
Review began  01/03/2021 
Review ended  01/22/2021 
Published 01/28/2021

© Copyright 2021
Cheppalli et al. This is an open access
article distributed under the terms of the
Creative Commons Attribution License
CC-BY 4.0., which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original author and
source are credited.

Plastics in Total Knee Replacement: Processing to
Performance
Naga Cheppalli  , Sreenivasulu Metikala  , Benjamin S. Albertson  , Kenneth Yaw 

1. Orthopaedics, Veteran Affairs (VA) Hospital/University of New Mexico Hospital, Albuquerque, USA 2. Orthopaedics,
Virginia Commonwealth University Health System, Richmond, USA 3. Orthopaedics & Rehabilitation, University of
New Mexico Health Sciences Center, Albuquerque, USA 4. Orthopaedics, New Mexico Veteran Affairs (VA) Health Care
System, Albuquerque, USA

Corresponding author: Sreenivasulu Metikala, smetikala@gmail.com

Abstract
Polyethylene (PE) is the key component of total knee replacement (TKR). The wear of polyethylene, a
common cause of revision surgeries, depends on multiple factors. The mechanical properties, wear
characteristics, and oxidative resistance of PE can be manipulated by the techniques of processing,
sterilization, and packaging methods. This article describes the making of conventional and cross-linked
poly, packaging, sterilization, processing techniques, and a summary of commercially available plastics and
their rationale in TKR including the latest advances. 
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Introduction And Background
Polyethylene (PE) is an integral part of total knee replacement (TKR) and has undergone significant changes
in the last three decades. PE wear is one of the common causes of revision knee replacement [1-3]. Multiple
factors predispose PE to wear. Some of them are methods of PE processing (packaging, sterilization), type of
implants, the thickness of the PE, locking mechanisms, surface roughness of the metallic tibial tray, surface
contour of PE and area of articulation with the femoral component, types of movements between the
bearing surfaces (rolling, sliding, and rotational motion), presence of third body wear, alignment
inaccuracies and patient-related factors like body mass index (BMI), and patient activity level [4,5]. Further,
various PE designs such as cruciate-retaining, posterior-stabilized, medial congruent, medial pivot, anterior
stabilized, constrained poly with a longer and wider post, bicruciate stabilized components can influence the
mechanical forces transmitted at the area of contact and contribute to wear [6,7].

This article focuses on 1) processing of PE, 2) packaging and sterilization techniques, 3) mechanical and
wear properties of the final product, and 4) product options available from different implant manufacturers.

Review
Making of conventional polyethylene (CPE)
Raw Material

PE is a polymer of ethylene consisting of as many as 200,000 ethylene repeat units. Ethylene is polymerized
in the presence of catalysts to make ultra-high molecular weight polyethylene (UHMWPE), which is
commercially produced as resin powder. There are three types of resins labeled as GUR 1020 (Type 1), GUR
1050 (Type 2), and 1900 H (Type 3). This classification is based on the presence of impurities such as
titanium, aluminum, chlorine, calcium, as well as storage and handling properties. The acronym GUR stands
for Granular-UHMWPE-Ruhrchemie, which came from Celanese, the first company to manufacture
UHMWPE for Orthopedics. Currently, GUR 1020 and GUR 1050 powders are routinely used, although most
manufacturers prefer the former type because of its higher ductility and impact strength. Since 2002, the
resin 1900 H (type 3) has been withdrawn from the market.

Processing

The chosen resin powder is consolidated into rods/sheets from which final implants are made. Historically,
this conversion is done by compression molding (popular in Europe), ram extrusion (popular in the United
States), hot isostatic pressing (used by Biomet, Inc, Warsaw, IN), or direct compression molding (DCM),
which is also known as net shape compression molding where the resin powder is directly converted into the
finished or semi-finished product [8]. Unfinished products are machined into the desired shapes (Figure 1).
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FIGURE 1: Flow diagram of the making of conventional polyethylene
(CPE)

Non-articulating surfaces of the components are machined to accommodate the locking mechanism.
Machining, however, may cause microscopic surface irregularity, which can contribute to future wear.
Therefore, the speed of milling devices and the heat produced during the machining process are highly
regulated to minimize deteriorating effects on PE. Thus, the resin type, conversion method, and machining
to the final product have individual effects on the physical properties and wear characteristics of the final
plastic product. Since there has been no consensus to determine the best plastic production process in the
orthopedic industry, the implant companies have sought their own strategies for processing UHMWPE.

Packaging and Sterilization

Once final implants are made, packaging and sterilization of PE are the crucial steps that can significantly
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affect PE's wear properties. Basically, there are five main methods of sterilization (Table 1).

Sterilization Process   Packaging Type    Radiation Dose (Mrd)

Gamma air Gas permeable 2.5-4.0

Gamma inert Oxygen barrier packaging/ reduced oxygen atmosphere 2.5-4.0

Electron beam (E-beam) Reduced oxygen atmosphere 2.5-4.0

Ethylene Oxide Gas permeable None

Gas plasma Gas permeable None

TABLE 1: Summary of various sterilization processes
Mrd: megarads

Radiation techniques include gamma irradiation and electron beam (E-beam). Ethylene Oxide (EtO) and gas
plasma (GP) are the non-radiation sterilization methods. In the past, sterilization was done by gamma
irradiation in the presence of air. This method, however, had resulted in the production of innumerable free
radicals that typically react with oxygen causing PE chain scission and significant oxidative wear. In an
attempt to minimize such free radical production, sterilization has now been performed in the absence of air
or near-vacuum (Depuy Orthopedics, Warsaw, IN) or in the presence of inert gases like Nitrogen (Stryker
Orthopedics, Mahwah, NJ and Zimmer, Inc, Warsaw, IN) or Argon (Biomet). Also, the final plastic is wrapped
using barrier packaging materials which in turn helps to prevent oxidation. However, PE chain breakage can
still happen in the long-term because of the production of residual free radicals which are responsible for
ongoing oxidative damage. The generation of such a small quantity of free radicals is inevitable despite
meticulous processing techniques, which is considered as an acceptable minimum level. EtO is an
alternative sterilization method to radiation, which totally eliminates oxidative damage. While this method
can better preserve all the properties of PE, handling EtO is expensive and time-consuming. Recently, GP
sterilization is another alternative that relies on ionized gas. It has been showing promising results without
leaving any toxic residues. Surgeons should be aware that the shelf life of PE depends on the methods of
packaging and sterilization. At this time, there is no consensus in the United States regarding the acceptable
shelf life. Whereas in Europe, a standard practice of five years of shelf life has been adopted [9]. Given that
sterilization by EtO or GP does not produce any free radicals, the longer shelf life of more than five years
may be justifiable. An irradiated plastic either by gamma or E-beam necessitates gas barrier packaging
methods to prevent oxidation, while gas permeable packaging is acceptable for EtO and GP sterilization
techniques [10].

Cross-linked polyethylene (XLPE)
The next successful attempt to improve the mechanical properties of PE, particularly the wear resistance, is
achieved by cross-linking adjacent chains through higher doses of irradiation, producing XLPE (Figure 2).

FIGURE 2: The process of cross-linking of adjacent chains

Initially, cross-linking was induced by a single sterilization dose (2.5 to 4.0 Mrd), which substantially
enhanced wear performance. However, it led to a reduction in fatigue crack propagation (FCP) resistance,
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ultimate tensile strength, elongation at break values, and impact toughness [10]. The XLPE plastics have
been in widespread use since the late 1990s [11]. Further increasing the radiation dose (5 to 10 Mrd), results
in radical species that react with chain imperfections leading to polymer chain cross-linking with stable C-C
chemical bonds. It theoretically increases the molecular mass to infinity, thus producing highly cross-linked
polyethylene (HXLPE), which came to the market in 1998 [8].

Both gamma and E-beam radiation are used to cross-link PE. Gamma radiation generally uses Cobalt-60 as
the source of radiation. While gamma radiation can penetrate through resin powder, the penetration of E-
beam radiation is limited by its kinetic energy [9]. Nonetheless, there is no significant difference in the
formation of macro radicals between these two methods. Although higher radiation doses can significantly
improve wear resistance, it results in brittleness of plastic and poor mechanical properties. Also, the wear
particles generated from HXLPE can be smaller and biologically more active than non-irradiated ones
[12,13]. Thermal treatment, either by remelting or annealing, can improve some of these characteristics, as
described below.

Thermal Treatment - Remelting

In an effort to absorb residual free radicals and improve oxidation properties, the irradiated HXLPE is
remelted above its melting temperature (greater than 150 degrees Celsius), which is typically done before
the plastic is machined into the final product. Although such post-irradiation remelting likely increases the
long-term oxidation resistance, it further compromises the mechanical properties due to the
microstructure's alteration, decreased crystallinity, and low FCP resistance [14]. Few cases of tibial post
fractures have been reported with remelted PE [15].

Thermal Treatment - Annealing

Annealing has been introduced to impart higher mechanical properties, where reheating of HXLPE is done
close to but below its melting temperature. This process retains the crystallinity of plastic and improves
fatigue performance while preserving the wear characteristics [5]. However, the annealed plastic has not
proven to be as effective as the remelted poly in terms of reducing the quantity of residual free radicals.
Consequently, this led to increased oxidative wear and overall deterioration of mechanical properties when
subjected to the accelerated aging test. For these reasons, the annealed PE never took off commercially.

Sequentially Irradiated and Annealed Polyethylene

It is a unique process where compression-molded GUR 1020 resin undergoes sequential irradiation and
annealing to produce a particular type of HXLPE, the X3 (Stryker Orthopaedics, Mahwah, NJ). The process of
sequential irradiation happens in three different cycles, with each cycle set at a radiation dose of 3 Mrd
followed by annealing for 8 hours at 130 degrees C. Following this process, the material's outer 1-3 mm is
removed, the component is then machined and packaged for GP sterilization. The cumulative radiation dose
thus becomes 9 Mrd. The X3 is designed to retain mechanical properties while reducing the proportion of
free radicals. X3 poly was initially introduced for hips in 2005, followed by knees in 2008. A knee simulator
study comparing six poly designs demonstrated the lowest wear rates with X3 poly [16]. However, early
failures with fractures and oxidation damage have been reported with this design affecting mainly the
posteromedial and lateral borders [17]. Although there are no long term data using X3 in TKA, the short term
studies have demonstrated superior wear characteristics [18,19].

HXLPE can be classified into first and second generation based on processing technique. When subjected to
post-irradiation thermal treatment, it is considered the first generation. In comparison, sequential
irradiation-annealing or addition of antioxidants is considered to be the second-generation category.

Antioxidants
To overcome long-term oxidation while preserving the mechanical properties of HXLPE, the manufacturers
have begun the addition of antioxidants, specifically Vitamin E (VitE), a natural antioxidant that has been
used in food packaging since 1980 [8]. There are two methods of incorporating VitE. The first method
includes blending VitE into resin powder (in concentrations ranging from 1000-8000 ppm) even before
consolidation and irradiation. Studies demonstrated that this method prevents in-vivo oxidation,
accelerated aging, and improves wear characteristics but at the expense of decreased cross-linking efficiency
[20]. For that reason, an alternative method of VitE diffusion (soaking or infusion) into poly following
radiation has been introduced.

VitE-coated blocks are placed into an inert oven and homogenized (baked) at 120°C until the vitamin
diffuses through the block's thickness. This technique resulted in higher oxidation resistance in vitro, along
with ultra-low wear, and retained mechanical strength. There is a theoretical concern that with progressive
wear, VitE may elute into the joint and get absorbed systemically. To prevent such elution, VitE is bonded to
PE by covalent bonds (grafting). Even in this hypothetical situation, the amount of VitE that diffuses into the
system is thought to be too low to cause any cellular cytotoxic effects. In an in vitro study, VitE poly
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demonstrated decreased bacterial adherence (Staphylococcus epidermis and S. aureus) [21,22]. Overall,
preclinical studies have shown promising improvements in fatigue strength when doped with VitE while
maintaining the wear properties and oxidation resistance comparable to irradiated and remelted HXLPE [23].
In vitro studies showed that VitE poly has five times greater ultimate strength after four weeks of accelerated
aging test and up to an 86% lower wear rate than CPE [24]. Further, lower rates of bone resorption and
inflammatory fibrous tissue were noted with VitE poly than HXLPE [25,26]. In literature, fracture of VitE poly
has been reported in THR but not in TKR [27]. However, there are no midterm or long-term studies available
on the use of VitE poly in TKR.

Table 2 illustrates the evolution of plastics and the differences in their characteristics. 

 
  Wear

resistance

  Mechanical

properties  

  Oxidation

resistance

  Mechanical properties

after aging

Osteolysis potential from a

wear particle

  X-linking

dose
  Manufacturers

CPE   +   +++   ++   ++     +  None
Medacta; Microport; Exachtech; Smith & Nephew

(only for constrained poly)

Moderate XLPE   ++   ++   +   +     ++ < 5 Mrd N2 VAC (Stryker)

Remelted HXLPE (1st generation)   +++   +   ++a    +     ++ 5-7.5 Mrd
Durasul (Zimmer); Prolong (Zimmer); XLPE (Smith

&Nephew)

Annealed HXLPE (1st generation)   +++   ++   +   +   ++ 5-7.5 Mrd Not available

Sequentially irradiated and annealed

HXLPE  (2nd generation)
  +++   +++   +++  a    ++     + 9 Mrd X3 (Stryker)

Addition of antioxidants   +++   +++   +++  b    +++     +
Up to 10

Mrd
E1 poly (Biomet); Vivacet (Zimmer); AOX (Depuy)

TABLE 2: Evolution of plastics and their characteristics
a cannot prevent in-vivo oxidation

b can prevent long term in-vivo oxidation

CPE: conventional polyethylene; XLPE: cross-linked polyethylene; HXLPE: highly cross-linked polyethylene; Mrd: megarads.

Using CPE for TKA
While most companies have adopted newer technology, some still market CPE (non-cross linked) due to the
concerns that cross-linking leads to inferior mechanical properties. Thermal treatment of irradiated HXLPE
further compromises the mechanical properties. As discussed earlier, remelted HXLPE has good oxidation
and wear performances but possesses reduced crystallinity and lower fatigue strength. On the other hand,
annealed HXLPE has fair wear and fatigue performances but poor oxidation resistance [28,29]. Further, it has
been demonstrated that wear particles induced by HXLPE and CPE have different biological host responses
[30-32]. In an animal model, a greater risk of particle-induced osteolysis and heightened inflammatory
response was observed in the HXLPE group compared to CPE and VitE poly [12]. Finally, the proponents of
CPE argue that the mode of poly failure is different in THA compared to TKA. The most common cause of PE
failure in TKA is delamination [33] while adhesive or abrasive wear is the common cause in THA due to
better conformity and even stress distribution [16,33]. For these reasons, some manufacturers prefer the
preservation of mechanical properties to wear properties in an attempt to avoid such delamination.

Table 3 depicts a summary of various commercially available plastics & their processing methods for TKR.
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  Manufacturer
Plastic

name
  Resin   Processing   Sterilization   Packaging

Zimmer  (Persona)
Vivacet-

E  
GUR 1020 10 Mrd; E-beam at elevated temperature; No further heat treatment; Vit E is pre-blended with resin  EtO Air

Zimmer  (Nexgen)  Prolong  
GUR 1020 GUR

1050  
6.5 Mrd; E-beam at elevated temperature; Remelted Gas plasma/ EtO

Nitrogen/ High oxygen

barrier

Zimmer (Natural Knee 2) Durasul GUR 1050 9.5 Mrd; E-beam; Remelted EtO Nitrogen

Biomet (Vanguard) E1 Poly  GUR 1020 10 Mrd; Gamma radiation; No heat treatment; VitE infused after cross-linking    
3 Mrd; Gamma radiation

in Argon  

Argon flushed/ Near-

vacuum sealed

Biomet
Arcom

XL  
GUR 1050 5Mrd; Gamma radiation

Gamma radiation in

Argon
Inert environment

Biomet  
Arcom

(R)  
GUR 1050 No X-linking; No thermal treatment Gamma radiation Inert environment

Stryker (Triathlon) X3  GUR 1020
Sequential Gamma irradiation at room temp; 3 Mrd x 3 times (total dose: 9 Mrd); Annealed at 30°C

after each cycle  
Gas plasma Nitrogen/ Vacuum sealed

Stryker (Scorpio/NRG) N2VAC GUR 1020 Conventional; No radiation
3 Mrd; Gamma radiation

in N2
Barrier

Depuy  (Attune) AOX  GUR 1020
8.5 Mrd; Gamma radiation at room temperature; No heat treatment; Covernox (Hindered Phenol.075%

and few more antioxidants) in resin  
3Mrd; Gamma radiation  Vacuum foil

DePuy Sigma XLK  GUR 1020
5 Mrd: Gamma radiation at room temperature; Remelted at 155°C for 24 hours and then annealed at

120°C for 24 hours

Gamma radiation/ Gas

plasma  
Vacuum foil  

Depuy  LCS XLK  GUR 1020 5 Mrd; Gamma radiation; Remelted  Gas plasma Vacuum foil

Depuy GVF GUR 1020 No X-linking; No thermal treatment Gamma radiation Vacuum foil

Smith & Nephew (Journey 1

and 2) (Legion)
XLPE  GUR 1020  7.5 Mrd; Gamma radiation at room temperature; Remelted at 147°C for at least 5 hours EtO Barrier

Smith & Nephew (Genesis II) XLPE  GUR 1050 No radiation; No thermal treatment Gas plasma Barrier

Advance medicals Microport
Duramer

-1
GUR 1020  No radiation; No thermal treatment EtO N/A

Medacta GMK  GUR 1020 No radiation; No thermal treatment EtO  Gas permeable

Aesculap
Beta -

PE
GUR 1020 X-linking with beta radiation; No heat treatment  N/A Inert

Conformis iPoly XE GUR 1020 10 Mrd; E-beam at elevated temperature; No heat treatment; Mechanically annealed; VitE blended Gas plasma N/A

Exachtech Logic GUR 1020 6.5 Mrd; E-beam at 1250C; Remelted Gamma radiation N/A

Arthrex E-CIMA GUR 1020 9.5 Mrd; E-beam; VitE blended at raw material state Gamma radiation Vacuum foil

TABLE 3: Summary of commercially available plastics for total knee replacement
VitE: vitamin E; Mrd: megarad; EtO: ethylene oxide; XLPE: cross-linked polyethylene; N/A: not available.

Clinical studies
Existing short and midterm studies demonstrate no differences in revision rates between XLPE and CPE in
TKA [32,34]. However, one long-term study (Australian joint registry) showed significantly lower revision
rates at a 10-year follow-up with XLPE than CPE (3.5% versus 5.8%) [35].

PE particulate studies
Osteolysis depends on the host response to the amount, size, shape, and quality of PE particles generated
from wear. More elongated particles in large quantities tend to produce a greater inflammatory response
[36,37]. The particle size less than 0.05 µm or longer than 10 µm fails to elicit an inflammatory response
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[12,38]. The typical size of wear particles in TKA is approximately 1 µm. Notably, the wear particles from
irradiated HXLPE are smaller and biologically more active than from non-irradiated ones. However,
periprosthetic osteolysis is not commonly observed because of an overall reduction in the quantity of wear
production in HXPLE compared to CPE [34,39].

Registry studies
Table 4 summarizes joint replacement registry studies and the revision rates with CPE and HXLPE [35,40-
42].

Study Procedures Revision rate with CPE Revision rate with HXLPE
Antioxidants

infused
Registry

Inacio 62,177 2.2% at 3 years 2.1% at 1.8 years N/A Not listed

Paxton 77,084 2.7% at 5 years 3.1% at 5 years N/A Kaiser Permanante Total Joint Replacement Registry

De

Steiger
386,104 5.8% at 10 years 3.5% at 10 yr N/A Australian Orthopedic Association National Joint Replacement Registry

Partridge 550,658
0.29 aseptic revisions per 100 component

years

0.38 aseptic revisions per 100 component

years
N/A

National Joint Registry (NJR) for England, Wales, and Northern Ireland

2003-14

TABLE 4: Registries data and revision rates
CPE: conventional polyethylene; HXLPE: highly cross-linked polyethylene; N/A: not available.

Cost
The implant's cost is not standardized and therefore varies significantly among different hospitals,
geographic regions, and manufacturers. Given these constraints, it is not easy to pinpoint the exact cost
difference between HXLPE and CPE. Data from one hospital suggests that HXLPE inserts cost approximately
150 USD more than CPE, while others estimate this difference to be even higher [43]. With the advent of the
bundled payment system in joint replacements, an emphasis has been placed on providing the highest
quality care, with quality measured as value/cost. It remains unknown if HXLPE increases the value to TKA
sufficient enough to warrant the increased cost compared to CPE. It is still to be determined if it is cost-
effective to use HXLPE in only younger patients to avoid future revisions [44].

What's new
A wide range of fillers have been used to enhance PE’s mechanical and lubrication properties. Some of them
are carbon nanofibers (CNFs), carbon nanotubes (CNTs), graphene, and hard particles like titanium,
zirconium, quartz, natural coral, platinum-zirconium quasicrystal, etc. [45-48]. Surface modifications of PE
can also be performed using zirconium carbon nitride (ZrCxN1-x) coating embedded with silver
nanoparticles or hydrogenated diamond-like carbon (DLCH) coating. They have shown good performance on
the wear resistance, hardness, and biocompatibility. The other techniques, like ion beam surface
modification, photolithography, nanoimprint lithography, and laser surface texturing, are also being
explored in the industry [44].

While we look optimistically at the future, we should never forget our past failures where several attempts
have been made to reinforce PE's mechanical properties. A few unsuccessful attempts are carbon-fiber-
reinforced poly (CFR-UHMWPE) marketed as Poly II (Zimmer) and Hylamer (Depuy). The Poly II was
introduced in 1970 but was discontinued due to the rupture of the surface fibers and reduced crack
resistance than the virgin UHMWPE [35]. In the late 1980s, high-pressure recrystallized poly was released as
Hylamer, which demonstrated higher susceptibility to oxidation than the virgin UHMWPE. Its poor
performance was attributed to gamma sterilization in the air and fell out of favor in the late 1990s with the
development of XLPE [49].

Conclusions
There are several ways to process PE and manipulate their mechanical properties, wear characteristics, and
oxidative resistance. An ideal PE’s properties include strong resistance to wear, oxidation, and FCP and
should retain these properties in-vivo for the long-term. Wear resistance is improved by crosslinking the PE,
which is accomplished by higher doses of radiation (Gamma or E-beam). However, such radiation doses
generate more free radicals that promote long-term oxidative degradation of PE. Post-irradiation thermal
treatment (first-generation XLPE) can quench these free radicals improving oxidative stability but at the
expense of compromising the mechanical properties, especially fatigue resistance. Sequential irradiation-
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annealing (X3) improves mechanical properties while preserving the wear properties, although there is a
theoretical concern about long-term oxidation in-vivo. Instead of thermal treatment, incorporating
antioxidants or sequential irradiation constitutes a balanced environment to create oxidation- and fatigue-
resistant PE while maintaining its wear characteristics. Despite all newer developments and laboratory
studies to date, there is no conclusive evidence that HXLPE would improve clinical outcomes when
compared to CPE in TKR. The manufacturers have utilized different PE processing methods, which can
influence PE’s long-term performance. Surgeons are encouraged to critically look for specific failure
mechanisms based on these processing techniques. 
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