
tissue [54]. These genetic data strongly link the antagonism of ANGPTL3 in humans to
reduced levels of plasma lipids and decreased risk of CVD.

3.3. ANGPTL3 and Atherosclerotic Cardiovascular Disorders (ASCVDs)

Emerging evidence reveals that elevated plasma LDL-C and TG levels play essential
roles in the development of ASCVDs. Modulation of LDL-C and TG levels may effectively
control the progression of ASCVDs [58,63]. Individuals carrying loss-of-function mutations
of ANGPTL3 or mice with ANGPTL3 deficiency had decreased plasma levels of LDL-C, TGs,
and TGRLs, suggesting that downregulation of ANGPTL3 expression may lead to a low risk
of ASCVDs in humans. ANGPTL3 deficiency was found to be associated with lower odds
of ASCVDs. In an analysis of 13,102 individuals with CVDs, carriers with loss-of-function
mutations in ANGPTL3 had an approximately 40% lower risk of CVDs than noncarriers
in humans [56]. In a mouse study, the authors also further found that treatment with a
monoclonal antibody, evinacumab, for antagonism of ANGPTL3 was associated with a
significant reduction in plasma TG and cholesterol levels as well as atherosclerotic plaques
in the aortic root [56]. These data reveal a correlation between ANGPTL3 and the risk of
ASCVDs. In a cohort-based meta-analysis study, a 34% reduced risk of CVDs was found
among carriers of an ANGPTL3 loss-of-function mutation compared with noncarriers,
indicating that ANGPTL3 might influence the progression of CVDs [58].

4. Pharmacological Inactivation of ANGPTL3

The notable effect of ANGPTL3 on lipid metabolism has sparked interest in ANGPTL3
as a molecular target for the prevention or treatment of dyslipidemia and ASCVDs. To
date, three strategies for inactivation of ANGPTL3, antisense oligonucleotides (ASOs) [64],
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a monoclonal antibody (evinacumab) [56,65], and CRISPR-Cas9 genome editing technol-
ogy [66–68], have been proposed (Figure 4). ANGPTL3 ASOs and evinacumab could
decrease lipid levels both in animal models and in clinical trials in patients affected by
homozygous familial hypercholesterolemia. In vivo genome editing by the CRISPR-Cas9
approach (namely, Base Editor 3, BE3) is based on an innovative mechanism to introduce
mutations in ANGPTL3 and has been demonstrated to reduce lipid levels in mice. The
efficacy and safety of this therapeutic strategy remain unclear and need to be investigated
in further studies [69].
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(such as Evinacumab), antisense oligonucleotides (such as Vupanorsen), and a CRISPR genome
editing system (such as base editor 3, BE3) for treatment of dyslipidemia. The development of oral,
small-molecule inhibitors may serve as a novel pharmacological approach for ANGPTL3 inactivation
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4.1. ANGPTL3 ASOs as a Lipid-Lowering Therapy

ASOs targeting ANGPTL3 mRNA have been developed as inhibitors and have been
studied in mice and humans [64,70]. In animal studies, ANGPTL3 ASOs showed limited
efficacy in normocholesterolemic mice, whereas in hypercholesterolemic models with
different lipid backgrounds, including Ldlr−/−, ApoC3−/− Ldlr−/− and ApoC3+ Ldlr−/−

mice, ANGPTL3 ASOs effectively decreased the levels of hepatic ANGPTL3 mRNA and
plasma ANGPTL3 protein, resulting in marked reduction of plasma TGs, LDL-C and,
to a lesser extent, HDL-C levels. In addition, ANGPTL3 ASOs have found to reduce
atherosclerotic progression in Ldlr−/− mice. ANGPTL3 ASOs reduced hepatic steatosis
and improved insulin tolerance in diet-induced obese mice [64]. In a phase I clinical trial,
the effect of ANGPTL3 ASOs was examined in 44 healthy male and female adults (age
18–65 years). A single subcutaneous injection of ANGPTL3 ASOs (80 mg) effectively re-
duced ANGPTL3, TGs, VLDL, non-HDL-C, and total cholesterol in plasma. Multiple-dose
injection of ANGPTL3 ASOs (0–60 mg/week) for 6 weeks resulted in a dose-dependent
reduction in plasma levels of ANGPTL3, TGs, non-HDL-C, and APOC3, which returned to
normal after cessation of ASOs administration [64]. These studies reveal that ANGPTL3
ASOs effectively ameliorate plasma lipoproteins and atherosclerosis in mice and humans.

4.2. ANGPTL3 Monoclonal Antibody as a Lipid-Lowering Therapy

Evinacumab, a fully human monoclonal antibody that specifically binds to ANGPTL3,
has been developed and proven to reverse ANGPTL3-mediated inhibition of LPL activity
in vitro and in vivo [71]. In preclinical animal studies, evinacumab increased post-heparin
LPL activity and reduced plasma levels of TGs, LDL-C and HDL-C in normolipidemic
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and hyperlipidemic mice. Similar effects on the plasma lipid profile were also found in
cynomolgus monkeys with dyslipidemia, except that the LDL-C levels were unchanged [71].
In the hypercholesterolemic APOE*3Leiden CETP mice, evinacumab markedly reduced
atherosclerotic lesions, concomitant with a significant reduction in plasma levels of TGs,
VLDL and total cholesterol [56].

In a phase I clinical trial in human volunteers administered both intravenous and
subcutaneous injection of evinacumab, researchers found that evinacumab-mediated inhi-
bition of ANGPTL3 was associated with a dose-dependent reduction in plasma levels of
TGs [56]. Evinacumab also reduced plasma LDL-C (−23.2%) and HDL-C (−18.4%) levels,
although the decreases in these lipoproteins were much less pronounced than those in
TGs (−76%) [56]. Based on data from two phase I studies, Ahmad et al. reported that
evinacumab could reduce TGs and other lipids by ANGPTL3 inhibition in healthy human
volunteers and in the hypertriglyceridemic subjects [72]. In a phase II trial of ANGPTL3 in-
hibition involving 9 patients with homozygous familial hypercholesterolemia, evinacumab
treatment resulted in a mean reduction from baseline of 49% in the LDL-C level. In a
phase III clinical trial, researchers randomly assigned 65 patients with homozygous familial
hypercholesterolemia who were treated with a maximum dose of lipid-lowering medi-
cations to receive an intravenous injection of evinacumab (15 mg/kg) or placebo every
4 weeks. The outcome at 24 weeks of treatment showed decreases in plasma LDL-C levels
from baseline of 49% in the evinacumab group [73]. These clinical studies indicate that
pharmacological inactivation of ANGPTL3 shows efficacy and several potential benefits in
patients with dyslipidemia.

5. Conclusions

Genetic, functional, and pharmacological studies have led to the conclusion that
antagonizing or inhibiting ANGPTL3 could effectively enhance LPL and EL activity, mod-
ulate TG-rich lipoproteins and lipid metabolism, and reduce the risk of cardiovascular
events. However, several questions regarding the role and regulation of ANGPTL3 in
lipid metabolism remain to be clarified. How can inhibition of ANGPTL3 lead to reduced
plasma LDL-C levels? One possibility is that inhibition of ANGPTL3 promotes VLDL
clearance or decreases VLDL secretion [24], thereby reducing the conversion of VLDL to
LDL, resulting in decreased LDL-C levels. This assumption needs to be verified. How can
ANGPTL3 affect lipolysis in adipose tissue and the release of fatty acids? The molecular
mechanisms and potential receptors of ANGPTL3 involved in adipose tissue lipolysis
need to be investigated to clarify this point. In addition to the TG-lowering effect, the
outcome of clinical trials is related to the role of ANGPTL3 in controlling plasma levels
of LDL-C and total cholesterol. Traditional lipid-lowering therapies such as statins and
PCSK9 monoclonal antibodies are dependent on LDL receptor (LDLR) expression. The
cholesterol-lowering effect of ANGPTL3 has raised interest in ANGPTL3 as a target for
the treatment of patients with hypercholesterolemia that show little response to traditional
therapies or have no LDLR activity. To date, the absence of oral and affordable low molecu-
lar weight ANGPTL3 inhibitors has limited the beneficial effect of these new medications.
The epitope of ANGPTL3 targeted by evinacumab remains unclear. Understanding the
structure of the binding region of this monoclonal antibody by molecular modeling analysis
may help to develop small-molecule inhibitors of ANGPTL3. The rational design of oral,
small molecules as ANGPTL3 inhibitors may serve as a novel pharmacological approach
for the treatment of dyslipidemia.
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