
      

      
                                                                                                 http://dx.doi.org/10.14336/AD.2022.0109       

 

*Correspondence should be addressed to: Dr. Xiao Xu, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First 

People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; E-mail: zjxu@zju.edu.cn. #These authors contributed 

equally to this work. 
 

Copyright: © 2022 Gao F. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
 

ISSN: 2152-5250                                                                                                                                                                                     1196 
                  

 

  

Review 

 

Targeting the Hepatic Microenvironment to Improve 

Ischemia/Reperfusion Injury: New Insights into the 

Immune and Metabolic Compartments 
 

Fengqiang Gao1,6,#, Xun Qiu1,6,#, Kai Wang1, Chuxiao Shao7, Wenjian Jin8, Zhen Zhang6, Xiao 

Xu1,2,3,4,5* 

 

1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision 

Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 

China. 2Zhejiang University Cancer Center, Hangzhou, China. 3Department of Hepatobiliary and Pancreatic 

Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. 4NHC Key 

Laboratory of Combined Multi-organ Transplantation, Hangzhou, China. 5Institute of Organ Transplantation, 

Zhejiang University, Hangzhou, China. 6Zhejiang University School of Medicine, Hangzhou, China. 7Department 

of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, 

Lishui, China. 8Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Soochow University, 

Changzhou, China 
 

  [Received September 23, 2021; Revised January 8, 2022; Accepted January 9, 2022] 

 
ABSTRACT: Hepatic ischemia/reperfusion injury (IRI) is mainly characterized by high activation of immune 

inflammatory responses and metabolic responses. Understanding the molecular and metabolic mechanisms 

underlying development of hepatic IRI is critical for developing effective therapies for hepatic IRI. Recent 

advances in research have improved our understanding of the pathogenesis of IRI. During IRI, hepatocyte injury 

and inflammatory responses are mediated by crosstalk between the immune cells and metabolic components. 

This crosstalk can be targeted to treat or reverse hepatic IRI. Thus, a deep understanding of hepatic 

microenvironment, especially the immune and metabolic responses, can reveal new therapeutic opportunities for 

hepatic IRI. In this review, we describe important cells in the liver microenvironment (especially non-

parenchymal cells) that regulate immune inflammatory responses. The role of metabolic components in the 

diagnosis and prevention of hepatic IRI are discussed. Furthermore, recent updated therapeutic strategies based 

on the hepatic microenvironment, including immune cells and metabolic components, are highlighted. 

 

Key words: hepatic microenvironment, ischemia/reperfusion injury, immune cell, metabolic compartment, 

inflammatory response, therapeutic strategies 

 

 
1. Introduction  

 

Ischemia/reperfusion injury (IRI), resulting from 

ischemic insult and subsequent blood reperfusion, occurs 

in all aerobic cells that require mitochondrial oxidative 

phosphorylation for energy provision [1]. IRI is caused by 

trauma, shock, ischemic stroke, thrombolysis, coronary 

disease intervention and major surgeries [2-4]. Two major 

types of liver IRI have been reported, including warm 

injury and cold injury. Warm injury occurs during shock, 

trauma, respiratory failure, bleeding, heart failure, and 

prolonged surgical liver resection due to impaired blood 

perfusion [5, 6]. Cold injury mainly occurs during liver 

transplantation due to ex vivo cold-preservation of the 
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donor organ, and the subsequent warm reperfusion to the 

implanted organ [7]. 

The degree of hepatic IRI is dependent on duration 

and type of ischemia, as well as the condition of the liver 

[8, 9]. In a clinical trial, cirrhotic or chronic liver injury 

showed worse tolerance to IR insult [10]. Evidence from 

preclinical experiments also support the standpoint that 

the background of hepatic microenvironment 

significantly determines the tolerance of IR [11]. 

The development of hepatic IRI is a complex process 

involving several factors such as metabolic disorders and 

inflammatory responses [12]. Considerable studies have 

investigated the molecular mechanisms of hepatic IRI, 

especially roles of Kupffer cells (KCs) in the generation 

of reactive oxygen species (ROS) and regulation of 

inducible nitric oxide synthase [13]. However, few studies 

have explored the impact of metabolic components on the 

development and progression of IRI. Furthermore, the key 

role of immune and metabolic compartments in hepatic 

microenvironment has not been systematically reported 

yet. In this review, the pathological changes associated 

with hepatic IRI are stated as well as the role of hepatic 

microenvironment (especially non-parenchymal cells). 

The immune responses and metabolic compartments 

involved in the process of IRI are discussed. Also, current 

therapeutic strategies for IRI are presented. Finally, the 

clinical translation potential of the findings from basic 

research are reviewed.  

  

2. Pathophysiological alterations of hepatic IRI 

 

Originally, IRI was first described by Jennings in 1960 as 

a phenomenon caused by hypoxia and accentuated by 

restoration of oxygen into tissues [14]. Development of 

hepatic IRI has two interrelated phases: ischemic insult 

and inflammation-mediated reperfusion injury (Fig. 1).  

 
Figure 1. The regulation of liver microenvironment during different periods of hepatic ischemia/reperfusion 

injury. A summary of the immune components of liver microenvironment during the continuous phase of 

ischemia/reperfusion injury is manifested. LSEC, liver sinusoidal endothelial cell; HSC, hepatic stellate cell; KC, kupffer 

cell; ROS, reactive oxygen species; ECM, extracellular matrix. 

During liver transplantation, early allograft 

dysfunction (EAD) and primary non-function (PNF) have 

been associated with high rate of mortality and often due 

to perioperative IRI [15, 16]. Numerous studies have 

demonstrated that IRI is one of the most important factors 

leading to EAD which has an incidence up to 43.7% in 

patients with IRI [17, 18]. Hepatic EAD and failure of 

remnant liver increase the shortage of liver donors [19]. 

More importantly, the two factors may complicate post-

transplant patient care, leading to poor liver 

transplantation (LT) outcomes. To improve outcomes, the 

specific mechanisms leading to hepatic IRI, and more 

targeted therapies should be explored. 
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Figure 2. The regulation of liver microenvironment components, including hepatic parenchymal cells, hepatic non-parenchymal 

cells (hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, neutrophils and lymphocytes), and extracellular matrix, 

during hepatic ischemia/reperfusion injury. A summary of the specific molecular mechanisms regulating hepatocytes and interactions 

in the liver microenvironment are shown. LSEC, liver sinusoidal endothelial cell; HSC, hepatic stellate cell; KC, Kupffer cell; ROS, 

reactive oxygen species; ECM, extracellular matrix; IL-1, interleukin 1; IL-6, interleukin 6; IL-17, interleukin 17; IL-33, interleukin 33; 

IL-1β, interleukin 1β; HMGB1, high-mobility group box 1; IAC, inflammation associated cytokine; TNF-α, tumor necrosis factor α; 

PAF, platelet activating factor; MIP-2, macrophage inflammatory protein 2; ENA-78, epithelial neutrophil activating protein 78; NF-

κB, nuclear factor κB; TLR4, Toll like receptor 4; LPS, lipopolysaccharide; HO-1, heme oxygenase-1; RANTES, regulated upon 

activation normal T cell expressed and secreted factor; VEGF, vascular endothelial growth factor; IFN-γ, interferon γ; GM-CSF, 

granulocyte-macrophage colony-stimulating factor; ICAM-1, intercellular adhesion molecule-1; Bcl-2/Bcl-x, B cell lymphoma 2/x; 

TXA2, thromboxane; KFL2, kruppel like transcription factor 2; ET-1, endothelin 1; JNK, N terminal kinase; CAM, cell adhesion 

molecule; cGMP, cyclic guanosine monophosphate; RBP4, retinol binding protein; Ang 1-7, angiotensin 1-7; Ang Ⅱ, angiotensin Ⅱ; 

MnSOD, manganese containing superoxide dismutase; CytC, cytochrome C. 

The ischemia phase, which initiates reperfusion 

injury, is characterized by various factors involved in the 

inflammatory reactions. During this phase, vascular 

closure or obstruction decrease the expression of adenosis 

triphosphate synthase subunit delta (ATP5D) of the 

respiratory chain in mitochondria, thereby compromising 

ATP synthesis [20-22]. This is also accompanied by 

aggregation of lactic acid and ketone bodies in hepatic 

cells, causing metabolic acidosis [23]. 

The process of reperfusion has two phases. During 

the initial phase, KCs (liver-resident macrophages) are 

activated to induce oxidative stress. In the later period, 6-

24 hours after reperfusion, numerous hepatic non-

parenchymal cells are activated or accumulated to release 
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inflammatory mediators, cytokines and complements [24, 

25]. Hypoxanthine oxidase catalyzes the breakdown of 

hypoxanthine to form water and oxygen, thus releasing 

ROS [26]. ROS generated by O2 reintroduction into 

ischemic tissues leads to severe liver damage. The 

mitochondria are important sources of ROS generated in 

the liver cells [27]. So, the maintenance of mitochondrial 

viability is important to the treatment of IRI. More 

importantly, it has been reported that AMP-activated 

protein kinase (AMPK) and protein kinase C (PKC) are 

activated by excessive AMP, resulting in the translocation 

of reduced form of nicotinamide-adenine dinucleotide 

phosphate (NADPH) subunits p67 and p47 from the 

cytosol to membrane, where they activate membrane 

subunit p91 and NADPH oxidase in turn [28]. Activation 

of NADPH oxidase leads to the production of large 

amounts of superoxide anions, which aggravate hepatic 

damage, leading to organ failure.  

 

3. Role of age in hepatic IRI 

 

In recent years, the percentage of liver grafts obtained 

from aged donors (over 70 years old) has been on the 

increase. This has led to the development of strategies to 

prevent IRI in aged individuals receiving liver 

transplantation. Accumulating experimental evidence has 

indicated that the aging process of liver has 3 dominant 

processes: enhancement of inflammatory response, 

impairment of intracellular energy metabolism and 

alteration of autophagy [29].  

It has been reported that enhancing intercellular 

adenosine triphosphate (ATP) levels through glucose 

administration has effectively mitigated liver IRI [30]. In 

addition, application of pentoxifylline to inhibit the 

activation of TNF-α and melatonin to increase nitric oxide 

(NO) formation alleviated liver damage in aged 

individuals [31]. As for the autophagy, aging contributes 

to autophagy impairment, which renders aged livers 

susceptible to IRI. Lithium, as an autophagy inducer, has 

been shown to be effective to restore the reduced tolerance 

to liver IRI [32]. 

 

4. Hepatic microenvironment 

 

The hepatic microenvironment comprises hepatic 

parenchymal cells, hepatic non-parenchymal cells 

(hepatic stellate cells, macrophages, sinusoidal 

endothelial cells, neutrophils, and lymphocytes), 

extracellular matrix, and nervous systems. Both 

parenchymal and non-parenchymal cells in the 

microenvironment modulate IRI progression, especially 

non-parenchymal cells [33-35]. Therefore, the 

characteristics of non-parenchymal cells (Fig. 2) will be 

discussed in more details in the ensuing sections. 

4.1 Hepatic stellate cells 

 

Hepatic stellate cells (HSCs), as the major components of 

the non-parenchymal cells in the liver, have important 

physiological and pathological roles on intrahepatic Disse 

space, which is an area between hepatocytes and 

sinusoids. HSCs can participate in the regulation of blood 

flow with extending cytoplasmic processes around 

hepatic sinusoids. Once activated, HSCs transform into 

myofibroblast-like cells, which express proteins like 

myosin and α-smooth muscle actin (α-SMA), allowing 

them to contract [36, 37].  

Endothelin (ET) has been reported to regulate 

hepatic sinus blood flow through HSCs [38]. Recent 

clinical trials have shown that HSCs are the effector of 

sevoflurane, which decrease ROS and hydrogen peroxide 

(H2O2) production, and hepatocytic apoptosis [39]. These 

effects are produced by suppressing the expression of 

BCL2-associated X (Bax) and elevating B cell lymphoma 

2 (Bcl-2) levels[40]. In mouse model of IRI, Xu et al. 

showed that sevoflurane can inhibit the expression of high 

mobility group box 1 (HMGB1) to up-regulate 

microRNA (miR)-142 [41]. Adoptive HSCs confer 

protection against IRI by inducing newborn inducible 

regulatory T cells (iTregs) and increasing the stability of 

natural regulatory T cells (nTregs) [42]. Also, FGF10, 

belongs to the FGF subfamily, shown to be predominantly 

secreted by HSCs in vitro experiments [43]. In the early 

phase of IRI, overexpression of FGF10 alleviated liver 

dysfunction through the activation of phosphatidy-

linositol-3-kinase (PI3K)/AKT/nuclear factor-erythroid 

2-related factor 2 (NRF2) pathways. This protective role 

was abolished by NRF2 knockout in mice. Elsewhere, it 

was found that FGF10 overexpression also increased 

hepatocyte proliferation in the late phase of IRI [44, 45].  

The proliferation of HSCs at the boundaries of 

necrotic liver regions improves hepatic repair and 

regeneration [46]. Classical theory stipulates that those 

fibrotic livers are at a higher risk of developing IRI. 

However, fibrotic livers have an enhanced repair capacity 

compared with normal liver [47]. HSCs also can regulate 

the activity and viability of progenitor cells, adjacent 

hepatocytes, and Ly6Clo macrophages, to promote hepatic 

recovery after IRI [48, 49].    

 

4.2 Macrophages 

 

Liver injury provokes the activation of Kupffer cells 

(KCs), infiltration of circulating macrophages, and 

employment of peritoneal macrophages. Different 

subpopulations of macrophages have varying roles in the 

development of liver IRI [50]. During liver injury, 

majority of KCs are rapidly activated by ROS, releasing 

HMGB1 and inflammation-associated cytokines (IAC) 
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like interleukin 1 (IL-1), interleukin 6 (IL-6), interleukin 

1β (IL-1β), TNF-α and platelet-activating factor (PAF) 

[51, 52]. In turn, ROS can cause mitochondrial damage, 

resulting in the leakage of mitochondrial deoxyribo-

nucleic acid (mtDNA) into the cytosol [53]. Then the 

mtDNA can be recognized by DNA sensor cyclic GMP-

AMP synthase (cGAS), and can activate stimulator of 

interferon genes (STING), leading to impaired innate 

immune response [54]. A previous animal study showed 

that increased mtDNA induced STING activation in 

macrophages, which triggered a more severe immune 

response accompanied by upregulating of IL-6, IL-18, IL-

1β, and TNF-α levels via the STING-NLRP3 pathway 

[55]. 

A proportion of KCs are activated by IFN-γ, which 

is produced by CD4+ T-cells and natural killer T-cells 

[56]. Indeed, TNF-α and IL-1 are among the most 

important cytokines contributing to the development of 

hepatic IRI. IL-1 can stimulate the release of ROS from 

neutrophils, thereby amplifying TNF-α production [57]. 

TNF-α also provokes the expression of P-selectin in liver 

sinusoidal endothelial cells (LSECs), hence contribute to 

neutrophil recruitment [58]. In addition, TNF-α has been 

reported to enhance the release of other factors like 

macrophage inflammatory protein-2 (MIP-2), epithelial 

neutrophil activating protein-78 (ENA-78), cytokine-

induced neutrophil chemoattractant-1 (CINC), and 

various CXC motif chemokines [59], which significantly 

enhance neutrophils infiltration.  

Recent studies have demonstrated that the role of 

nuclear factor κB (NF-κB) varies across different cell 

types [51]. In the liver, NF-κB mainly promotes the 

expression of TNF-α and IL-6, contributing to 

inflammatory responses [60]. Resting-state KCs express a 

small amount of CD14 receptor and Toll-like receptor 4 

(TLR4). However, it has been shown that CD14 receptor 

and TLR4 are upregulated in response to hepatic IRI. 

CD14, a receptor for complexes of lipopolysaccharide 

(LPS) and LPS binding protein, activates TLR4 upon 

binding to LPS, which leads to inflammatory responses 

and oxidative stress [61, 62]. Moreover, the expression of 

transmembrane G protein-coupled bile acid receptor 

(TGR5) is highly observed in KCs. Yang et al. [63] found 

that TGR5 mitigated the increase in TLR4-NF-κB and 

reduced caspase 8 activation after IRI. In addition, TGR5 

has been revealed to attenuate liver damage following IRI 

through the Keap 1-NRF2 pathway, as evidence by serum 

ALT and AST tests and cytokines expression [64]. Jin et 

al. [65] found that the activation of farnesoid X receptor 

(FXR) led to upregulation of small heterodimer partner 

(SHP) in KCs, which decreased the proinflammation 

injury but increased expression levels of anti-

inflammatory gene expression following TLR 

stimulation.  

    The activation status of KCs correlates with the 

aggregation of platelets [66] and over 50% of platelets 

adhere to the activated KCs in the early-phase of IRI. This 

adherence to KCs disturbs hepatic microcirculation and 

aggravates hepatic IRI. These effects are mediated by the 

PAF released from activated KCs [67]. Furthermore, 

deletion of the serum complement attenuates KC-induced 

oxidative stress. Complement-depleted animals have 

decreased the accumulation of neutrophil [68-70]. 

Interestingly, it was found that macrophage extracellular 

trap was increased in co-cultured experiment subjected to 

IRI. Moreover, macrophage extracellular trap aggravated 

ferroptosis, thereby causing an increasing post-ischemia 

liver damage [71]. 

However, the effects of KCs in other studies are 

opposite. In most studies, the role of KCs was investigated 

at the tissue level but not at cell type-specific level. Tissue 

resident macrophages, derived from yolk sac, play an 

important role in the maintenance of tissue homeostasis 

[72, 73]. Previously, it was found that the activation of 

immune response by IR was associated with the necrotic 

depletion of KCs. During post-ischemia, KCs conferred 

anti-inflammatory and anti-lethality effect, indicating that 

KCs can be a novel mechanism against liver IRI, such as 

RIP-1-dependent necrosis [74]. In addition, fully mature 

F4/80hi GATA6+ peritoneal cavity macrophages were 

reported to be recruited to the injury site via the 

mesothelium following liver injury. These cells acquired 

an activated phenotype and dismantle nuclei of necrotic 

cells to promote full revascularization of the injury site 

[75]. 

Heme oxygenase-1 (HO-1), a rate-limiting enzyme 

mainly released by KCs, emerges the anti-oxidative and 

anti-inflammatory functions. It has been reported that 

treatment with HO-1 inducer, Copp, decreased the levels 

of many inflammatory factors [76]. HO-1-SIRT1-p53 

complex downregulated KCs recruitment thereby 

alleviated IRI [77]. In addition, a recent study has found 

that the activation of the NRF2/HO-1 pathway suppressed 

the NLRP3 inflammasome via enhancing KC autophagy, 

hence alleviated hepatic IRI [78]. Although KCs can 

polarize to M1 or M2, they usually polarize to M1 type 

after hepatic IRI, which aggravates hepatic IRI [79]. 

Activation of M2 macrophages has been reported to 

counteract the pro-inflammatory effects of M1 when 

activated, which inhibits pro-inflammatory signaling [80]. 

A previous study has demonstrated that SS-31, a 

mitochondrial-targeted antioxidant peptide, directly 

decreases ROS production and regulates signal transducer 

and activator of transcription 1/3 (STAT1/STAT3) 

signaling in macrophages, causing M2 polarization 

phenotype. The peptide also decreased the production of 

proinflammation cytokines, thereby mitigating 

inflammatory response in the liver [81].  
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4.3 T lymphocyte 

 

T lymphocytes are derived from bone marrow pluripotent 

stem cells, which are a major component of lymphocytes. 

Mature T-lymphocytes are located in thymus-dependent 

areas of peripheral immune organs and involved in 

cellular immunity and immune regulation. In 1997, it was 

reported for the first time that T-lymphocytes are 

increased rapidly in post-ischemic liver, and it is the CD4+ 

T-cells but not CD8+ T-cells that accumulate in the liver 

1 h after IRI [82].  

An antigen-independent mechanism of T-

lymphocyte activation following RANTES stimulation 

has been found to initiate the gathering of T-lymphocyte 

directly via a G-protein-coupled pathway [83]. 

Additionally, the CD154-CD40 T-cells co-stimulation 

pathway has been identified as an effective driver of T-

lymphocyte accumulation and activation [84]. IL-17, 

released by T-lymphocytes, is associated with the 

recruitment of neutrophils. IL-17 also contributes to 

CXC chemokine secretion through other cells, including 

endothelial cells, fibroblasts, epithelial cells, and 

osteoblasts. Mice with CD4-konckout and treatment 

with anti-IL-17 antibodies showed reduced expression 

of macrophage inflammatory protein 2 (MIP-2) [85, 86]. 

About 30% of recruited CD4+ T-cells are located in 

hepatic sinusoids, where they enhance platelet-

adherence and neutrophil-recruitment, causing micro-

vascular injury and hepatocyte cell death [87, 88].  

As early as in 1995, lymphocytes were reported to 

exert pro-inflammatory or anti-inflammatory effects by 

producing IFN-γ or IL-4, respectively [89]. IFN-γ triggers 

early inflammatory responses and KCs activation, but IL-

4 suppresses the inflammatory response. Additionally, T-

cell immunoglobulin mucin (TIM) family members may 

downregulate IR-triggered hepatic injury and 

cytokine/chemokine programs [90]. Indeed, interaction 

between TIM-3 and its galectin-9 (Gal-9) ligand inhibits 

Th1-mediated auto/allo-immune responses. Specifically, 

it can promote peripheral immune tolerance by 

readjusting macrophage activation and supporting hepatic 

homeostasis [91, 92]. 

 

4.4 Neutrophils 

 

Neutrophils, as innate immune cells, can identify 

inflammatory sites and eliminate microorganisms or 

damaging cells. It is inflammatory response overreaction 

that causing liver IRI. Some studies suggest that 

neutrophils have a pivotal role mainly in the late period of 

liver IRI [93, 94].   

Although hepatocytes generate ROS during the 

initial period of hepatic injury, it is ROS released by 

neutrophils that causes the most severe injury to 

hepatocytes, leading to mitochondrial permeability 

transition or mitochondrial dysfunction with calcium 

accumulation [95]. Once recruited to liver, neutrophils 

can express cell-surface adhesion molecules, such as P-

selectin, L-selectin, and β2-integrins (CD11b/CD18) 

which bind to hepatocytes through the intercellular 

adhesion molecule-1 (ICAM-1) and vascular adhesion 

molecule-1 (VCAM-1) on LSECs [96, 97]. It has been 

suggested that high expression of adhesion molecules, 

especially P-selectin, increases neutrophils production 

and subsequent liver damage [98]. In one study, 

recombinant P-selection glycoprotein ligand 

immunoglobulin (rPSGL-Ig), as a glycoprotein that binds 

P-selectin, was found to inhibit neutrophil adhesion. 

Moreover, desferriexochelin 772SM (D-Exo) enhanced 

the capacity of rPSGL-Ig to better protect against liver IRI 

[99]. Degranulation of activated neutrophils may release 

numerous proteases, including cathepsin G, elastase, 

heparinase, and hydrolytic enzymes [100]. It has been 

found that treatments with protease inhibitors can 

attenuate hepatic damage, thus the ONO-5046 may 

become an effective target for liver IRI prevention [101].  

 

4.5 Liver sinusoidal endothelial cell 

 

Liver sinusoidal endothelial cells (LSECs) account for up 

to 70% of hepatic non-parenchymal cells. LSECs form the 

vascular wall of hepatic sinusoid but do not have an 

organized basal membrane. The cytoplasm of these 

flattened cells contains clusters called sieve plates, which 

make the hepatic microvascular endothelium 

discontinuous. Reports have suggested that LSECs confer 

protection against inflammation and regulate vascular 

homeostasis, vascular tone, and toxicant clearance [102]. 

On the other hand, hepatic sinusoid has been found to be 

susceptible to IRI. Injury to LSECs is more serious 

compared to injury to hepatocytes [103]. LSECs are the 

main source of IL-33 in normal liver, although necrotic 

cells also release IL-33 which signals tissue damage. IL-

33 can activate cyclin D1, p38, MAPK and Bcl-2, thereby 

protect against hepatic injury and suppress inflammatory 

responses [104-106]. 

However, LSECs have been shown to exert 

detrimental effects. For example, the elevation of ICAM-

1 in LSECs was reported to aggravate hepatic IRI, leading 

to the aggregation and adherence of neutrophils and 

platelets to LSEC, which stagnate the hepatic sinus 

microcirculation [107]. Other studies have shown that 

LSECs release NO and ET, which help to balance of 

hepatic microcirculation. Increased levels of ET and 

thromboxane (TXA2) after IR can trigger contraction of 

the sinusoidal lumen and HSCs, hence exacerbate the 

injury [108]. 
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5. Metabolic compartment 

 

The metabolic compartments are also generally thought to 

influence the degree of hepatic IRI [109]. Assessment of 

metabolic variation over time can reveal the 

pathophysiological state of hepatic IRI and is important to 

the optimal choice of treatments (Fig. 3). 

 
Figure 3. Metabolic compartments regulate the process of hepatic ischemia/reperfusion injury. A summary of 

metabolic components of the liver microenvironment during phase of ischemia/reperfusion injury is manifested. iTregs, 

inducible regulatory T cells; ATP, adenosine triphosphate; BA, bile acid; Drp1, dynamin-related protein 1; HIF-1α, hypoxia-

inducible factor-1. 

5.1 Metabolic acidosis 

 

Acidic microenvironment, as a result of accumulation of 

acidic substances such as ketone bodies and lactic acid, 

promotes hepatocyte injury associated with IRI. High 

levels of lactate act as Damage-Associated Molecular 

Patterns (DAMPs) thus promoting inflammatory response 

at the reperfusion phase [110]. Furthermore, intracellular 

acidosis causes imbalance of protein turnover leading to 

enzymatic inhibition and vital protein destruction as well 

as blocking ATP reserve reconstitution after reperfusion 

[111, 112].  

Notably, iTregs are different from naive T-cells in 

the peripheral environment in that they promote the 

recovery of liver function after IRI. Acidic 

microenvironment inhibits the generation and function of 

CD4+CD25+Foxp3+ iTregs through PI3K/AKT/mTOR 

signaling [113, 114]. Several studies have explored the 

role of acid-base homeostasis in maintaining normal 

cellular response and immune system homeostasis. 

Furthermore, acidic microenvironment triggers 

upregulation of NO synthase in macrophages, 

accumulation of neutrophils, deactivation of the 

cytoplasmic- and membrane-associated enzyme, as well 

as downregulates synthesis of cAMP, proteins, and DNA 

[115, 116]. Furthermore, Golse et al. reported that arterial 

lactate concentration at the end of LT (LCEOT) ≥5 

mmol/L is an effective predictor of early graft outcomes 

[117]. Therefore, acidic microenvironment plays an 

important role in the progression of liver IRI, and lactate 

clearance can be used to alleviate liver IRI. 

 

5.2 Glucose and fatty acid metabolism  

 

One study have demonstrated that the availability of 

glycolytic substrates maintains ATP and promotes 

functional recovery during reperfusion phase [118]. 

Given this, the low pool of glycogen in IR causes more 

rapid ATP depletion, as well as alterations in tissue 

antioxidant defenses and dysregulation of mitochondrial 

function [119]. However, a different study reported that 

low pool of glycogen can reduce KCs phagocytosis and 

the generation of TNF-α thus improving organ viability 

and survival during long periods of ischemia [120]. 

Therefore, a beneficial effect of high glycogen content is 

mainly observed during short ischemia, whereas low 

metabolic reserves are preferentially needed in the process 

of long ischemia [102]. 

Glycogen synthase kinase 3 (GSK3) is a ubiquitous 

serine/threonine kinase, involved in regulation of 
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glycogen synthesis [121]. Notably, inhibition of GSK3 in 

liver IRI models ameliorates liver damage via an IL-10-

mediated immune regulatory mechanism resulting in 

reduced serum ALT levels and complete lobular 

architecture. Inactivation of GSK3 in liver IR is a self-

regulatory mechanism in liver homeostasis that occurs 

through activation of PI3K [122, 123]. In addition, Zhou 

et al. [124] demonstrated that GSK3β promotes activation 

of macrophage inflammation by suppressing the AMP-

activation protein kinase and inducing the novel innate 

immune negative regulator SHP. Moreover, TGR5 is 

implicated in the regulation of energy homeostasis and 

glucose metabolism [125]. Although their roles in 

modulation of innate immune activation in liver IRI have 

been widely explored, their roles in regulating liver 

metabolism to influence hepatic IRI have not been fully 

elucidated. 

Selzner et al. [126] reported that steatotic livers are 

vulnerable to hepatocyte damage and may be associated 

with poor tolerance to IRI. Steatotic livers produce less 

ATP compared with non-steatotic livers during the 

hepatic IRI, due to upregulation of the mitochondrial 

uncoupling protein 2 expression [127]. Additionally, 

hepatocytes with fatty infiltration have been found to 

develop massive necrosis after IRI, whereas apoptosis is 

mainly observed in non-steatotic livers after IRI [128]. In 

addition, steatotic livers exhibit lower expression of 

inositol-requiring enzyme 1 and PKR-like endoplasmic 

reticulum kinase, which may increase the risk of steatotic 

livers to IRI [129]. Elke et al. [130] revealed that steatosis 

exacerbates early IRI by enhancing effector immune cell 

infiltration, including higher mRNA expression of 

CXCL-1 and CD3. 

 

5.3 Metabolic dysregulation of mitochondria 

 

Mitochondria is a major target in ischemia injury, and 

dysregulation of mitochondria homeostasis and cellular 

energetics aggravate liver damage following ischemia 

injury. ROS released by the mitochondria during ischemia 

injury beyond antioxidant capacities promotes cellular 

DNA damage, calcium overload and mitochondrial lipid 

peroxidation. This leads to the release of cytochrome c 

and cellular damage [131, 132]. 

Intracellular trafficking of mitochondria plays an 

important role in meeting local metabolic demands as well 

as self-renewal of the organ. Tunneling nanotubes (TNTs) 

mediate intercellular transfer of mitochondria. Notably, 

inhibitors of TNT were found to decrease mitochondrial 

intercellular transfer, thus alleviating the ischemia injury 

[133]. Given these results, use of stem or progenitor cells 

as a vehicle for normal mitochondrial diversion to cells 

with damaged mitochondria as a result of ischemia injury 

presents high therapeutic potential [134]. 

Hypoxia-inducible factor-1 (HIF-1α) significantly 

accumulated during ischemia injury, it binds to the β 

submit and is translocated to the nucleus to promote 

transcription of other genes. Most of these genes could be 

implicated in the glycolytic pathway and causes a switch 

in the production of energy from oxidative 

phosphorylation to glycolysis, thus exacerbating hypoxia 

in organs [135]. Moreover, dynamin-related protein 1 

(Drp1) modulates the morphology of mitochondria and 

inhibits protective mitophagy by upregulating expression 

of mito-Clec16a. Moreover, Drp1 mediates metabolic 

disorders and decreases the levels of mitochondrial 

glutathione thus impairing free radical scavenging, 

resulting in further increase in ROS levels [136]. 

 

5.4 Role of metabolites in liver IRI 

 

Several metabolites have been reported to associated with 

adverse liver-related events, as well as liver IRI. Some 

studies reported that genes associated with bile acid (BA) 

transportation and synthesis (i.e., BSEP, MDR2, 

SULTA2, CYP7A1 and BAAT), as well as nuclear factors 

implicated in regulation hepatic metabolism (i.e., 

SREBF1 and FXR), are tied with progression of hepatic 

IRI [137-139]. BA is an important signaling molecules 

with pleiotropic effects on liver physiology. High serum 

levels of taurochenodeoxycholate, which is a complex 

formed from conjugation of the BA chenodeoxycholate 

with taurine, is associated with a rapid liver-related 

adverse events. On the contrary, norursodeoxycholic acid, 

as a secondary bile acid, exhibits positive effects on the 

liver histology [140]. These findings indicate that 

targeting different bile acids can alleviate liver IRI. 

A previous retrospective single-center cohort study, 

which included 187 participants, reported that vitamin E, 

primary bile acid and serotonin are associated with 

occurrence of future liver-related events [141]. A double 

blind randomized, and placebo-controlled trial was 

conducted previously whereby patients received three 

infusions containing vitamin E and the results showed 

significant improvement for ALT, AST and lactate 

dehydrogenase (LDH) levels after surgery [142]. 

Serotonin can be produced by cholangiocytes and 

stellate cells in the liver. Moreover, it also can be 

produced in the gut then it is metabolically transformed to 

5-hydroxyindoleacetic (5-HIAA) in the liver [143]. 

Serotonin significantly enhances human megakaryocytes 

(MKs) growth through 5-HT2BR with subsequent 

activation of p-Erk1/2, which induces cytoskeleton 

reorganization and subsequent proplatelet formation 

[144]. Platelets can induce opposite effects by causing 

ischemia liver injury as well as promote subsequent tissue 

repair process. Nocito et al. [145] reported that platelets 

promote tissue repair and liver regeneration after 
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normothermic hepatic ischemia in mice. Meanwhile, 

platelet-derived serotonin stimulates the proliferation of 

liver. 

 

6. Remedies of hepatic IRI 

 

Despite the tremendous efforts to develop therapies for 

IRI, the available treatments for IRI are not effective in all 

subsets of patients. Numerous studies have explored 

therapeutic efficacy of amino acid drugs (such as glycine 

and N-acetylcysteine), oxygen radical reducing drugs 

(including antioxidants, nitric oxide and carbon 

monoxide) and anti-inflammatory drugs (prostacyclin, 

atropine, and glucocorticoids) in treatment of IRI. Several 

molecular factors and genes have also been investigated 

as potential treatment targets, such as interferon 

regulatory factors, IL-10, programmed death factor, and 

bcl-6 [146]. A summary of these pharmacological and 

gene-based therapeutic targets is provided in Table 1. 

 
Table 1. Pharmacological/Gene therapy. 

 
Time Strategies and Description Species Ischemic 

time 

Effect Result 

2008 

[170] 

PPAR-α agonists and 

adiponectin siRNA 

Rat 60 min MAPK expression and 

adiponectin accumulation↓ 

Oxidative and hepatic 

injury↓ 

2008 

[171] 

Allopurinol and apocynin 

(inhibitor of XOD and NADPH 

oxidase) 

Mice 30 min Generation of superoxide   

anions↓ 

Hepatic injury↓ 

2008 

[172] 

Ascorbate (scavenger of ROS) Rat 30 min Apoptosis of KCs↓ Hepatic injury↓ 

2008 

[173] 

Captopril (Ang 2 blockers) Rat 60 min BK generation and  

PPAR-γ ↑ 

Hepatic injury↓ 

2008 

[174] 

Tetrandine (scavenge ROS and 

inhibit lipid peroxidation) 

Mice 90 min Neutrophil accumulation, TNF-α 

and MDA↓ 

SOD↑ 

Liver edema and hepatic 

injury↓ 

2009 

[175] 

[176] 

Mutation of TLR4 or TLR4 

knockout 

Mice 60 min Release of pro-inflammatory 

cytokines and neutrophil 

infiltration↓ 

Hepatic injury and 

damage of LSECs↓ 

2010 

[177] 

Carbon monoxide-releasing 

molecule-2 (CORM-2) 

Rat 60 min Neutrophil infiltration, TNF-α, 

IL-6, ICAM-1↓ 

Bcl-2↑ 

Hepatic injury and levels 

of apoptosis↓ 

2010 

[178] 

Metron factor-1 (MF-1) Rat 90 min Oxygen free radicals↓ 

NO synthesis and survival↑ 

Hepatic injury and 

oxidative stress↓ 

2010 

[179] 

Sirolimus 

(immunossupressant drug) 

Rat 60 min Tissue myeloperoxidase and 

neutrophil infiltration↓ 

Hepatic injury and liver 

cell apoptosis↓ 

2011 

[180] 

Atorvastatin (HMG-CoA 

reductase inhibitor) 

Mice 60 min STAR overexpression and 

mGSH depletion↓ 

Hepatic injury and 

oxidative stress↓ 

2011 

[181] 

n-3 PUFA (polyunsaturated fatty 

acid) 

Rat 60 min NF-κB, TNF-α and IL-1β↓ Hepatic injury and 

oxidative stress↓ 

2011 

[182] 

rPSGL-Ig (selectin antagonist) Human 60min IL-10↑ Hepatic injury and 

oxidative stress↓ 

2012 

[183] 

ABC294640 (selective inhibitor 

of sphingosine kinase-2) 

Mice 60 min S1P, neutrophil infiltration, NO 

synthase, NF-κB and         TNF-

α↓ 

Hepatocyte death and 

hepatic injury↓ 

2012 

[184] 

Fasudil (a Rho-kinase inhibitor) Rat 30 min HSC activation, endothelin 1 and 

portal perfusion pressure↓ 

Hepatic injury and 

hepatic susceptibility↓ 

2012 

[185] 

Nilotinib (tyrosine kinase 

inhibitor and against JNK and 

p38 in vitro) 

Mice 60 min Recruitment of inflammatory 

monocytes, IL-1β, IL-6, MCP-1, 

MIP-2, JNK and p38 MAPK↓ 

Hepatocyte apoptosis and 

hepatic injury↓ 

2012 

[186] 

Deletion of FGL2/Fibroleukin 

(transgenic) 

Mice 60 min Hepatocyte and LSEC protection Hepatic injury and IRI 

cascade↓ 

2013 

[187] 

RMT1-10 (TIM-1 blocker) Mice 20 h Neutrophil and macrophage 

infiltration/activation, NF-κB 

and IFN-γ↓ 

IL-10, IL-22, Bcl-2↑ 

Hepatic injury and 

oxidative stress↓ 

2013 

[188] 

Simvastatin (immunossupressant 

drug) 

Mice 16 h Autophagy induction, LSEC 

injury↓ 

NO↑ 

Liver damage, oxidative 

stress and endothelial 

dysfunction↓ 
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2014 

[189] 

rMnSOD (antioxidant) Mice 20 min Accumulation of superoxide 

anion and inflammation↓ 

NO↑ 

Hepatic injury and 

oxidative stress↓ 

2015 

[190] 

[191] 

Knockout of IRF9 Mice 60 min Serum ALT/AST, immune cell 

infiltration and levels of 

inflammatory cytokines ↓ 

Hepatic injury and 

hepatocyte apoptosis↓ 

2016 

[192] 

Total flavonoids (TFs) Rat 60 min MPO, LDH, MDA, IL-6, TNF-α 

and IL-β↓ 

SOD and GSH-Px↑ 

Improve liver 

histopathology and 

ultrastructure 

2016 

[193] 

Overactivation of Nrf2-

ARE 

Mice 60 min IL-6, IL-1β and levels of 8-

isoprostanes↓ 

Hepatocellular damage, 

necrosis, apoptosis and 

oxidative stress↓ 

2017 

[194] 

Extracellular vesicles 

from mesenchymal stem 

cell (MSC-EV) 

Murine 90 min NF-κB and IL-6↓ 

Expression of NACHT, LLR and 

PYD domains-containing protein 

12↑ 

Hepatic caspase 3-

positive and apoptotic 

cells↓ 

2017 

[195] 

Inhibition of 

RAP1/KC/NLRP3 

inflammasomes 

Mice 

and 

human 

45 min Activation of NLRP3 and levels 

of ALT and ALT↓ 

Hepatic protection 

2018 

[196] 

Knockout of CARD6 Mice 60 min NF-κB, JNK, p38 and 

inflammatory chemokines↓ 

Hepatic injury and liver 

cell death↓ 

2019 

[197] 

Salicylate acetyl-3-aminoethyl 

salicylic acid (ac3AESA) 

Murine 60 min Activation of KC, IL-6, TNF-α, 

IL-β, CXCL2 and CXCL8↓ 

Hepatic injury and 

allograft damage↓ 

2019 

[198] 

Omeprazole (buffer the acid 

microenvironment) 

Mice 

and 

human 

60 min Function of CD4CD25Foxp3 

iTregs↑ 

Hepatic injury↓ 

2020 

[199] 

PINK1 (mediate mitophagy) Mice 60 min ROS production, NLRP3, and 

KC-mediated inflammation↓ 

Hepatic injury and 

mitochondrial 

dysfunction↓ 

2020 

[200] 

Inhibition of miR-450b-5p Mice 60 min CRYAB and M2 polarization↑ 

NF-κB↓ 

Hepatic protection 

2021 

[201] 

Overexpression of miR122 Mice 

and 

human 

60 min PHD1↓ 

HIF1α expression↑ 

Hepatic ischemia 

tolerance↑ 

2021 

[202] 

Inject rhMANF Mice 

and 

human 

90 min Activated ATF4/CHOP and 

JNK/c-JUN/CHOP pathways↓ 

UPR injury and 

hepatocellular damage↓ 

 

PPAR-α, peroxisome proliferators-activated receptor-α; PPAR-γ, peroxisome proliferators-activated receptor-γ; TLR4, Toll like receptor 4; TNF-α, 

tumor necrosis factor α; NLRP3, nucleotide-binding oligomerization domain–like receptor family pyrin domain containing 3; IL-1β, interleukin 1β; 

HMGB1, high-mobility group box 1; IAC, inflammation associated cytokine; IL-1, interleukin 1; IL-6, interleukin 6; IL-10, interleukin 10; IL-22, 

interleukin 22; NF-κB, nuclear factor κB; ICAM-1, intercellular adhesion molecule-1; Bcl-2/Bcl-x, B cell lymphoma 2/x; MIP-2, macrophage 

inflammatory protein 2; JNK, N terminal kinase; IFN-γ, interferon γ; ATF4, activating transcription factor 4; CHOP, C/EBP homologous protein; LDH, 

Lactate dehydrogenase; MDA, malondialdehyde; SOD, superoxide dismutase; GSH-Px, se-dependent enzyme glutathione peroxidase. 

Further clinical trials should be conducted to develop 

and test effective interventions for hepatic IRI. Evidence 

from animal experiments have shown that curcumin 

treatment alleviates the negative effects of IRI in different 

organs including brain, heart, kidney, intestine, ovary, 

testis and liver [147-154]. Therapeutic effects of curcumin 

are mediated by mechanisms such as anti-oxidative stress, 

anti-inflammation and reduction of adhesion molecules 

thus ameliorating hepatic IRI. Curcumin has been 

reported to suppress oxidative stress by upregulating 

expression of antioxidant enzymes and inhibiting 

production of ROS [155]. Notably, curcumin has a strong 

intrinsic activity, thus curcumin is applied in treatment of 

various diseases. However, some studies also have 

reported limitations associated with bioavailability of 

curcumin such as limited tissue distribution, low serum 

levels, short half-life and apparent rapid metabolism 

[156]. Adjuvants which can bypass the metabolic 

pathways of curcumin, are revealed to be one of the major 

therapies used to improve its bioavailability. For instance, 

liposomes, micelles, nanoparticles and phospholipid 

complexes are used to improve the bioavailability of 

curcumin [157, 158]. In addition, various extracts or 

secretions from traditional Chinese medicinal herbs may 

potentially inhibit oxidative stress and inflammation. For 

example, resveratrol and pterostilbene exhibit anti-cell 

proliferation, anti-oxidative stress and anti-inflammation 

effects [159]. However, further animal and clinical studies 

are needed to further verify these findings.   

Mesenchymal stem cells (MSCs) have unique 

immunomodulatory properties. MSCs are invaluable cell 

types used for repair of tissue or organ damage. MSCs 
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have been reported to suppress the infiltration of 

inflammatory cytokines and promote expression of anti-

inflammatory cytokines [160]. Kharaziha et al. [161] and 

Mohamadnejad et al. [162] carried out successful trials 

which indicated that transplantation of autologous MSCs 

significantly improves liver function in IRI patients. In 

addition, MSCs are effective delivery vehicles 

characterized by injury tropism [163]. A previous study 

reported that engineered human induced pluripotent stem 

cells (hiPSC-MSCs) delivering GPx3 significantly 

suppresses senescence of liver and then alleviates hepatic 

IRI [164]. Therefore, therapeutic properties of MSCs on 

IRI have high potential for treatment of hepatic IRI. 

Gene therapy is novel strategy for treatment of 

patients by modulating gene expression through 

approaches such as knockout, knockdown, correction or 

knock-in, thus it has high potential therapy for treatment 

of various diseases [165]. Knockout of CARD6 exhibits 

beneficial effects against myocardial IRI, by modulating 

apoptosis signal-regulating kinase 1 (ASK1) and several 

other signaling pathways. This implies that inhibition of 

ASK1 is an effective strategy for the treatment of hepatic 

IRI. Viral-based methods present an effective choice for 

the delivery of genes in gene therapies, with adeno-

associated virus (AAV) being the most promising viral 

vector [166]. However, limitations such as packaging 

capacity (<4.7 kb), safety concern correlated to 

immunogenicity, and high cost associated with AAV 

restrain application of AAVs in gene therapy [167]. In 

light of this, studies are exploring chemical-based 

methods, such as polymer-based vectors as alternatives, 

owing to their low cost, high tunability and immune-

compatibility [168]. For example, Reineke et al. [169] 

designed a new class of carbohydrate-based polymers and 

referred them as poly(glycoamidoamine)s (PGAAs), 

which are effective and biocompatible transfection 

reagents. 

 

7. Conclusion and prospect 

 

Numerous clinical and animal experiments have been 

conducted to explore molecular mechanisms associated 

with hepatic IRI and the findings show high potential in 

development of therapies for hepatic IRI. However, the 

complex interactions between hepatic microenvironment 

and IRI have not been fully elucidated thus limiting design 

of effective regimens for hepatic IRI patients. Possible 

mechanisms of liver IRI, including the interaction of 

various immune cells, effects of metabolites on IRI 

progression and the role of mitochondrial in liver IRI have 

been summarized in the present study. 

Findings from pre-clinical studies indicate that 

several therapies are effective, however, results from 

clinical trials present low efficacy. Mechanisms of hepatic 

IRI vary with experimental conditions, such as period of 

ischemia (minutes to weeks), extension of ischemia 

(partial or complete), type of ischemia (cold or warm) and 

targeted immune cells. Therefore, findings from animal 

experiments cannot be directly translated to the clinical 

management of IRI. Furthermore, potential application of 

basic research knowledge should be taken into 

consideration owing to the extended-criteria or even 

increasingly complex situations of exact conditions of 

patients. 

Furthermore, the possible cell therapy and gene 

therapy which are promising strategies for IRI treatment 

are explored from a clinical/translational perspective in 

the current review. However, the cross-talk between the 

hepatic microenvironment and the processes of IRI have 

not been fully explored, thus further studies should be 

conducted to fully elucidate this cross-talk. Studies should 

explore the pathogenesis of hepatic IRI to provide a basis 

for designing therapeutic strategies to ameliorate hepatic 

IRI, or even cure the disease. 
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