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Abstract: Over the last decade, there has been considerable and increasing interest in the development
of Active and Assisted Living (AAL) systems to support independent living. The demographic change
towards an aging population has introduced new challenges to today’s society from both an economic
and societal standpoint. AAL can provide an arrary of solutions for improving the quality of life of
individuals, for allowing people to live healthier and independently for longer, for helping people
with disabilities, and for supporting caregivers and medical staff. A vast amount of literature exists
on this topic, so this paper aims to provide a survey of the research and skills related to AAL systems.
A comprehensive analysis is presented that addresses the main trends towards the development of
AAL systems both from technological and methodological points of view and highlights the main
issues that are worthy of further investigation.

Keywords: active assisted living; wearable sensors; smart objects; environmental sensors; data
collection; methodologies for data analysis

1. Introduction

In the last decade, smart environments have found wide application in several contexts,
such as domotic, education, rehabilitation, assistance, and so on. Structuring classroom
environments with new technologies makes learning more attractive, as well as providing
support for teaching people with disabilities [1]. Similarly, new technological devices pro-
vide more specific tools and support for the rehabilitation of people with impairment [2,3].
In the context of home automation, the deployment of new technologies can improve
the quality of daily life, provide easy access to many functions remotely, or allow the use
of natural interfaces, such as gestures and voice, in order to control lighting, climate,
entertainment systems, and appliances [4,5].

Contextually, a new need has recently emerged: as the population ages, new policies,
systems, and technologies for supporting healthy aging are needed [6]. Aging leads to
gradual physical decay, which increases the dependency on other people. Starting from
this consideration, two different aspects can be examined. On the one hand, new technolo-
gies can be used to monitor older people in order to reduce daily physical assistance and
prolong their autonomous life. In this context, medicine and diet adherence, sleep moni-
toring, or fall detection are some of the main issues that are to be considered and tackled.
On the other hand, monitoring people who are not yet very old and that do not suffer from
particular pathologies is strategic for the purpose of detecting eventual lifestyle changes
and suspicious behaviors that could warn of the onset of neurodegenerative diseases at
a very early stage.

In gerontology literature, the decrease in physical activity is considered to be strictly
correlated with ageing, and it is associated with low social function, depression, and cog-
nitive decline [7]. A focus on physical, social and cognitive activity is needed in order

Sensors 2021, 21, 3549. https://doi.org/10.3390/s21103549 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1562-0467
https://orcid.org/0000-0002-5599-903X
https://orcid.org/0000-0001-6151-8653
https://orcid.org/0000-0001-9456-7590
https://orcid.org/0000-0003-1473-7110
https://www.mdpi.com/article/10.3390/s21103549?type=check_update&version=1
https://doi.org/10.3390/s21103549
https://doi.org/10.3390/s21103549
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103549
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3549 2 of 22

to promote active and healthy ageing, and to permit people to live independently for
longer [8]. Active Assisted Living (AAL) technologies can intervene to help elderly people
in the different stages of aging. Indeed, AAL is intended to develop innovation in order to
keep people connected, healthy, active, and happy into their old age. It concerns the devel-
opment of products and services that make a real difference to people’s lives, for those who
face some of the challenges of ageing and those who care for older people who need help.

In recent years, a growing body of literature has examined the state of the art of AAL
domain by different points of view. In [9,10], the authors focused on the technologies for
Activity Recognition in Smart Home. In [11], a review of the literature on mobile technology,
such as smartphones, smartwatches, and wristbands, is presented, which describes how
these wearable technologies can be used to promote an active lifestyle. Non-wearable
(i.e., ambient) technologies are surveyed in [12] for the development of various elderly
care systems, whereas IoT Wearable Sensors are reviewed in [13,14]. In [15], video-based
technologies have been reviewed. The AAL system requirements and implementation
challenges examining the existing Reference Models and Reference Architectures, from
an architectural point of view, are investigated in [16], which highlight both the quality
attributes and critical issues.

This paper surveys the recent literature on AAL systems from a different perspective,
with the aim of providing an exhaustive exploration of contexts, technologies, and existing
approaches to figure out the actual needs for developing a complete AAL system. In recent
years, as the great technological progress has led to the spread on the market of several kinds
of sensors, many papers and research projects have been presented. In this paper, a selection of
the more recent published works has been discussed while considering the application contexts,
the potential users, and the functionalities of the proposed systems, as well as the technologies
and methodologies that are used for their development. The referenced papers have been
selected by searching the main bibliographic databases, including IEEE Xplore, ScienceDirect,
ACM, and open access journals, and considering those that were published in the previous
five years. During the search, some key terms were used, such as “ambient assisted living
technology”, “elderly”, “daily activities”, “smart home”, “ambient sensors”, and “activity
monitoring”, with both AND and OR connectives. The screening method included studies that
more closely met a predefined set of characteristics that are useful for contributing significantly
to the discussion carried out in the paper.

The application context, such as indoor/outdoor environments or private/public
environments, imposes strict constraints on the type of technologies to be used; invasive or
not, with short or long range distance, and so on. Indeed, the use of different sensors can
greatly change the parameters that can be observed. In addition, the category of people
to be monitored certainly influences the choice of the technology: people with diseases,
people with disabilities, healthy people, and so on. The choice of the methodology for data
processing is undoubtedly an additional fundamental aspect involved in the development
of AAL systems. There exist several methodologies in the literature, having different
peculiarities depending on the complexity of the AAL system output. This, in fact, can
vary from a simple alarm, alerting when parameters are out of range, to the classifica-
tion of complex behaviors that were carried out from the observation and correlation of
the temporal sequences of parameters. The aim of this review is to provide an overview of
the main issues that are related to the development of a complete AAL system, to highlight
the choices that need to be made in terms of sensors and methodologies, in order to realize
systems that implement different functionalities, with different target users, and in different
possible environments.

The rest of this paper is organized, as follows. In Section 2, different application
contexts are considered that focused on the main requirements needed for parameter
observation. Section 3 illustrates a panoramic survey of the different sensory technologies.
Section 4 presents the methodologies for data analysis and decision making. Finally,
a critical discussion is provided in Section 5 to determine the main points to address
in future research.
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2. Application Contexts

The design and development of an AAL system involve different aspects that can
be summarized in three principal words: who, where, and what. Target people are
persons with different abilities and skills that have to be monitored by the system (who).
The application contexts vary from indoor to outdoor environments and, hence, involve
different solutions from both the technological and methodological points of view (where).
Finally, an AAL system implies a wide range of functionalities that span from simple alerts
when dangerous events happen, to more complex behavioral analysis (what). Figure 1
outlines these aspects in a sketch and they are described in the following sections.

Figure 1. Fundamental aspects to be considered in the design and development of an AAL system:
possible users (who?), environments (where?), and functionalities (what?).

2.1. Target Users

AAL systems are principally targeted to elderly adults, aiming maintain continuous
support and prolong their autonomous life in an active and healthy way. Medical stud-
ies have categorized elderly people into three different classes, depending on their age:
those between the ages of 65 and 74 years are classified as youngest-old, those between 75
and 84 years old as middle-old, and those aged over 85 years as oldest-old [17]. For all of these
classes of people, health practices are aimed at disease management, at alarm alerting, or at
behavioral change management. In recent years, several applications for diabetes control,
depression treatment, hypertension control, medication adherence, and psychological sup-
port have been developed to allow people to live alone while having the possibility of daily
control over their health status. Alarm alerting applications can save human life, when
critical events, such as falls, prolonged inactivity, or environmental dangers, are detected.
The early detection of behavioral changes is necessary before a notable deterioration of
the basic activities involved in daily living [18]. Scientific studies have pointed out that
the activity levels of people drop significantly when they retire. By the early identifica-
tion of the risk factors of functional decline, this can be prevented in a large portion of
the elderly population at the time of retirement by targeting timely interventions and
reducing the risks. Furthermore, behavioral change applications include monitoring some
dangerous attitudes, such as smoking, calorie intake for diet and exercise, and physical
activity levels.

2.2. Indoor Environments

In the literature, most of the researches focus on AAL systems for indoor environ-
ments. One of the main application contexts related to medical and public health practices
supported by devices that deliver health care services via mobile communication. New
systems and methods have been developed for the continuous monitoring of biological,
behavioral, or environmental data, delivering interventions, and assessing their outcomes.
Through the development of systems collecting data coming from heterogeneous sensors
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and additional self-reported data, new information regarding physiological, psychological,
emotional, and environmental states can be derived.

Indoor environments can be further differentiated in homes [19], where people live
alone or with a few relatives (see Figure 2) and retirement residences, where more people live
together, move in common spaces, perform group or individual activities, and undertake
controlled physical activities [20] (see Figure 3). Health status evaluation can be carried
out by observing people movements, recognizing their actions, evaluating resting periods,
monitoring food intake, and so on. Behavioral analysis can be done by detecting anomalies
while comparing the actual behavior with the expected one [21]. Social activities in a group
or interactions with relatives and friends can also be monitored.

Figure 2. Several types of sensors deployed into the house and attached to devices permit gathering
a variety of data concerning the location of the resident(s), the object(s) they communicate with,
and data related to health conditions (from [19]).

Figure 3. A retirement home (from [20]): heterogeneous sensors can collect data to support the care-
givers in their work, while, at the same time, collect valuable data for the indoor localization of both
residents and caregivers. The system detects a fallen person through the signal sent by the (a,b) Wi-fi
bracelet and alerts (c) the caregiver. The (d) robot assists a (e) bedridden resident requesting help.

2.3. Outdoor Environments

Elderly people spend a number of hours of the day outside the home environment.
Recent studies have pointed out the need for seniors to spend time in outdoor environ-
ments, as they are motivated to be more active not only physically, but also spiritually
and socially [22]. Moreover, outdoor habits, such as walking, shopping, meeting other
people, and performing physical activities, can greatly help in the prevention of functional
decline. If, on one hand, this is widely recognized to be very beneficial for elderly people,
on the other hand it inevitably causes new safety concerns. In outdoor environments,
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elderly people can be exposed to several risks, such as falls or excessive heat or cold.
Furthermore, in the case of people having early symptoms of dementia, wandering and
becoming confused or lost are common risks. In these scenarios, the main objective of AAL
systems is to provide support to elderly people in various aspects, such as in checking
the routes, recognizing anomalous behaviors, evaluating motion activities, and so on.

In recent years, several projects have developed different solutions to expand ambient
assisted systems from indoor spaces to outdoor and public environments, with the aim
of creating different services for improving the wellbeing of people [23]. In general, these
projects gather data from people observations, store them securely, and, by their analysis,
create intervention systems that can be applied for both general or specific monitoring
scenarios. These systems can support elderly people by giving them hints and suggestions
that are based on the analyzed data acquired daily [24,25] in order to slow the progression
of their cognitive and behavioral decline (see Figure 4) [26].

Figure 4. The solution proposed in [26] for activity monitoring in multiple domains of preventive
measures: nutritional guidance, physical exercise promotion, cognitive practice, social activity,
and positive care planning.

3. Technologies

In accordance with the application domains, different technologies can be used for
developing AAL systems, starting from simple IoT devices, to more complex sensor net-
works composed by environmental sensors, intelligent devices, video cameras, and so on.
The variety of technologies automatically implies a greater complexity of data, as they
can change considerably in terms of size, heterogeneity, and sampling frequency. Data
management involves several issues, such as communication protocols, security controls,
energy consumption, failure detection, interoperability among multi vendor devices, and so
on. The aspects concerning privacy and the protection of sensitive data must consider
the legal obligations that may arise whenever a system provides for the collection, storage,
and transmission of data whose misuse can compromise people’s rights and freedoms.
These technical issues are not discussed here, as they fall outside the scope of this re-
view, but their significance is widely recognized for the development of complex AAL
architectures, as extensively documented in literature [27–34].

This section examines the fundamental technologies that are used for people moni-
toring in AAL scenarios. Table 1 resumes the principal technologies applied in various
contexts to create different health assistance tasks. The rapid progress of ICT technologies
has recently made the discovery and deployment of many multi-functional devices possible.
This has widely encouraged the development of effective AAL systems by the combination
of ICT technologies and sensor technologies. Many devices, like smart-objects, connected
sensors, wearable sensors, smartphones, and smartwatches, have been integrated with
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non-invasive sensors, such as cameras or infrared sensors, to build systems for people
monitoring in both indoor and outdoor applications. As can be observed, the variety of
technologies is wide enough to fulfill some particular constraints: to be non-invasive, to
be easily acceptable by subjects, and to not affect users in their normal activities. Indeed,
as reported above, the potential users of AAL systems are subjects with special needs and
individuals having their own relational networks made up of relatives and friends and
carrying out even complex activities, in the context of the home and city.

In the following, four principal categories of technologies will be examined. We start
from those that can be easily used, such as wearable sensors, but that require user acceptance,
and then move on to those that are less invasive, but that require structuring objects or furniture,
i.e., smart everyday objects, up to environmental sensors and social assistive robots.

3.1. Wearable Sensors

In recent years, a number of wearable sensors have been miniaturized and made
very efficient in terms of energy consumption. Three-axis accelerometers, gyroscopes,
and magnetometers are the most commonly used wearable sensors, which are usually worn
at the user hip or waist. They have been extensively applied for different purposes, such
as to assess the postural stability of a subject [35], to detect and classify falls [36–40], or to
analyze the gait cycle [41]. Moreover, these sensors are embedded in mobile technologies,
such as smartphones, smartwatches, and wristbands, which also support the continuous
monitoring of biological, behavioral, and environmental data [42–44].

Solutions that are based on passive Radio-Frequency Identification (RFID) technol-
ogy have been largely used to identify the dynamic position of people moving in in-
door environments. Information regarding human motion is carried out when wearable
electromagnetic markers (tags) move within an electromagnetic field that is radiated by
an interrogating antenna and sensed by the remote receiver or reader [45,46]. This type of
system not only monitors movements and location, but also accidental falls [47].

An additional technology that has undergone significant developments over the last two
decades is Bluetooth Low Energy (BLE) technology, which has paved the way to Bluetooth
Smart for wearable devices, which has also solved the limitations related to low broadband
connectivity in some particular environments. This technology has been considered for
healthcare applications, such as daily physical activity monitoring, health monitoring in cardiac
patients, intelligent stethoscope development, emotional level diagnosis [48], falls, and location
of elderly people [49]. When multiple areas of an environment are equipped with BLE scanners
and BLE beacons are attached to home residents, the system records residents’ activities, which
helps to localize and track them [50], detect risky areas, and to prevent injuries and dangerous
events without intruding on personal privacy [51].

The AAL systems examined so far, principally monitor the behavioral status of people.
Additional relevant parameters have to be monitored in order to ascertain overall health
status of an individual. These are the physiological parameters, which are also known
as vital signs, such as heart rate (HR), blood pressure, body temperature, respiratory rate,
and blood oxygen saturation. Keeping track of vital bodily functions can be done through
different sensors that can be complementary to the aforementioned sensors in order to
build complete long-term health monitoring systems in daily-life scenarios. Recent im-
provements in the performance and cost-effectiveness of microelectro-mechanical systems
have opened new possibilities in continuous vital sign monitoring. In particular, ballistocar-
diography (BCG) and seismocardiography (SCG) are promising techniques for extracting
information on cardiac events and phases. They are based on IMU sensors positioned
over the subject’s sternum for assessing the breathing rate and quality metrics of physical
activities [52], or for measuring vibrations that are produced by the heart’s mechanical
activity [53]. Smart technology is also used to equip portable objects, such as glasses,
in order to evaluate some vital signs, such as heart rate, respiratory rate, regularity of pulse
and respiration, the presence and length of apnea events, the temperature distribution
on the face, etc. [54]. Such methods are very important for healthcare professionals, be-
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cause they allow for collecting important medical information without the connection of
dedicated hardware to the patient, but with a more natural method.

In outdoor contexts, standard mobile devices can be used for increasing the elderly’s
independence without them having to interact with the technology. By using the built-in
sensors of cellphones, normal activities can be discerned from those that are considered
not allowed and dangerous for the health of the observed individuals [55]. By integrating
information that is provided by a GPS and accelerometer with online weather data, it is pos-
sible to infer physical and mental health information, such as long exposure to hazardous
weather, wandering, or getting lost in order to create safe outdoor spaces [56]. Sensor boxes
that are interfaced with mobile/phone applications acting as intelligent navigators can
make street navigation accessible to impaired people [57].

3.2. Smart Everyday Objects

With the recent emergence of Internet of Things (IoT) and miniaturized sensors and
processors, everyday objects can be identifiable, and they possess the ability to com-
municate and interact: in a word they can be smart. In this way, home appliances can
communicate with each other or be controlled remotely, providing home residents with
new facilities that are able to detect anomalies or assess health issues early, in order to apply
prevention policies or trigger actions [58–60]. In AAL contexts, smart every day objects
are generally used together with wearable sensors to acquire joint knowledge regarding
individual activities and interactions with the objects in the environment [61–63].

Home cooking is one of the basic activities in a daily routine. Monitoring elderly
people when they use kitchen appliances is very important in preventing injures and
increasing safety. The first signs of cognitive disorders are often easily seen in behaving
variations during meal preparation or cooker handling. Some common appliances, such as
refrigerators, microwaves, and cooktops, are interconnected with each other to provide
assistance in meal preparation tasks [64]. Furthermore, specific conditions, such as the pres-
ence of objects on cookers, the presence of lids on the pots, and the liquid level in the pots,
can be monitored during the cooking process [65].

Sensors in furniture, such as doors, beds, chairs, washstand, toilet, and cupboards,
allow for the non-obtrusive monitoring of daily living activities, providing presence statis-
tics of users in different spaces of the environment [62,66]. Furthermore, power meters can
be used to monitor appliance usage, such as TV set or lamps [63], whereas smart pill box
devices can be very useful for checking medication intake [61].

Many other solutions have been proposed to provide intelligent functionalities to
specific objects and monitor some specific issues that are related to the health and safety
of elderly people. Cushion sensors, for example, can be used in wheelchairs to track user
posture [67] or capture the heart rate of a person sitting on it [68]. Smart carpets and
smart walls can have various functionalities, such as monitoring the walking activity of
people, in order to detect falls, measure gait, and count the number of people traversing
the environment (socializing activity) [69,70].

Table 1. Principal technologies applied in various contexts to create different health assistance tasks.

Sensor Type Technology Context Task Ref.

Wearable 3-axis accelerometer at user hip Indoor Postural Stability [37]

Wearable Accelerometer, gyroscope and
magnetometer at the user hip

Indoor Postural Stability [35]

Wearable 3-axis accelerometer in a smart
watch

Indoor Postural Stability [38]

Wearable Smartphone at the user hip Indoor Fall classification [36,43]

Wearable IMU on people pelvis, right
and left thigh

Indoor Gait analysis [39]
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Table 1. Cont.

Sensor Type Technology Context Task Ref.

Wearable Smartphone Outdoor Physical/Mental Health, Wondering
Detection

[55,56]

Wearable Wristband Indoor Ambient air monitoring [44]

Wearable RFID tag Indoor 3D localization, Fall detection [45–47]

Wearable Wearable electrodes Indoor Heart rate monitoring [52,53]

Wearable BLE technology Indoor Localization [49–51]

Wearable Smart Glasses Indoor Vital Sign Monitoring [54]

Wearable Sensor Box Outdoor Safe Navigation [57]

Smart objects Sensors in appliances and
furniture

Indoor Daily life Activities, Abnormal
behavior detection, Interaction with

devices

[59–63]

Smart objects Sensors in kitchen appliances Indoor Food preparation [64,65]

Smart objects BLE Beacons in the objects Indoor Interaction with devices [66]

Smart objects Single smart object (Cushion,
wheelchair, carpet, bed)

Indoor Specific health functionalities,
sleeping posture recognition

[58,67–69]

Environmental Wireless sensors
in the environment

Indoor Indoor temperature, humidity,
vibration, luminosity and sound

[71,72]

Environmental Electromagnetic Technology Indoor Respiration activity [73]

Environmental Sensor nodes in the beds Retirement Houses Resting time of residents [74]

Environmental Sensors in the environment Indoor Multiple People Location [75–78]

Environmental Multiple cameras Indoor/Outdoor Object detection [79]

Environmental Radio Frequency sensors Indoor Sleep monitoring, activity monitoring,
changes in movement patterns, vital

sign recognition

[80–82]

Environmental Metasurfaces based on
microwave sensors

Indoor recognition of hand signs and vital
sign recognition,

[83–85]

Environmental Kinect™and Wii™ Indoor Biomedical Sign acquisition [2]

Environmental Kinect™ Indoor Activity recognition [86]

Environmental RFID in the wall Indoor Activity recognition [70]

Environmental Multiple Kinect Indoor Physical training [87]

Environmental Wearable and environmental
sensors

Indoor Patient monitoring and environmental
parameter monitoring

[40]

3.3. Environmental Sensors

Environmental monitoring sensors are used to detect parameters, such as temperature
or air quality, which could have an adverse impact on elderly people [71,72]. They also
contribute to monitoring daily life activities [73,74] or localizing people [75–78] and objects
around people [79]. Unlike wearable sensors and smart object sensors, environmental
sensors are placed in the environment without being invasive for people and without
structuring or replacing home objects.

Radio-frequency-based systems, through the analysis of the reflections of radio-
frequency signals, can be used for monitoring different people’s activities, such as sleep
monitoring by inferring the subjects’ sleep postures [80], capturing people’s 3D dynamics,
learning people’s interactions with the objects [81], and for detecting changes in movement
patterns [82]. Microwave sensors can operate through optically opaque materials, such as
clothing, as they are not impacted by external visible lighting and scene color, and they
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may eventually help to sense through fog and smoke. Intelligent metasurface systems
transform measured microwave data into images and allow for the recognition of hand
signs and vital signs of multiple non-cooperative people [83–85].

Intelligent optical systems are an example of environmental sensory systems that are
used for biomedical signal acquisition to reveal rigid and uncontrollable gestures, postural
instability, or small tremor, which can be signs of incoming neurological diseases. Low-cost
devices, such as Kinect™and Wii™, can be easily installed for monitoring the daily activity
of people in order to keep an active and healthy life under observation and to notify
caregivers in the case of calls for help [2,86,87].

3.4. Social Assistive Robots

Social Assistive Robots are less common than wearable or environmental sensors,
but they represent an emerging technology that can support and enhance human activities,
especially in heavy tasks [88]. Social Assistive Robots can be used for different purposes: to
overcome elderly inabilities; to relieve nursing staff from time-consuming, non-empathic,
and repetitive tasks in retirement house [89,90]; to transport food or medicine carts; for
grasping objects [20]; for laundry collection; and, delivery services, mail delivery, ware-
house logistics, trash logistics, and cleaning material logistics [91]. With the spread of these
innovative technologies, the service quality can increase and, at the same time, resident
and staff satisfaction improve. In this context, it is also important to personalize the human–
robot interaction by endowing the robot with human-like social skills (i.e., natural language
processing, user emotion estimation, etc.) [92,93].

3.5. Discussion: Pros and Cons of Different Technologies

The recent advancement in technological developments has made a wide variety of
sensors available, even at a low cost, such as wearable rings, bracelets, smart watches,
and mobile phones, for monitoring many functional parameters that are related to people’s
health and activities. These sensors have to be worn and they may not be accepted by
older people. Less intrusive sensors can be introduced in intelligent dresses and, together
with antennas placed in the environment, can provide information for the detection of
people. Other more complex sensors for monitoring vital signs are, at the moment, in an
experimental phase and, although they have been shown to be effective in experimental
tests, they must be miniaturized for being acceptable as wearable devices or have to be
used for disease monitoring with a conscious involvement. Environmental sensors that are
based on optical or microwave technologies are less invasive for people and they have been
demonstrated to be robust for both activity detection and vital sign monitoring. They have
to be placed properly in the environment and they may require infrastructure changes for
their installation. Smart objects or sensors in furniture can be used to monitor daily life
activities and interactions with objects. Additionally, in this case, some of the proposed
solutions only require the addition of IoT sensors to the furniture that is already available;
in other cases, it is necessary to replace objects with smart ones. In Figure 5, an example of
how an elderly people’s residence or house could be structured is provided [94]: a large
number of sensors could be installed at different locations of the environment, depending
on the specific parameters that have to be measured and the particular events that would
be monitored. It is evident that the selection of sensors among all of these possibilities
depend on several factors: the costs of the sensors, their intrusiveness, their acceptability
from users, the level of intervention that is required in the environments, the privacy issues
that are related to the use of each sensor, and so on. Because these sensors have widely
demonstrated their usefulness and potentialities, in the future they are certainly going to
become of ordinary use. Thus, not only will the wearable sensors be a part of everyday life,
but the environmental ones, even if they require structural interventions, will also be given
in the new residences, thus making the flats and all the furniture smart.
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Figure 5. An example of AAL elderly people’s residence or house full of sensors, such as a pres-
ence sensor or temperature sensor, and actuators, such as light control, home automation control,
medication control, and so on (from [94]).

4. Methodologies for Data Analysis

Many AAL systems only require data collection and the application of simple tech-
niques for data analysis, such as threshold-based or distance-based methods. These tech-
niques can be enough to trigger alerts when dangerous events are detected, providing
interesting supports in various contexts of AAL. They only require a parameter estimation
phase to be obtained by statistical analyses of the acquired data. When multiple heteroge-
neous sensors are used, several types of features have to be analyzed and more complex
functionalities have to be recognized. The problem of feature selection becomes relevant for
both reducing the cost of AAL systems by facilitating the execution of algorithms on devices
with limited resources, as well as for generating reliable classification models of human
activities and daily living. Several works have tested feature selection methods on large
heterogeneous data comparing the results among different selections of spatio-temporal
features [95–97].

The application of Machine Learning (ML) methodologies can solve both the problems
of feature selection and data processing in order to automatically build predictive mod-
els. ML algorithms, such as Support Vector Machine (SVM), k-Nearest Neighbor (kNN),
Artificial Neural Network (ANN), Naïve-Bayes (NB), Random Forest (RF), Decision Tree
(DT), and Multi-Layer Perceptron (MLP), build models of each class through a training
phase in a supervised learning style and then classify data in complex situations where
the data are not linearly separable [98,99]. SVM and kNN are instance-based methods.
They create sets of example data, and new instances of data are compared to them using
a similarity measure to find the best match and make a prediction. NB is a Bayesian
method that explicitly applies Bayes’ Theorem requiring the knowledge of a priori and
conditional probabilities that are related to the problem under consideration. DT and RF
are tree-based methods that build a model resembling a sort of decision-making diagram
that is based on actual values of attributes in the data. A prediction for a given new record
is obtained following the tree structure until a leaf is reached. ANN and MLP are artificial
neural networks where the structures are inspired by biological neural networks. They are
composed of different layers of neurons (nodes) and different activation functions at nodes
for mapping the input examples to the output label of a class.

Deep Learning (DL) methodologies, such as Convolutional Neural Networks (CNN)
or Long Short-Term Memory Networks (LSTMs), have been successfully applied to many
application contexts in recent years, at the same time solving the problem of feature
selection and model construction [100]. CNNs are mainly used in Computer Vision for
visual imagery. When receiving an image as input, a CNN is able to differentiate among
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aspects or objects without hand-engineered filters, because CNNs have the ability to learn
these filters/characteristics during training, successfully capturing spatial and temporal
dependencies. LSTM networks are particularly useful for learning sequences that contain
longer term patterns of unknown length, due to their ability to maintain long term memory.
Furthermore, stacked LSTM networks enable the learning of higher level temporal features,
for faster learning with sparser representations [101]. The large amount of data needed
for the training phases and the requirement of large computational times and resources
constitute the main drawback of DL methodologies.

In Table 2, the most commonly applied methodologies are resumed, together with
the sensors that are used for data acquisition, the tasks, and the test sets of participants
involved in the experimentation and observed activities. The data that are listed in the table
have been grouped while considering the tasks mainly investigated in the development
of an AAL system, i.e., fall detection, anomaly detection or abnormal behavior detection,
and daily activity recognition. As can be seen in Table 2, in each cited paper experiments
have been carried out over different test sets (in terms of number of subjects, subject classes,
type of actions, and so on). Therefore, even when considering the same task, it is not
possible to provide hints on which methodology performs better than others. Nevertheless,
the literature works prove that high accuracy rates can be obtained, even when complex
data must be managed.

Fall detection is an important issue that is frequently addressed in AAL literature
research, as falls represent one of the main threats to the health and independence of elderly
people and the main cause of injuries and hospitalization. Therefore, robust methodologies
are needed for the timely detection of falls and to avoid false alarms. Various works
in literature apply and compare different ML algorithms among the aforementioned ones,
obtaining high accuracy rates of fall classification [37,102]. DL approaches have been
also applied in this context, implementing the training phase of DL models in the cloud
to learn the models of different falls, and only deploying remotely to the edge gateway
the test in order to manage the limited resources and provide security and life-cycle service
management [40,103].

The detection of anomalous behaviors in users’ routines is a key requirement for AAL
systems, as it can provide people with remote support for chronic disease prevention. An abun-
dance of of literature works treat this problem by providing effective solutions. Additionally,
in this case, ML algorithms have found considerable applications, as they have been applied to
learn the “normality” of behaviors, especially on large data recorded over different periods of
time and acquired by heterogeneous sensors [70,104–108]. The obtained models are used to
detect possible anomalies in daily behaviors, such as prolonged inactivity periods, a loss of
consciousness, inability to stand up, and similar ones that require immediate medical assis-
tance [109]. In a similar way, the models of the normal behavior can be specifically learned for
each user after an initial training phase being performed on selected data and can be used to
find anomalies from the normal conduct of each individual, thus reducing fake alerts from
the lack of adherence to general models [110].

Different approaches for activity recognition exploit the discrimination capability of
the continuous-time duration of activities and inter-occurrence times of observed events
for identifying an irregularity in routine behaviors from statistical histories [111,112]. This
type of approaches relies on generative stochastic models that address the recognition of
sequential activities from the events, the frequency of events, the continuous duration of
each activity, and the continuous time between consecutive events.

Activity recognition tasks can be also performed by studying the postures of people over
long periods of time. Optical sensors, such as RGB-D cameras, allow for the extraction of three-
dimensional (3-D) skeleton data that better characterize the human postures that are involved
in the activities to be recognized [113]. In these cases, multiple features (such as skeleton joints
coordinates, joints distances, angles among consecutive joints, and so on) have to be analyzed
in spatio-temporal domains to assess different attitudes of the body. ML algorithms [114,115]
or DL techniques [116] allow for the manipulation of these complex features, the extraction of
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significant information, and the construction of complex models that are associated with each
activity. The experiments demonstrate that these approaches have good performances and
allow for discerning between similar activities.

An additional important class of approaches, which has been applied in limited
cases for AAL systems, are those that are based on unsupervised learning techniques.
They can be applied for the clustering of large amounts of unlabelled data, grouping user
behaviors, and detecting high-level variations without any prior knowledge or training
phase [117,118].

Table 2. A list of common methodologies for data processing.

Methodology Features Task Sensors Test Set Ref.

SVM and DT Features extracted
from filtered

acceleration data
samples: amplitude,

time, statistics,
orientation

Fall Detection Wearable sensor:
Tri-axial

Accelerometer at waist

6 young adults and 2
elders performing 19
daily activities and 15

fall activities

[37]

kNN, NB, SVM
and ANN

Vector magnitude of
acceleration and
angular velocity

Fall Detection Wearable sensors:
accelerometer,
gyroscope and

magnetometer at wrist
and chest

17 people performing
several daily activities

[102]

LSTM, GRU, SVM
and kNN

Time series of
accelerometer data

Fall detection Wearable sensor:
tri-axial accelerometer

23 adults and 15 elders
performing several
daily activities and

falls

[40,103]

ANN Spatio-Temporal
Features

Anomaly detection
in daily activities

Wearable sensors
(accelerometer and

gyroscope) and
Ambient sensors

2 subjects performing
9 daily activities

[109]

Time series
machine learning

techniques

Time series data Behavioral trend
generation and

forecasting

Sensors in the objects
and Ambient sensors

4 subjects performing
6 daily activities

[110]

CT-HSMM Stream of typed and
time-stamped events

High level activities
recognition

Sensors in doors and
household appliances

7 activities, 28 days of
observations

[111]

NB, SVM, RFs, DT,
CNN, LSTM

Sensors data, activity,
and context labels

Daily activity
recognition

72 sensors: wearable
sensors, object sensors
and ambient sensors

4 subjects performing
7 daily activities

[106]

Multivariate
Gaussian

Distribution

Statistical features Activity recognition Ambient sensors:
smart wall equipped
with RFID sensors

4 subjects performing
12 real life daily

activities

[70]

CNN Time series Abnormal behaviors
detection

Wearable sensors 9 daily activities [105]

RF, kNN Spatial features Daily activity
recognition

Wearable sensor:
accelerometer at chest

13 subjects performing
7 daily activities

[104]

CNN Spatio-Temporal
features

Daily activity
recognition

Ambient sensors:
depth camera

7 participants
performing 21 sets of

activities

[116]

NB, MLP, RF Spatio-Temporal
features

Daily activity
recognition

Ambient sensors:
RGB-D cameras

13 daily activities [115]

ANN Spatio-Temporal
features

Daily activity
recognition

Ambient sensors:
depth cameras and

acoustic sensors

17 subjects performing
24 daily activities

[114]
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Table 2. Cont.

Methodology Features Task Sensors Test Set Ref.

HMM Spatio-Temporal
features

Anomaly detection
in daily activities

Wearable and ambient
sensors

10 subjects performing
daily activities over 3

months of observation

[112]

LSTM, RNN Individual sensor
events or group of

sensor events
in various time

periods

Changes
in behavioral

patterns

IoT sensors: sensors
in objects and

furniture

6 elderly people
observed at home over
a period from 1.5 to 4

months

[108]

Unsupervised
Learning

Spatio-Temporal
features

Mild Cognitive
Impairment

Detection

Ambient sensors:
motion sensor and

door sensor

10 elderly people [117]

Unsupervised
Learning

Temporal features
connected to

temporal cluster of
sensor events

Behavioral change
detection

Ambient sensors: PIR
sensors

Selection of data from
Aruba data set: 28-day

observation period

[118]

Discussion: Pros and Cons of Different Methodologies

This study has identified several clusters of options for data processing in AAL, de-
pending on the complexity of the target. Many examples of successful applications of
simple techniques for data analysis, such as threshold-based or distance-based methods,
have been reported in the literature for the recognition of many elementary behaviors.
Machine learning methodologies, which have been successfully applied in the contexts
of pattern recognition, have been borrowed for processing data of functional and healthy
parameters for the purpose of more complex behavioral analysis. Many successful exam-
ples of deep learning applications have been also reported. The main problem concerned
with the use of more sophisticated machine learning is related to the amount of data that
are required for the learning phase. Supervised, unsupervised, and deep approaches
require large data sets to build their models. However, this large amount of data is not
always available in AAL contexts, where systems must be installed and immediately oper-
ational. In many cases, it may be necessary to foresee an initial phase of data collection for
the tuning of the methodologies before moving on to their actual use.

Another aspect relates to the extraction of significant features on which these systems
have to work. In many cases, data may be redundant, and significant features have to
be extracted. Machine learning algorithms for data classification or regression require
a preliminary feature extraction phase that is fundamental in assuring good performance
of the whole analysis. In many cases, data may be redundant or variegated to be easily in-
terpreted: the task of feature extraction can be too hard to be achieved with the supervision
of domain experts. However, deep learning approaches have, in some way, solved this
problem, as they learn features automatically from data without the need for manual fea-
ture extraction. Conversely, they are even more data-demanding than traditional machine
learning approaches.

From the analysis of the literature, it has emerged that an absolute and fair comparison
among the different approaches presented in different works is not possible. Most of the ap-
proaches are applied and tested in limited contexts, such as in labs or selected use cases,
and others use data extracted from publically available datasets [119–121]. Accordingly,
the reported results are based on different experimental data; therefore, the superiority
of one methodology rather than another cannot be argued. However, the previous pros
and cons analysis can drive the choice amongst the vast array of approaches. In the case of
simple tasks, such as binary or few-classes classification tasks, which could not be solved
by simple linear discrimination (threshold operations, distance-based analysis, and so on),
but involve straightforward feature engineering, classical machine learning approaches
(ANN, SVM, DT, kNN, RF, and so on) are good options. On the contrary, in the case of
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highly unstructured data related to heterogeneous sensors and having intricate relation-
ships between several interdependent variables, deep learning can be the best solution of
complex inference, since it can discover hidden patterns, combine them, and make better
decisions in an autonomous data-driven way.

5. Discussion

In a society where the elderly population is constantly increasing, technology can
help to improve the quality of life of the elderly and extend their independent living.
In recent years, AAL systems have been developed to create better living conditions for
older and disabled people, and to support caregivers and medical staff with behavioral and
alerting information that can be useful for prevention or timely intervention. Furthermore,
when considering the recent pandemic situation, where people have been forced into
isolation or require assistance, AAL systems have become essential for communication,
safety, and security purposes. These systems can be used to monitor simple daily habits,
quantifying, for example, movement or rest periods, verifying the meal or medicine intake,
and so on, but also to highlight social components that affect psychological well-being.
This is valid for both private homes or retirement homes, where many aspects of the daily
activities of residents can be automatically checked, which reduces the costs and increases
the monitoring capabilities.

Figure 6 outlines the main steps involved in the development of an AAL system.
These steps involve several strictly related choices that start from sensor selection for data
acquisition up to functionalities that AAL systems intend to provide. First of all, the sensor
selection depends on the costs and invasiveness levels for both people and infrastructure.
The choice of the functions to be implemented also imposes constraints on the sensors to be
used and the modality of data acquisition. Simple functionalities can be realized with few
sensors, even at a low cost. More complex functionalities are needed in order to understand
the first elementary behaviors, such as interactions with objects, daily activities, hours of
rest, quality of sleep, etc., and then the resulting data have to be collected and evaluated
to extract higher level knowledge, such as recognizing changes in habits. Heterogeneous
sensors must be used and the data collected over a long period of time. In the same way,
the methodologies for data analysis that require learning phases for model building can
impose constraints on the quantity of data that has to be acquired. Subsequently, all of
these aspects should be considered when complete AAL systems are developed.

Figure 6. The main steps in AAL systems.

The analysis of the extant literature on AAL systems has highlighted some fundamen-
tal aspects that require the attention of the scientific community.

The need of a human-centered approach.
From a technological point of view, the main aspect that should be considered is cer-
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tainly connected to the actual acceptability of sensors by people and, consequently,
to the reliability of the acquired data not affected by behavioral conditioning due
to the awareness of being observed or having behavior assessed [122]. The design
of AAL systems has to consider the needs of people preferring a human-centred
approach, where the end users are involved and participate in all stages of the de-
sign process [123]. A long term evaluation as part of a field trials “in the wild”,
regarding functionality, acceptability, and utility of the AAL systems, in general,
has only been studied in a few papers [124,125].

The need of large amount of data from real environments.
Another aspect concerns the experimental tests on which the systems proposed
in the literature have been evaluated. Many works propose experiments in labs,
use data sets, or are applied in real contexts but with a limited period of observations.
If these types of tests ensure that single functionalities work, they are rather limited for
more complex behavior analysis. In order to ensure effective validity, real environment
situations should be considered, where various parameters can be related to different
activities that are actually performed during real scenarios of daily life.

The need of learning the “normal” behavior of each individual.
The evaluation of complex behaviors, such as anomaly detection or change detec-
tion, also requires special attention. To detect abnormal changes in any monitoring
system, the first step is to build a systematic model from long-term observations of
normal activities. Later, the normal pattern is compared with new observations and
the deviation is estimated. However, in the context of AAL systems, what behavior
can be considered to be “normal”? The concept of normality is not general and
it cannot be the same for different subjects. It is closely related to each individual,
so it must be learned from the prolonged observation of each person. As stated
before, recent technological developments have made it possible to easily collect
and store a huge amount of data on people’s habits. The main point on which
future research must focus is to develop methodologies that are able to process this
huge amount of data and create customized models of normal behaviors. These
methodologies have to select the fundamental features while discarding irrelevant
information and recognize deviations from normality as soon as they arise.

The need of adaptive systems.
An additional aspect is worthy of consideration: AAL systems cannot be closed,
as the needs and habits of people change over time as well as the parameters to
be observed. The methodologies for data analysis must consider the possibility of
differently weighting or customizing some parameters rather than others dynami-
cally. Furthermore, the models of normality must be updated in an adaptive way
as people’s needs or health change.

The evaluation of processing constraints.
Processing constraints also have to be considered when AAL systems must be
devised. Many AAL systems have been devised to provide alarms when danger-
ous situations are detected. In these cases, hard real time processing of data is
necessary for providing prompt interventions, but, at the same time, robust pro-
cessing techniques are necessary to avoid fake alarms [126]. In some approaches,
information regarding people’s behaviors has to be collected and advice provided.
In these cases, soft real time processing is necessary, as data can be collected dur-
ing the whole day, sent to a central server for the overall evaluation, and then
the proper users can be provided with the processing results. On the contrary,
long periods of observation are required when changes in habits require detection.
In this case, systems have to collect data regarding all aspects of the daily life,
and the results can only be evaluated when models of normal behaviors have been
estimated. In these cases, offline processing can be done on a large sample of data
collected in a cloud computing framework.
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The importance of data clustering.
The use of unsupervised approaches is very useful for clustering data and assess-
ing the presence of common behaviors. In the following years, consistent with
the predicted expanded deployment of smart objects or environmental sensors
in the houses, together with the use of wearable sensors by users, large amounts of
data will be available. Unsupervised approaches for data clustering will represent
a useful and flexible means to analyze behaviors and extract the habits, as well
as the social, behavioral, and functional aspects, of subjects for the purpose of
providing medical staff with diagnostic support.

The need of interdisciplinary competences
An additionally important point that is involved in the development of AAL sys-
tems is the need of interdisciplinary competences to cover all aspects related to
the installation, acceptability, and functionality of an AAL system when consid-
ering the interaction levels between users and assistive technologies. Experts
in technologies and methodologies for data processing, as well as doctors, geriatri-
cians, and psychologists, must work in interdisciplinary teams to design the overall
framework of robust and reliable AAL systems.

In conclusion, the next decade will likely witness a considerable spread of technologies
in people’s home. Accordingly, huge sets of hard real-time data generated by residents and
environment will be available. The main challenge that remains is to provide these systems
with intelligence. The scientific community must focus on how to use these data, as well
as on developing and incorporating intelligence through machine learning, intelligent
decision making, and control methods while taking the state of residents and environments
and their privacy into account.

6. Conclusions

The development of AAL systems has been receiving considerable attention from
the scientific community in the recent years for several reasons: they can reduce the costs
of daily life assistance of elderly people; they can monitor the physical and psychological
wellbeing of people that live alone; and, they can detect behavioral changes that could be
the sign of early stage of neuro-degenerative diseases.

The main aspects of AAL systems related to health care applications have been sur-
veyed in this paper. This review, without any pretense of being exhaustive, proposes
an overview of the main issues and choices that need to be made, while considering
the possible application contexts, the available technologies, and methodologies for feature
extraction and data processing. In particular, a selection of recent papers has been dis-
cussed considering the context in which they have been applied (i.e., indoors or outdoors),
the target users (youngest old, middle old, oldest old people), the functional tasks that
they realize (disease management, activity monitoring, change detection), the sensors used
(wearable, smart objects, environmental sensors), and the methodologies applied for data
processing (from simple distance methods to machine learning approaches).

As largely discussed throughout the paper, the recent development of technologies
and consequent change of the habits of people, due to the introduction of these new sensors
in everyday life, will make a huge quantity of data available. The main point relates to
the correct usage of both technologies and data for healthy purposes. While younger
generations easily and naturally utilize technologies in daily activities, elderly people could
be unwilling and uninterested in using sensors, computers, or new technologies. Hence,
the psychosocial factors of human–technology interaction, communication, and usage
need to be considered when developing AAL systems. These factors, together with data
usage and processing, are worthy of further investigations by the scientific community
in order to develop increasingly complex intelligent systems for care services, remote
consultation, independent living support, social participation and well-being, healthy
condition monitoring, and so on.
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RF Random Forest
DT Decision Tree
MLP Multi-Layer Percepron
DL Deep Learning
CNN Convolutional Neural Network
LSTM Long Short-Term Memory Network
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
HMM Hidden Markov Model
CT-HSMM Continuous-Time Hidden Semi-Markov Model

References
1. Ramkumar, M.O.; Catharin, S.; Nivetha, D. Survey of Cognitive Assisted Living Ambient System Using Ambient Intelligence

as a Companion. In Proceedings of the IEEE International Conference on System, Computation, Automation and Networking
(ICSCAN), Pondicherry, India, 29–30 March 2019.

2. Geman, O.; Costin, H. Automatic assessing of tremor severity using non linear dynamics artificial neural networks and neurofuzzy
classifier. Adv. Electr. Comput. Eng. 2014, 12, 133–138. [CrossRef]

3. Yamine, J.; Prini, A.; Lavit, N.M.; Dinon, T.; Giberti, H.; Malosio, M. A Planar Parallel Device for Neurorehabilitation. Robotics
2020, 9, 1–22. [CrossRef]

4. Martirano, L.; Mitolo, M. Building Automation and Control Systems (BACS): A Review. In Proceedings of the IEEE International
Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe
(EEEIC/I& CPS Europe), Madrid, Spain, 9–12 June 2020.

5. Wozniak, M.; Połap, D. Intelligent Home Systems for Ubiquitous User Support by Using Neural Networks and Rule-Based
Approach. IEEE Trans. Ind. Inf. 2020, 16, 2651–2658. [CrossRef]

http://doi.org/10.4316/AECE.2014.01020
http://dx.doi.org/10.3390/robotics9040104
http://dx.doi.org/10.1109/TII.2019.2951089


Sensors 2021, 21, 3549 18 of 22

6. Population Structure and Ageing. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php (accessed on
1 March 2021).

7. Marinescu, I.A.; Bajenaru, L.; Dobre, C. Conceptual Approaches in Quality of Life Assessment for the Elderly. In Proceedings of
the IEEE 16th International Conference on Embedded and Ubiquitous Computing (EUC), Bucharest, Romania, 29–31 October 2018.

8. McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical activity in older age: Perspectives for
healthy ageing and frailty. Biogerontology 2016, 17, 567–580. [CrossRef] [PubMed]

9. Li, R.; Lu, B.; McDonald-Maie, K.D. Cognitive assisted living ambient system: A survey. Digit. Commun. Netw. 2015, 1, 229–252.
[CrossRef]

10. Sanchez-Comas, A.; Synnes, K; Hallberg, J. Hardware for Recognition of Human Activities: A Review of Smart Home and AAL
Related Technologies. Sensors 2020, 20, 4227. [CrossRef]

11. Helbostad, J.L.; Vereijken, B.; Becker, C.; Todd, C.; Taraldsen, K.; Pijnappels, M.; Aminian, K.; Mellone, S. Mobile Health
Applications to Promote Active and Healthy Ageing. Sensors 2017, 17, 622. [CrossRef]

12. Uddin, M.Z.; Khaksar, W.; Torresen, J. Ambient Sensors for Elderly Care and Independent Living: A Survey. Sensors 2018, 18, 2027.
[CrossRef]

13. Stavropoulos, T.G.; Papastergiou, A.; Mpaltadoros, L.; Nikolopoulos, S.; Kompatsiaris, I. IoT Wearable Sensors and Devices
in Elderly Care: A Literature Review. Sensors 2020, 20, 2826. [CrossRef]

14. Maskeliunas, R.; Damasevicius, R.; Segal, S. A Review of Internet of Things Technologies for Ambient Assisted Living Environ-
ments. Future Internet 2019, 11, 259. [CrossRef]

15. Climent-Perez, P.; Spinsante, S.; Mihailidis, A.; Florez-Revuelta, F. A review on video-based active and assisted living technologies
for automated lifelogging. Expert Syst. Appl. 2020, 139, 112847. [CrossRef]

16. Amina, E.; Anouar, A.; Abdellah, T.; Abderahim, T. Ambient Assisted living system’s models and architectures: A survey of
the state of the art. J. King Saud-Univ. Comput. Inf. Sci. 2020, 32, 1–10.

17. Lee, S.B.; Oh, J.H.; Ho Park, J.; Choi, S.P.; Wee, J.H. Differences in youngest-old, middle-old, and oldest-old patients who visit
the emergency department. Clin. Exp. Emerg. Med. 2018, 5, 249–255. [CrossRef]

18. Cattelani, L.; Belvederi Murri, M.; Chesani, F.; Chiari, L.; Bandinelli, S.; Palumbo, P. Risk Prediction Model for Late Life Depression:
Development and Validation on Three Large European Datasets. IEEE J. Biomed. Health Inform. 2019, 23, 2196–2204. [CrossRef]
[PubMed]

19. Alhomsan, M.N.; Hossain, M.A.; Mizanur Rahman, S.M.; Masud, M. Situation Awareness in Ambient Assisted Living for Smart
Healthcare. IEEE Access 2017, 5, 20716–20725. [CrossRef]

20. Nastac, D.I.; Arsene, O.; Dragoi, M.; Stanciu, I.D.; Mocanu, I. An AAL scenario involving automatic data collection and robotic
manipulation. In Proceedings of the 3rd IET International Conference on Technologies for Active and Assisted Living (TechAAL),
London, UK, 25 March 2019.

21. Parvin, P.; Paternó, F.; Chessa, S. Anomaly Detection in the Elderly Daily Behavior. In Proceedings of the 14th International
Conference on Intelligent Environments, Rome, Italy, 25–28 June 2018.

22. Fernandes, C.D.; Depari, A.; Sisinni, E.; Ferrari, P.; Flammini, A.; Rinaldi, S.; Pasetti, M. Hybrid indoor and outdoor localization
for elderly care applications with LoRaWAN. In Proceedings of the IEEE International Symposium on Medical Measurements
and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020.

23. Activage. Available online: https://www.activageproject.eu/ (accessed on 20 February 2021).
24. Hlicopter. Available online: http://www.helicopter-aal.eu/ (accessed on 20 February 2021).
25. Konstadinidou, A.; Kaklanis, N.; Paliokas, I.; Tzovaras, D. A unified cloud-based framework for AAL services provision to

elderly with cognitive impairments. In Proceedings of the 7th IEEE International Conference on Cognitive Infocommunications
(CogInfoCom), Wroclaw, Poland, 16–18 October 2016.

26. Casaccia, S.; Bevilacqua, R.; Scalise, L.; Revel, G.M.; Astell, A.J.; Spinsante, S.; Rossi, L. Assistive sensor-based technology driven
self-management for building resilience among people with early stage cognitive impairment. In Proceedings of the IEEE
International Symposium on Measurements & Networking (M&N), Catania, Italy, 8–10 July 2019.

27. Koren, A.; Simunic, D. Requirements and challenges in wireless network’s performance evaluation in ambient assisted living
environments. In Proceedings of the 39th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), Opatija, Croatia, 30 May–3 June 2016.

28. Junior, A.J.; da Rocha, T.; Moreno, E.D. A Failure Detector for Ambient Assisted Living. In Proceedings of the IEEE Symposium
on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018.

29. Schmidt, M.; Obermaisser, R. Adaptive and technology-independent architecture for fault-tolerant distributed AAL solutions.
Comput. Biol. Med. 2016, 1, 236–247. [CrossRef] [PubMed]

30. Bellagente, P.; Crema, C.; Depari, A.; Flammini, A.; Lenzi, G.; Rinaldi, S. Framework-Oriented Approach to Ease the Development
of Ambient Assisted-Living Systems. IEEE Syst. J. 2019, 13, 4421–4432. [CrossRef]

31. García-Magarino, I.; González-Landero, F.; Amariglio, R.; Lloret, J. Collaboration of Smart IoT Devices Exemplified with Smart
Cupboards. IEEE Access 2019, 7, 9881–9892. [CrossRef]

32. Xu, L.; Pombo, N. Human Behavior Prediction Though Noninvasive and Privacy-Preserving Internet of Things (IoT) Assisted
Monitoring. In Proceedings of the IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019.

https://ec.europa.eu/eurostat/statistics-explained/index.php
http://dx.doi.org/10.1007/s10522-016-9641-0
http://www.ncbi.nlm.nih.gov/pubmed/26936444
http://dx.doi.org/10.1016/j.dcan.2015.10.003
http://dx.doi.org/10.3390/s20154227
http://dx.doi.org/10.3390/s17030622
http://dx.doi.org/10.3390/s18072027
http://dx.doi.org/10.3390/s20102826
http://dx.doi.org/10.3390/fi11120259
http://dx.doi.org/10.1016/j.eswa.2019.112847
http://dx.doi.org/10.15441/ceem.17.261
http://dx.doi.org/10.1109/JBHI.2018.2884079
http://www.ncbi.nlm.nih.gov/pubmed/30507519
http://dx.doi.org/10.1109/ACCESS.2017.2731363
https://www.activageproject.eu/
http://www.helicopter-aal.eu/
http://dx.doi.org/10.1016/j.compbiomed.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/29157726
http://dx.doi.org/10.1109/JSYST.2019.2924150
http://dx.doi.org/10.1109/ACCESS.2018.2890393


Sensors 2021, 21, 3549 19 of 22

33. Schomakers, E.; Ziefle, M. Privacy Perceptions in Ambient Assisted Living. In Proceedings of the 5th International Conference on Information
and Communication Technologies for Ageing Well and e-Health (ICT4AWE 2019), Heraklion, Greece, 2–4 May 2019; pp. 205–212.

34. Ge, C.; Yin, C.; Liu, Z.; Fang, L.; Zhu, J.; Ling, H. A privacy preserve big data analysis system for wearable wireless sensor
network. Comput. Secur. 2020, 96, 101887. [CrossRef]

35. Pierleoni, P.; Belli, A.; Palma, L.; Paoletti, M.; Raggiunto, S.; Pinti, F. Postural stability evaluation using wearable wireless sensor.
In Proceedings of the IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019.

36. Andó, B.; Baglio, S.; Lombardo, C.O.; Marletta V. A Multisensor Data-Fusion Approach for ADL and Fall classification. IEEE Trans.
Instrum. Meas. 2016, 65, 1960–1967. [CrossRef]

37. Badgujar, S.; Pillai, A.S. Fall Detection for Elderly People using Machine Learning. In Proceedings of the 11th International
Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020.

38. Xie, J.; Guo, K.; Zhou, Z.; Yan, Y.; Yang, P. ART: Adaptive and Real-time Fall Detection Using COTS Smart Watch. In Proceedings
of the 6th International Conference on Big Data Computing and Communications (BIGCOM), Deqing, China, 24–25 July 2020.

39. Nouredanesh, M.; Gordt, K.; Schwenk, M.; Tung, J. Automated Detection of Multidirectional Compensatory Balance Reactions:
A Step Towards Tracking Naturally Occurring Near Falls. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 478–487. [CrossRef]

40. Sarabia, D.; Usach, R.; Palau, C.; Esteve, M. Highly-Efficient Fog-Based Deep Learning Aal Fall Detection System. Internet Things
2020, 11, 100185. [CrossRef]

41. Ur Rehman, R.Z.; Buckley, C.; Micó-Amigo, M.E.; Kirk, C.; Dunne-Willows, M.; Mazzá, C.; Qing Shi, J.; Alcock, L.; Rochester, L.;
Del Din, S. Accelerometry-Based Digital Gait Characteristics for Classification of Parkinson’s Disease: What Counts? IEEE Open J.
Eng. Med. Biol. 2020, 1, 65–73. [CrossRef]

42. Lutze, R. Practicality of Smartwatch Apps for Supporting Elderly People—A Comprehensive Survey. In Proceedings of the IEEE
International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018.

43. Andó, B.; Baglio, S.; Lombardo, C.O.; Marletta, V. An Event Polarized Paradigm for ADL Detection in AAL Context. IEEE Trans.
Instrum. Meas. 2015, 64, 1814–1825. [CrossRef]

44. Haghi, M.; Geissler, A.; Fleischer, H.; Stoll, N.; Thurow, K. Ubiqsense: A Personal Wearable in Ambient Parameters Monitoring
based on IoT Platform. In Proceedings of the International Conference on Sensing and Instrumentation in IoT Era (ISSI),
Lisbon, Portugal, 29–30 August 2019.

45. Amendola, S.; Bianchi, L.; Marrocco, G. Movement detection of human body segments: Passive radio-frequency identification
and machine-learning technologies. IEEE Antennas Propag. Mag. 2015, 57, 23–37. [CrossRef]

46. Paolini, G.; Masotti, D.; Antoniazzi, F.; Cinotti, T.S.; Costanzo, A. Fall Detection and 3-D Indoor Localization by a Custom RFID
Reader Embedded in a Smart e-Health Platform. IEEE Trans. Microw. Theory Tech. 2019, 67, 5329–5339. [CrossRef]

47. Ozgit, D.; Butler, T.; Oluwasanya, P.W.; Occhipinti, L.G.; Hiralal, P. “Wear and Forget” patch for ambient assisted living. In Proceedings
of the IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, UK, 8–10 July 2019.

48. Rajamohanan, D.; Hariharan, B.; Unnikrishna Menon, K.A. Survey on Smart Health Management using BLE and BLE Beacons. In Proceedings
of the 9th International Symposium on Embedded Computing and System Design (ISED), Kollam, India, 13–14 December 2019.

49. Zambrano-Montenegro, D.; García-Bermúdez, R.; Bellido-Outeirino, F.J.; Flores-Arias, J.M.; Huhn, A. An approach to beacons-
based location for AAL systems in broadband communication constrained scenarios. In Proceedings of the IEEE 8th International
Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 2–5 September 2018.

50. Ciabattoni, L.; Foresi, G.; Monteriù, A.; Pepa, L.; Pagnotta, D.P.; Spalazzi, L.; Verdini, F. Real time indoor localization integrating
a model based pedestrian dead reckoning on smartphone and BLE beacons. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1–12.
[CrossRef]

51. Morita, T.; Taki, K.; Fujimoto, M.; Suwa, H.; Arakawa, Y.; Yasumoto, K. BLE Beacon-based Activity Monitoring System
toward Automatic Generation of Daily Report. In Proceedings of the IEEE International Conference on Pervasive Computing
and Communications (PerCom 2018), Athens, Greece, 19–23 March 2018.

52. Cocconcelli, F.; Mora, N.; Matrella, G.; Ciampolini, P. Seismocardiography-based detection of heartbeats for continuous monitoring of
vital signs. In Proceedings of the 11th Computer Science and Electronic Engineering (CEEC), Colchester, UK, 18–20 September 2019.

53. Mora, N.; Cocconcelli, F.; Matrella, G.; Ciampolini, P. Fully Automated Annotation of Seismocardiogram for Noninvasive Vital
Sign Measurements. IEEE Trans. Instrum. Meas. 2020, 69, 1241–1250. [CrossRef]

54. Andrushevich, A.; Biallas, M.; Kistler, R.; Ruminski, J.; Bujnowski, A.; Wtorek, J. Open smart glasses development platform for
AAL applications. In Proceedings of the Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017.

55. Wan, J.; Byrne, C.A.; O’Grady, M.J.; O’Hare, G.M.P. Managing Wandering Risk in People With Dementia. IEEE Trans. Hum.
Mach. Syst. 2015, 45, 819–823. [CrossRef]

56. Garcia, A.C.B.; Vivacqua, A.S.; Sánchez-Pi, N.; Martí, L.; Molina, J.M. Crowd-Based Ambient Assisted Living to Monitor
the Elderly’s Health Outdoors. IEEE Softw. 2017, 34, 53–57. [CrossRef]

57. Mancini, A.; Frontoni, E.; Zingaretti, P. Embedded Multisensor System for Safe Point-to-Point Navigation of Impaired Users.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 3543–3555. [CrossRef]

58. Garcia-Magarino, I.; Lacuesta, R.; Lloret, J. Agent-Based Simulation of Smart Beds With Internet-of-Things for Exploring Big Data
Analytics. IEEE Access 2018, 6, 366–379. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2020.101887
http://dx.doi.org/10.1109/TIM.2016.2552678
http://dx.doi.org/10.1109/TNSRE.2019.2956487
http://dx.doi.org/10.1016/j.iot.2020.100185
http://dx.doi.org/10.1109/OJEMB.2020.2966295
http://dx.doi.org/10.1109/TIM.2014.2385144
http://dx.doi.org/10.1109/MAP.2015.2437274
http://dx.doi.org/10.1109/TMTT.2019.2939807
http://dx.doi.org/10.1007/s12652-017-0579-0
http://dx.doi.org/10.1109/TIM.2019.2908511
http://dx.doi.org/10.1109/THMS.2015.2453421
http://dx.doi.org/10.1109/MS.2017.4121217
http://dx.doi.org/10.1109/TITS.2015.2489261
http://dx.doi.org/10.1109/ACCESS.2017.2764467


Sensors 2021, 21, 3549 20 of 22

59. Koutli, M.; Theologou, N.; Tryferidis, A.; Tzovaras, D. Abnormal Behavior Detection for Elderly People Living Alone Lever-
aging IoT Sensors. In Proceedings of the IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE),
Athens, Greece, 28–30 October 2019.

60. Kristaly, D.M.; Moraru, S.A.; Neamiu, F.O.l Ingureanau, D.E. Assistive Monitoirng System Inside a Smart House. In Proceedings
of the International Symposium in Sensing and Instrumentation in IoT Era (ISSI), Shanghai, China, 6–7 September 2018.

61. Su Keum, S.; Hwan Lee, C.; Ju Kang, S. Device to Device Collaboration Architecture for Real- Time Identification of User
and Abnormal Activities in Home. In Proceedings of the 29th International Telecommunication Networks and Applications
Conference (ITNAC), Auckland, New Zealand, 27–29 November 2019.

62. Bassoli, M.; Bianchi, V.; De Munari, I.; Ciampolini, P. An IoT Approach for an AAL Wi-Fi-Based Monitoring System. IEEE Trans.
Instrum. Meas. 2017, 66, 3200–3209. [CrossRef]

63. Bianchi, V.; Ciampolini, P.; De Munari, I. RSSI-Based Indoor Localization and Identification for ZigBee Wireless Sensor Networks
in Smart Homes. IEEE Trans. Instrum. Meas. 2019, 6, 566–575. [CrossRef]

64. Jayatilaka, A.; Su, Y.; Ranasinghe, D.C. HoTAAL: Home of social things meet ambient assisted living. In Proceedings of the IEEE
International Conference on Pervasive Computing and Communication Workshops, Sydney, NSW, Australia, 14–18 March 2016.

65. Pavlicevic, N.; Zaric, N.; Radonjic, M. Analysis of Ultrasound Sensor Applicability in AAL Systems for Cooking Process Monitoring.
In Proceedings of the 24th International Conference on Information Technology (IT), Zabljak, Montenegro, 18–22 February 2020.

66. Rafferty, J.; Nugent, C.D.; Liu, J.; Chen L. From Activity Recognition to Intention Recognition for Assisted Living Within Smart
Homes. IEEE Trans. Hum. Mach. Syst. 2017, 47, 368–379. [CrossRef]

67. Yoo, B.; Muralidharan, S.; Lee, C.; Lee, J.; Ko, H. KLog-Home: A Holistic Approach of In-Situ Monitoring in Elderly-Care Home.
In Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), New York, NY, USA, 1–3 August 2019.

68. Malik, A.R.; Pilon, L.; Boger, J. Development of a Smart Seat Cushion for Heart Rate Monitoring Using Ballistocardiography.
In Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), New York, NY, USA, 1–3 August 2019.

69. Muheidat, F.; Tawalbeh, L. In-Home Floor Based Sensor System-Smart Carpet to Facilitate Healthy Aging in Place (AIP).
IEEE Access 2020, 8, 178627. [CrossRef]

70. Oguntala, G.A.; Abd-Alhameed, R.A.; Ali, N.T.; Hu, Y.F.; Noras, J.M.; Eya, N.N.; Elfergani, I.; Rodriguez, J. SmartWall Novel
RFID-Enabled Ambient Human Activity Recognition Using Machine Learning for Unobtrusive Health Monitoring. IEEE Access
2019, 7, 68022–68033. [CrossRef]

71. Shirali, M.; Norouzi, M.; Ghassemian, M.; Jai-Persad, D. A Testbed Evaluation for an Indoor Temperature Monitoring System
in Smart Homes. In Proceedings of the IEEE 20th International Conference on High Performance Computing and Communications,
Exeter, UK, 28–30 June 2018.

72. Veiga, A.; García, L.; Parra, L.; Lloret, J.; Augele, V. An IoT-based Smart Pillow for Sleep Quality Monitoring in AAL Environments.
In Proceedings of the Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018.

73. Scalise, L.; Petrini, V.; Di Mattia, V.; Russo, P.; De Leo, A.; Manfredi, G.; Cerri, G. Multiparameter electromagnetic sensor for AAL
indoor measurement of the respiration rate and position of a subject. In Proceedings of the IEEE International Instrumentation
and Measurement Technology Conference (I2MTC), Pisa, Italy, 11–14 May 2015.

74. Bleda-Tomas, A.L.; Maestre-Ferriz, R.; Beteta-Medina, M.Á.; Vidal-Poveda, J.A. AmICare: Ambient Intelligent and Assistive
System for Caregivers support. In Proceedings of the IEEE 16th International Conference on Embedded and Ubiquitous
Computing (EUC), Bucharest, Romania, 29–31 October 2018.

75. Fanti, M.P.; Faraut, G.; Lesage, J.J.; Roccotelli, M. An Integrated Framework for Binary Sensor Placement and Inhabitants Location
Tracking. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 154–160. [CrossRef]

76. De, P.; Chatterjee, A.; Rakshit, A. PIR Sensor based AAL Tool for Human Movement Detection: Modified MCP based Dictionary
Learning Approach. IEEE Trans. Instrum. Meas. 2020, 69, 7377–7385. [CrossRef]

77. Jimenez, A.R.; Seco, F.; Peltola, P.; Espinilla, M. Location of persons using binary sensors and BLE beacons for ambient assitive
living. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France,
24–27 September 2018.

78. Guerra, C.; Bianchi, V.; De Munari, I.; Ciampolini, P. CARDEAGate: Low-cost, ZigBee-based localization and identification for
AAL purposes. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Proceedings, Pisa, Italy, 11–14 May 2015.

79. Chen, S. Toward Ambient Assistance: A Spatially aware Virtual Assistant eNabled by object detection. In Proceedings of the
International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020.

80. Yue, S.; Yang, Y.; Wang, H.; Rahul, H.; Katabi, D. BodyCompass: Monitoring Sleep Posture with Wireless Signals. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–25. [CrossRef]

81. Fan, L,; Li, T.; Yuan, Y.; Katabi, D. In-Home Daily-Life Captioning Using Radio Signals. Computer Science—ECCV. arXiv 2020,
arXiv:2008.10966.

82. Vahia, V.; Kabelac, Z.; YuHsu, C.; Forester, B.; Monette, P.; May, R.; Hobbs, K.; Munir, U.; Hoti, K.; Katabi, D. Radio Signal Sensing
and Signal Processing to Monitor Behavioral Symptoms in Dementia: A Case Study. Am. J. Geriatr. Psychiatry 2020, 28, 820–825.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/TIM.2017.2753458
http://dx.doi.org/10.1109/TIM.2018.2851675
http://dx.doi.org/10.1109/THMS.2016.2641388
http://dx.doi.org/10.1109/ACCESS.2020.3027535
http://dx.doi.org/10.1109/ACCESS.2019.2917125
http://dx.doi.org/10.1109/TSMC.2016.2597699
http://dx.doi.org/10.1109/TIM.2020.2981106
http://dx.doi.org/10.1145/3397311
http://dx.doi.org/10.1016/j.jagp.2020.02.012
http://www.ncbi.nlm.nih.gov/pubmed/32245677


Sensors 2021, 21, 3549 21 of 22

83. Li, L.; Shuang, Y.; Ma, Q.; Li, H.; Zhao, H.; Wei, M.L.; Liu, C.; Hao, C.; Qiu, C.; Cui, T. Intelligent metasurface imager and recognizer.
Light Sci. Appl. 2019, 8, 97. [CrossRef]

84. del Hougne, P.; Imani, M.; Diebold, A.; Horstmeyer, R.; Smith, D. Learned Integrated Sensing Pipeline: Reconfigurable
Metasurface Transceivers as Trainable Physical Layer in an Artificial Neural Network. Adv. Sci. 2020, 7, 1901913. [CrossRef]
[PubMed]

85. Li, H.Y.; Zhao, H.T.; Wei, M.L. ; Ruan, H.X.; Shuang, Y.; Cui, T.J.; del Hougne, P.; Li, L. Intelligent Electromagnetic Sensing with
Learnable Data Acquisition and Processing. Patterns 2020, 1, 100006. [CrossRef]

86. Cebanov, I.; Dobre, C.; Gradinar, A.; Ciobanu, R.I.; Stanciu, V.D. Activity Recognition for Ambient Assisted Living using
off-the shelf Motion sensing input devices. In Proceedings of the Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019.

87. Ryselis, K.; Petkus, T.; Blazauskas, T.; Maskeliunas, R.; Damasevicius, R. Multiple Kinect based system to monitor and analyze
key performance indicators of physical training. Hum. Centr. Comput. Inf. Sci. 2020, 10, 51. [CrossRef]

88. Thamil Amudhu, L.B. A review on the use of socially assistive robots in education and elderly care. Mater. Today Proc. 2020,
in press. [CrossRef]

89. Hasenauer, R.; Belviso, C.; Ehrenmueller, I. New Efficiency: Introducing Social Assistive Robots in Social Eldercare Organizations.
In Proceedings of the IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE), Hangzhou, China, 24–26
October 2019.

90. Kearney, K.T.; Presenza, D.; Saccá, F.; Wright, P. Key challenges for developing a Socially Assistive Robotic (SAR) solution
for the health sector. In Proceedings of the IEEE 23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), Barcelona, Spain, 17–19 September 2018.

91. Ramdani, N.; Panayides, A.; Karamousadakis, M.; Mellado, M.; Lopez, R.; Christophorou, C.; Rebiai, M.; Blouin, M.; Vellidou, E.;
Koutsouris, D. A Safe, Efficient and Integrated Indoor Robotic Fleet for Logistic Applications in Healthcare and Commercial
Spaces: The ENDORSE Concept. In Proceedings of the 20th IEEE International Conference on Mobile Data Management (MDM),
Hong Kong, China, 10–13 June 2019.

92. Bui, H.D.; Chong, N.Y. An Integrated Approach to Human-Robot-Smart Environment Interaction Interface for Ambient Assisted Living.
In Proceedings of the IEEE Workshp on Advanced Robotics and Its Social Impacts (ARSO), Genova, Italy, 27–29 September 2018.

93. Loghmani, M.R.; Patten, T.; Vincze, M. Towards Socially Assistive Robots for Elderly: An End-to-end Object Search Framework.
In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Athens, Greece, 19–23 March 2018.

94. Lloret, J.; Canovas, A.; Sendra, S.; Parra, L. A smart communication architecture for ambient assisted living. IEEE Commun. Mag.
2015, 53, 26–33. [CrossRef]

95. Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia N. Improving Activity
Recognition Accuracy in Ambient-Assisted Living Systems by Automated Feature Engineering. IEEE Access 2017, 5, 5262–5280.
[CrossRef]

96. Al Machot, F.; Haj Mosa, A.; Ali, M.; Kyamakya, K. Activity Recognition in Sensor Data Streams for Active and Assisted Living
Environments. IEEE Trans. Circuits Syst. Video Technol. 2018, 5, 951–953. [CrossRef]

97. Machot, F.A.; Ranasinghe, S.; Plattner, J.; Jnoub, N. Human Activity Recognition based on Real Life Scenarios. In Proceed-
ings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
Athens, Greece, 19–23 March 2018.

98. Mitchell, T. Machine Learning; McGraw Hill: New York, NY, USA, 1997.
99. Bishop, C. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
100. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018.
101. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal P. Long short-term memory networks foranomaly detection in time series. In Proceedings

of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’15),
Bruges, Belgium, 22–24 April 2015.

102. Ramachandran, A.; Adarsh, R.; Pahwa, P.; Anupama, K.R. Machine Learning-Based Techniques for Fall Detection in Geriatric
Healthcare Systems. In Proceedings of the 9th International Conference on Information Technology in Medicine and Education
(ITME), Hangzhou, China, 19–21 October 2018.

103. Sarabia-Jacome, D.; Lacalle, I.; Palau, C.E.; Estevé, M. Efficient Deployment of Predictive Analytics in Edge Gateways: Fall
Detection Scenario. In Proceedings of the IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18
April 2019.

104. Sangavi, S.; Mohammed Hashim, B.A. Human Activity Recognition for Ambient Assisted Living. In Proceedings of the Interna-
tional Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India, 30–31
March 2019.

105. Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; De Munari, I. IoT Wearable Sensor and Deep Learning: An
Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment. IEEE Internet Things J. 2019, 6,
8553–8562. [CrossRef]

106. Mojarad, R.; Attal, F.; Chibani, A.; Amirat, Y. Automatic Classification Error Detection and Correction for Robust Human Activity
Recognition. IEEE Robot. Autom. Lett. 2020, 5, 2208–2215. [CrossRef]

http://dx.doi.org/10.1038/s41377-019-0209-z
http://dx.doi.org/10.1002/advs.201901913
http://www.ncbi.nlm.nih.gov/pubmed/32042558
http://dx.doi.org/10.1016/j.patter.2020.100006
http://dx.doi.org/10.1186/s13673-020-00256-4
http://dx.doi.org/10.1016/j.matpr.2020.09.602
http://dx.doi.org/10.1109/MCOM.2015.7010512
http://dx.doi.org/10.1109/ACCESS.2017.2684913
http://dx.doi.org/10.1109/TCSVT.2017.2764868
http://dx.doi.org/10.1109/JIOT.2019.2920283
http://dx.doi.org/10.1109/LRA.2020.2970667


Sensors 2021, 21, 3549 22 of 22

107. Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Tröster, G.; Millán, J.D.R.; Roggen, D. The opportunity challenge:
A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042. [CrossRef]

108. Forkan, A.R.; Branch, P.; Jayaraman, P.P.; Ferretto, A. An Internet-of-Things Solution to Assist Independent Living and Social
Connectedness in Elderly. ACM Trans. Soc. Comput. 2020, 2, 1–24. [CrossRef]

109. Mandaric, K.; Skocir, P.; Vukovic, M.; Jezic, G. Anomaly Detection Based on Fixed and Wearable Sensors in Assisted Living
Environments. In Proceedings of the International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Split, Croatia, 19–21 September 2019.

110. Ghayvat, H.; Mukhopadhyay, S.; Shenjie, B.; Chouhan, A.; Chen, W. Smart Home Based Ambient Assisted Living: Recognition
of anomaly in the activity of daily living for an elderly living alone. In Proceedings of the IEEE International Instrumentation
and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018.

111. Biagi, M.; Carnevali, L.; Paolieri, M.; Patara, F.; Vicario, E. A Continuous-Time Model-Based Approach for Activity Recognition
in Pervasive Environments. IEEE Trans. Hum. Mach. Syst. 2019, 49, 293–303. [CrossRef]

112. Forkan, A.R.M.; Khalil, I.; Tari, Z.; Foufou, S. A context-aware approach for long-term behavioural change detection and abnor-
mality prediction in ambient assisted living. Pattern Recognit. 2015, 48, 628–641. [CrossRef]

113. Nose, T.; Kitamura, K.; Ohkura, M. Data-driven child behavior prediction system based on posture database for fall accident
prevention in a daily living space. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5845–5855. [CrossRef]

114. Siriwardhana, C.; Madhuranga, D.; Madushan, R.; Gunasekera, K. Classification of Activities of Daily Living Based on Depth
Sequences and Audio. In Proceedings of the 14th Conference on Industrial and Information Systems (ICIIS), Kandy, Sri Lanka,
18–20 December 2019.

115. Malekmohamadi, H.; Moemeni, A.; Orun, A.; Purohit, J.K. Low-Cost Automatic Ambient Assisted Living System. In Proceed-
ings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
Athens, Greece, 19–23 March 2018.

116. Bagate, A.; Shah, M. Human Activity Recognition using RGB-D Sensors. In Proceedings of the International Conference on
Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019.

117. Chowdhury, A.; Bhattacharya, S.; Ghose, A.; Krishnan, B. Early Detection of Mild Cognitive Impairment using Pervasive Sensing.
In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 23–27 July 2019.

118. Gupta, P.; McClatchey, R.; Caleb-Solly, P. Tracking changes in user activity from unlabelled smart home sensor data using
unsupervised learning methods. Neural Comput. Appl. 2020, 32, 12351–12362. [CrossRef]

119. Ni, B.; Wang, G.; Moulin, P. RGBD-HuDaAct: A Color-Depth Video Database for Human Daily Activity Recognition. In Proceedings
of the IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011.

120. Smartphone Dataset for Human Activity Recognition (HAR) in Ambient Assisted Living (AAL) Data Set. Available online:
http://archive.ics.uci.edu/ml/datasets/ (accessed on 25 February 2021).

121. De-La-Hoz-Franco, E.; Ariza-Colpas, P.; Medina Quero, J.; Espinilla, M. Sensor-Based Datasets for Human Activity Recognition—
A Systematic Review of Literature. IEEE Access 2018, 6, 59192–59210. [CrossRef]

122. Liappas, N.; Terius-Padron, J.G.; Machado, E.; Loghmani, M.R.; Garcia-Betances, R.I.; Vincze, M.; Quero, I.C.; Cabrera-Umpierrez,
M.F. Best Practices on Personalization and Adaptive Interaction Techniques in the Scope of Smart Homes and Active Assisted
Living. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Leicester, UK,
19–23 August 2019.

123. Elahi, H.; Castiglione, A.; Wang, G.; Geman, A. A human-centered artificial intelligence approach for privacy protection of elderly
App users in smart cities. Neurocomputing 2021, 444, 189–202. [CrossRef]

124. Lameski, P.; Dimitrievski, A.; Zdravevski, E.; Trajkovik, V.; Koceski, S. Challenges in data collection in real-world environments
for activity recognition. In Proceedings of the IEEE EUROCON 2019 -18th International Conference on Smart Technologies,
Novi Sad, Serbia, 1–4 July 2019.

125. Iglesias, A.; Viciana-AbadJose, R.; Perez-Lorenzo, M.; Lan Hing Ting, K.; Tudela, A.; Marfil, R.; Duenas, A.; Pedro Bandera, J. Towards
long term acceptance of Socially Assistive Robots in retirement houses: Use case definition. In Proceedings of the IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal, 15–17 April 2020.

126. Plentz, P.; De Pieri, E.R. An Overview on Real-Time Constraints for Ambient Intelligence (AmI). In Proceedings of the IEEE/ACS
15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1 November 2018.

http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1145/3363563
http://dx.doi.org/10.1109/THMS.2019.2903091
http://dx.doi.org/10.1016/j.patcog.2014.07.007
http://dx.doi.org/10.1007/s12652-020-02097-6
http://dx.doi.org/10.1007/s00521-020-04737-6
http://archive.ics.uci.edu/ml/datasets/
http://dx.doi.org/10.1109/ACCESS.2018.2873502
http://dx.doi.org/10.1016/j.neucom.2020.06.149

	Introduction
	Application Contexts
	Target Users
	Indoor Environments
	Outdoor Environments

	Technologies
	Wearable Sensors
	Smart Everyday Objects
	Environmental Sensors
	Social Assistive Robots
	Discussion: Pros and Cons of Different Technologies

	Methodologies for Data Analysis
	Discussion
	Conclusions
	References

