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Abstract

Background: Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular
disease, diabetes, and cancer.

Methods: To explore the relationship between increased body mass and gene expression in blood, we conducted
whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean
subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary
assessment of the predictive value of blood gene expression profiles in obesity was carried out.

Results: Principal components analysis of whole-blood gene expression data from obese and lean subjects led to
efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript
levels for genes belonging to the “ribosome”, “apoptosis” and “oxidative phosphorylation” pathways in the obese
cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from

proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as

classifiers.

efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based

Conclusion: This study provides a comprehensive characterization of the whole blood transcriptome in obesity
and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate
the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene
expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful
blood-based predictors of weight loss success following dietary or surgical interventions.

Background

While excess energy intake and declining energy expen-
diture are clearly important contributors, individual sus-
ceptibility to obesity is also strongly influenced by
genetic factors. Twin, adoption, and family studies have
indicated that 40-70% of inter-individual variation in
body mass index (BMI) is heritable [1,2]. A compen-
dium of evidence for the genetic bases of obesity have
been accrued from single-gene mutation studies, Men-
delian inheritance patterns, transgenic and knockout
murine models, animal and human quantitative trait loci
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(QTL), candidate-gene association studies, and genome
scan linkages and have been incorporated into the Obe-
sity Gene Map database [3]. Also recently, a number of
genome-wide association studies (GWAS) have demon-
strated associations of single-nucleotide polymorphisms
(SNPs) to qualitative and quantitative indices of adipos-
ity in several populations [2,4-10]. A combination of
independent studies and meta-analysis of existing
GWAS data have implicated a total of 18 genetic loci as
relevant for body weight regulation to date [11].

In addition to DNA sequence variants, genetic influ-
ences are also manifested through differences in gene
transcription, leading to differential messenger RNA
levels. While such differences might be expected to
occur in biologically relevant tissues (muscle and adi-
pose tissue in obesity, for example), several recent
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studies have demonstrated an alteration in the periph-
eral blood transcriptome in diseases of non-hematologic
origin. These include disorders such as chronic fatigue
syndrome, schizophrenia and colon cancer [12-17].
Additionally, the blood transcriptome has also been
found to be responsive to diverse environmental and
socio-economic stimuli including ionizing radiation in
cancer therapy, benzene exposure, socio-economic sta-
tus, etc. [18-21]. These findings raise the intriguing pos-
sibility that blood transcriptome profiles might provide a
valid biological readout for otherwise hard to study dis-
ease processes in humans and additionally generate
information of high predictive and diagnostic content.
In line with this argument, we postulated that differ-
ences in transcript abundance might also occur in blood
from obese subjects compared to lean subjects, as a con-
sequence of either pre-existing genetic variations, or as
an adaptive response to obesity, independent of the
genetic background. To test this hypothesis, we have
carried out transcriptional profiling of peripheral blood
from obese subjects and well-matched lean controls and
conducted enrichment analysis to identify biological
pathways that are preferentially associated with obesity.
Our study demonstrates significant gene expression dif-
ferences in blood from obese subjects compared to lean
controls, particularly along the lines of differential
expression of genes in key metabolic pathways regulat-
ing cell survival, protein synthesis and energy harvest.
These findings are important on three levels. First, our
results demonstrate the importance of blood as a biolo-
gically informative tissue in the elucidation of the obese
state. Second, as differences in gene expression are often
driven by sequence variants in gene regulatory regions,
our study provides a mechanism for the selection of
obesity-associated candidate genes for the determination
of possible regulatory sequence variants. Finally, the
identification of adiposity related gene expression differ-
ences in a clinically accessible tissue such as blood leads
the way for the determination of biomarkers of weight
regulation that could be implemented in a clinical
setting.

Results

Phenotypic characterization of study subjects
Demographic and phenotypic characteristics of the sub-
jects included in the current study are shown in Table 1.
The obese and lean subjects showed statistically signifi-
cant differences (p < 0.05 level) in almost all metabolic
parameters tested with the exception of cholesterol,
LDL-cholesterol and thyroid stimulating hormone sta-
tus. Also, levels of glycated haemoglobin (HbAlc), insu-
lin and fasting glucose were statistically significantly
different but within normal clinical ranges in both
groups. There were 53% (9/17) and 70% (12/17) females
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Table 1 Demographic and phenotypic characteristics of
the study population

Variable Obese Lean p-value
N 17 17 -
Female (%) 9(53%) 12(70%) -

Age (yrs) 52.2(10.2) 47(9.3) 0.1270
BMI at baseline (kg/m2) 448(8.1) 20.7(1.9) 0.0000
BP, diastolic (mm Hg) 84.4(8.2) 69.8(8.7) 0.0001
BP, systolic (mm Hg) 143.0(11.8)  119.1(123)  0.0000
Waist circumference (cm) 125.7(15.1)  77.7(7.3) 0.0000
Weight (kg) 127.6(26.5)  588(8.3) 0.0000
Body fat (%) 459(7.3) 22.0(6.9) 0.0000
Fat free mass (kg) 67.4(10.3) 45.7(7.9) 0.0000
Fat mass (kg) 59.5(19.9) 12.9(4.2) 0.0000
Fasting glucose (mmol/L) 6.3(2.2) 48(04) 0.0102
Insulin (pmol/L) 99.8(56.7) 27.6(11.0) 0.0001
HbA1c (%) 59(0.8) 5(04) 0.0002
HDL-cholesterol (mmol/L) 1.0(0.2) 1.6(0.3) 0.0000
LDL-cholesterol (mmol/L) 3.2(06) 3.3(09) 0.6441
Cholesterol (mmol/L) 5.1(0.8) 54(0.9) 0.2673
Triglycerides (mmol/L) 1.9(1.8) 0.9(0.5) 0.0399
Thyroid stimulating hormone  2.6(1.3) 1.9(1.6) 0.2073

(mU/L)

Values for continuous measures are shown as average (standard error);
p-values are obtained from two-sided Student’s t-test, assuming unequal
variances between groups.

in the obese and lean groups, respectively. Both cohorts
were closely matched for age and hormonal status (6/12
lean and 5/9 obese women were postmenopausal).

Ascertainment of data quality

We ascertained the overall quality of the whole genome
expression profiling signals by comparing the Affymetrix
microarray generated expression patterns of a subset of
61 genes (with a 20% or greater change in expression
between obese and lean cohorts) to expression signals
generated by real-time, quantitative PCR (Tagman). The
genes selected cover a range of approximately 7 logs
(base 2) representing over 100-fold differences in the
magnitude of gene expression on Affymetrix microarrays
(average log2 signal of 4.66 for protein tyrosine phos-
phatase, receptor type, S to an average log2 signal of
11.35 for RAB31 gene in the obese cohort). The results
are shown in Figure 1. In ~ 75% of genes tested (45/61
genes), the direction of gene expression changes
between obese and lean subjects were in agreement
between the Affymetrix and Tagman platforms suggest-
ing high reproducibility of gene expression data between
the two approaches. Additionally, analysis of muscle and
adipose-specific marker gene expression demonstrated
no evidence of contamination in the study samples
(Additional File 1).
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Figure 1 Comparison of gene expression signals generated by
Affymetrix microarrays and quantitative real-time PCR. Gene
expression signals were generated by real-time, quantitative PCR
(Tagman, black bars) and oligonucleotide microarrays (Affymetrix,
white bars). Overexpression or underexpression of a gene in the
obese and lean cohorts is expressed as a log ratio, to the base 2.
Affymetrix and Tagman based results for each gene are shown as a
stacked bar. For each gene, agreement between the results from
the two platforms is indicated when both white and black bars lie
on the same side of the zero (0) value on the log ratio axis;
conversely, disagreement is indicated when the gray and black bars
lie on opposite sides. The overall agreement between the two
platforms was 85% (45/53 genes showed agreement in the
direction of differential expression).
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Principal components analysis of gene expression data
We performed multivariate, principal components analy-
sis to determine whether blood gene expression signals
were capable of distinguishing between the obese and
lean subjects. Figure 2 shows a scatterplot representing
the first two principal components based on gene
expression profiles from 17 obese and 17 lean subjects.
Analysis of the principal component model performance
indicated that 27% of the total variance in gene expres-
sion was modelled in the first principal component
(R2X) with a cross-validated prediction of 22.4%. The
cross-validation results indicate that the variability cap-
tured in the first component is statistically greater than
the significance limit of 2.9% (Additional file 2).

Identification of differentially expressed genes

Genes showing differential expression between the obese
and lean subjects were identified via the Comparative
Marker Selection module in GenePattern [22], using the
signal-to-noise algorithm for ranking genes. A permuta-
tion testing was performed to compute the significance
(nominal p-value) of the rank assigned to each gene.
A false discovery rate (FDR) was also calculated to con-
trol for multiple testing. A total of 12127 probesets were
detected above background (set to 50 units) among
which 374 probesetes were overexpressed (2-fold or
greater) and 75 probesets were underexpressed (2-fold
or greater) in the obese samples compared to the leans.
The results of the differential gene analysis are pre-
sented in Additional Files 3 and 4. Inspection of the
gene list showed that a majority of the genes upregu-
lated in the obese subjects were genes known to be
selectively expressed in erythrocytes/reticulocytes. These
included genes such as carbonic anhydrase, ferrochela-
tase, synuclein, glycophorin B, etc. This finding is con-
sistent with previous observations of higher red blood
cell counts (hematocrit) in obesity [23-26] and provides
evidence for the expansion of transcriptionally active
reticulocytes in obesity. Conversely, several genes related
to immune function showed reduced expression in the
obese subjects.

Pathway analysis of gene expression difference between
lean and obese subjects

The transcriptome data was next subjected to bioinfor-
matic pathway analysis by the Gene Set Enrichment
Analysis (GSEA) algorithm [27]. The values for the
GSEA algorithmic parameters used in the current study
are indicated in Additional File 5 and details about the
GSEA algorithm have been explained in Materials and
Methods. Pathway analysis was conducted either with
the Kyoto Encyclopedia for Genes and Genomes
(KEGG) metabolic pathway database [28], or a user-
created custom database consisting of pathways drawn
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from several sources (Additional File 6). Pathways were
evaluated by their normalized enrichment score (NES),
nominal p-values (permuted) and false discovery rates,
as described in [29].

KEGG Pathway analysis

Enrichment analysis of gene expression profiles against
KEGG pathways identified 5 pathways at pyermutea <
0.05 level (Additional File 7). Notable among them were
the ‘apoptosis’, ‘ribosome’, and ‘oxidative phosphoryla-
tion’ pathways. The pathway enrichment plots and
expression profiles of a subset of genes contributing sig-
nificantly to the enrichment of these 3 pathways are col-
lectively shown in Figure 3. A number of genes,
including apoptotic protease activating factor 1, baculo-
viral IAP repeat containing 2, caspase 7, Fas, interleukin
1 beta, interleukin 1 receptor associated kinase 4, etc.
contributed to the core enrichment of the ‘apoptosis’
pathway in the obese subjects (Additional File 8).
Enrichment of the ribosome pathway was effected by
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coordinate upregulation of several ribosomal protein
genes (ribosomal protein L31, S7, S24, L35, L7 for
example). Several genes involved in the mitochondrial
process of electron transfer and ATP synthesis demon-
strated increased expression in the obese cohort leading
to a significant enrichment of the ‘oxidative phosphory-
lation” pathway in this group. Some of the genes contri-
buting to core enrichment of this pathway included
cytochrome c oxidase subunits 6C, 7B and 7C, NADH-
coenzyme Q reductase, NADH deyhdrogenase beta sub-
complex 3, etc.

Custom Pathway analysis

In addition to investigating pathway enrichment based
on the KEGG database, we also subjected a set of ‘cus-
tom’ pathways to analysis by GSEA (Additional File 6).
GSEA analysis of the custom pathways identified 2 path-
ways as significantly upregulated in the obese, at a nom-
inal p-value < 5% and FDR < 5%. These were the
‘electron transport chain pathway’ and the ‘erythrocyte/
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Figure 2 Multivariate analysis of obese and lean subjects based on gene expression signals. Principal component analysis (PCA) was
performed on lean and obese subjects based on 12128 Affymetrix probe-set signals. A scatterplot of the first two principal components
demonstrate a general separation of the obese and lean phenotypes along the first principal component (PC1). Model parameters are as follows:
Further details on the PCA model parameters are included in Supplemental Table 2.
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reticulocytespecific_affytechnote’ pathways (Additional
File 9). The ‘electron transport chain pathway’ (National
Cancer Institute Pathway Interaction Database [30]) is a
subset of the KEGG ‘oxidative phosphorylation’ pathway.
The ‘erythrocyte/reticulocytespecific_affytechnote’” path-
way consists of genes reported to be selectively enriched
for expression in erythrocytes/reticulocytes (Affymetrix,
[31,32]). Identification of this gene-set as an obesity-
upregulated pathway further supports our earlier obser-
vation of increased expression of individual erythrocyte/
reticulocyte specific genes in the obese subjects. Details
are provided in Additional Files 10 and 11.

Effects of gender on pathway enrichment

Since our study cohort contained both male and female
subjects, the contribution of gender to pathway enrich-
ment was investigated. To determine whether pathway
ranks were influenced by gender, we carried out inde-
pendent gene-set enrichment analyses on subgroups
comprised of female or male subjects only. We com-
pared the relative ranks of the KEGG pathways in the
three analyses as an indication of their sensitivity to
gender. ‘Apoptosis’ was ranked 7', 8™ and 3" and ‘oxi-
dative phosphorylation’ was ranked 10", 12" and 18"
for All subjects, Females and Males respectively. The
‘ribosome’ pathway was the top ranked pathway for All
subjects and Females analysis, but was ranked 27 in
the analysis involving the Males. We repeated the same
subgroup analyses on the custom pathway set and in all
cases the ‘electron transport chain pathway’ and the
‘erythrocyte/reticulocytespecific_affytechnote’ pathways
remained the top 2 ranked pathways for all groups
tested. Details are provided in Additional File 12.

Effect of cell populations on pathway enrichment

Since whole-blood consists of a mixture of various cell
types, we investigated the relation between the observed
enrichment in “ribosome”, “apoptosis” and “oxidative
phosphorylation” pathways in the obese and enrichment
of reticulocytes/erythrocytes in obese subjects as pre-
viously reported [23-26]. We scaled the gene expression
data independently by the expression of 2 erythrocyte-spe-
cific transcripts, hemoglobin D (HBD) and erythrocyte
membrane protein, band 2 (EMPB2) and subjected the
scaled data to gene-set enrichment analysis. Of the original
3 pathways found to be enriched in the obese subjects, the
“ribosome” pathway was still the top differentially
expressed pathway with both unscaled and scaled data.
However, the “apoptosis” and “oxidative phosphorylation”
pathways were no longer significantly enriched, with either
of the scaled datasets. Pathway enrichment results with
scaled data are provided in Additional File 13.

Class prediction via blood gene expression
We next examined whether biological pathways impli-
cated from gene-set enrichment analysis of the current
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study could provide a set of mechanism-based gene pre-
dictors that would be capable of predicting obese and
lean subjects with high accuracy. We created an initial,
inclusive set containing all genes (features) belonging to
the ribosome, apoptosis or oxidative phosphorylation
pathways (183 genes). Since this list was also likely to
contain redundant and non-informative genes, we
applied two independent feature selection algorithms to
identify a smaller set of genes that would be capable of
distinguishing between the obese and lean phenotypes
with high success rates, based on the metrics specific to
the two algorithms used (described in detail in Materials
and Methods). A search for overlapping genes scoring
high in both algorithms (ranked within the top 20 genes
in both) resulted in a set of 11 genes. The logged gene
expression signals from the full (183) and filtered (11)
gene-sets were then used as inputs into four different
classifiers representing distinct algorithmic approaches
to classification and prediction. These included the
Naive Bayes, Logistic Regression, Random Forests and
ZeroR classifiers. A full description of the classifiers is
presented in Materials and Methods and Additional File
14. Each classifier was first trained on a randomly
selected 66% of the samples and then used to predict
the class for the remaining 33% samples. The process
was repeated 100 times for each classifier. Classifier per-
formance was evaluated by four parameters (true posi-
tive, true negative, false positive and false negative
rates). A description of the performance evaluators can
be found in Additional File 14. The classifier ZeroR sim-
ply predicts the same class for all instances and was
used as a baseline classifier. Any classifier should per-
form significantly better than ZeroR in order to be con-
sidered useful. Table 2 compares the performance of the
four classifiers with either the full gene-set (183 genes)
or the filtered set (11 genes). For each of the four per-
formance evaluators, we plotted the average and stan-
dard deviation values for the four parameters over the
100 iterations. Overall, the Naive Bayes and logistic
regression classifiers performed better than the decision-
tree based classifier (Random Forests) and all three clas-
sifiers performed significantly better than ZeroR.
A comparison of the classifier results with the full (183)
or filtered (11) gene-set inputs showed that both inputs
had similar true positive and false negative rates. Both
Naive Bayes and logistic regression classifiers displayed
high sensitivity as indicated by true positive rates close
to 1.0. These two classifiers also demonstrated lower
false-positive rates with the filtered gene set compared
to the full gene set. Additionally, the filtered gene set
classifiers displayed higher specificities (true negative
rates) compared to the full gene set based classifiers.
Based on these results, we found the 11-gene based
Naive Bayes or logistic regression based classifiers to
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Figure 3 Gene-set enrichment analysis. Gene-set enrichment analysis against the KEGG database for differentially enriched pathways in whole
blood between obese and lean subjects. Enrichment plots for the 3 pathways upregulated in the obese cohort are shown on the left side with
the relative gene positions indicated by the straight lines (line plot) under each graph. Lines clustered to the left represent higher ranked genes
he rel d d by th htl (l lot) und h h.L I d to the left high ked
in the ranked list. Expression profiles for a subset of genes (shaded in yellow in the line plots) contributing to core enrichment for each pathway
are shown to the right as a heatmap. The heatmap compares subject-level gene expression in both obese and lean subjects. Gene expression is
normalized for each row. Lower levels of expression are represented in shades of blue and higher expression in red.

perform better compared to the 183-gene classifiers for
predicting class membership. The identities of the 11
genes are shown in Table 3 and appear to be primarily
composed of genes from the oxidative phosphorylation
and apoptosis pathways.

Discussion

Our study demonstrates significant gene expression dif-
ferences in whole blood from age-matched obese and
lean subjects of Northern European White genetic
ancestry. These differences further lead to the identifica-
tion of differentially enriched biological pathways in
obesity and lead to an increased appreciation and under-
standing of genomic changes in whole blood related to
body mass expansion. The current study is not designed
to resolve whether the observed transcriptional differ-
ences are causal or caused, i.e. whether the differences

in gene expression are related to the development of
obesity or reflect an adaptive mechanism in response to
increased body mass. Although blood is usually not con-
sidered to be a target organ for obesity, certain observa-
tions are pertinent. First, the physiological role of blood
as a sentinel tissue and a systemic integrator of tissue
and organ-level perturbations could lead to adaptive
responses in response to major metabolic perturbations
such as excessive build-up of body mass and the atten-
dant increases in the demand for nutrient and oxygen
transport. Secondly, the chronic low-grade tissue inflam-
mation observed in obesity [33] is expected to have a
direct effect on circulating leukocytes, including immune
dysfunction and apoptosis. Finally, macrophages in
blood share many functional and antigenic properties
with preadipocytes and adipocytes and transcriptome
profiles of preadipocytes are reportedly closer to the
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Table 2 Classification of lean and obese subjects
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True Positive Rate (Sensitivity)

False Positive Rate

True Negative Rate (Specificity) False Negative Rate

Classifier Full Filtered Full

Naive Bayes 0.96 (0.09) 0.93 (0.08) 0.18 (0.16)
Logistic Regression 0.98 (0.04) 0.95 (0.07) 0.11 (0.16)
Random Forests 0.95 (0.09) 0.94 (0.11) 0.17 (0.17)
ZeroR 0.81 (0.39) 0.81 (0.39) 0.81 (0.39)

Filtered Full Filtered Full Filtered
0.003 (0.02) 0.82 (0.17) 0.99 (0.02) 003 (0.09) 0.6 (0.08)
0.01 (0.03) 0.89 (0.16) 0.99 (0.03) 001 (0.04) 005 (0.08)
0.10 (0.14) 0.83 (0.17) 0.89 (0.14) 0.05 (0.09) 0.06 (0.11)
0.81 (0.39) 0.19 (0.39) 0.19 (0.39) 0.19 (0.39) 0.19 (0.39)

Comparison of classifier performance for predicting obese and lean phenotype with a full (183 genes) or filtered (11 gene) gene inputs

macrophages than to adipocytes [34]. In this context,
our study provides the first detailed investigation of the
blood transcriptome in relation to obesity and provides
evidence in favor of its dynamic involvement in the pro-
cess. It is important to note here that the between-
group differences in gene expression were usually small
and there was considerable heterogeneity in individual
gene expression values among subjects in the obese or
lean categories. However, the between-group variation
exceeded the within-group variation for several genes
leading to statistically significant differences between the
groups. Additionally, as demonstrated by principal com-
ponents analysis, blood gene expression profiles were
able to distinguish lean subjects from obese subjects
even when the subject classes were not exposed a priori
(unsupervised clustering). Since gene expression mea-
sures were used as input for the PCA analysis, these
results suggest that the differences in blood transcript
levels between obese and lean subjects were significant
and informative enough to cause a separation between
the two classes.

The application of pathway analysis provided addi-
tional information and insight into the biological pro-
cesses that are differentially regulated in obese and lean
blood samples. Some of the pathways with increased
component transcript abundances included the “ribo-
some”, “apoptosis” and “oxidative phosphorylation”
pathways. Upregulation of the ribosomal pathway in the
obese subjects was due to an increased expression of
several ribosomal protein-encoding genes, indicative of
enhanced protein synthesis in blood cells, possibly as a
consequence of enhanced metabolic demands in the
obese state. This observation is consistent with a recent
report that links ribosomal RNA synthesis to cellular
energy supply through activation of the AMP-activated
protein kinase [35]. The presence of increased apoptosis
in the obese phenotype has also been well documented
in animal and human cell culture models. For example,
increased cardiomyocyte apoptosis has been reported in
leptin-deficient ob/ob mice and leptin-resistant db/db
mice [36]. Prolonged exposure to free fatty acids also
have pro-apoptotic effects on human pancreatic islets
[37] and circulating cytokines, such as tumor necrosis
factor alpha (TNF-a) have been reported to induce

apoptosis in cultured human preadipocytes and adipo-
cytes [38]. Our findings now provide evidence for activa-
tion of a similar apoptotic program in blood from obese
subjects. While the current study does not allow us to
pinpoint the cause of the enhanced apoptosis, we specu-
late that obesity-associated chronic inflammation [39,40]
or lipotoxicity are contributing factors. Finally, the
observed upregulation of the ‘oxidative phosphorylation’
pathway in obese subjects is consistent with a response
to increased energy demands in obese subjects. Func-
tional and gene expression studies have previously indi-
cated impairment in oxidative phosphorylation and
mitochondrial function in subjects with type 2 diabetes
compared to controls [29,41,42]. Our findings are con-
sistent with Takamura et al., who demonstrated an
upregulation of oxidative phosphorylation genes in the
livers of obese, type 2 diabetic patients compared to
non-obese diabetics [43]. More interestingly, our find-
ings now point to a similar involvement of energy-har-
vesting mechanisms in obese blood and provide further
evidence in favor of a role for mitochondrial dysfunction
in obesity [44,45]. A gender-based sub-analysis demon-
strated relative stability of the “apoptosis” and “oxidative
phosphorylation” pathway ranks in both genders; in con-
trast, the “ribosome” pathway differed significantly in
rank between females and males, suggesting a gender-

Table 3 Identity of genes constituting the 11-gene
classifier

ProbesetlD GeneName

202110_at cytochrome ¢ oxidase subunit VIlb

208746_x_at ATP synthase, H+ transporting, mitochondrial FO complex,
subunit G

202875_s_at ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1

215719_x_at Fas (TNF receptor superfamily, member 6)

201134_x_at cytochrome c oxidase subunit Vlic

201783_s_at v-rel reticuloendotheliosis viral oncogene homolog A

202076_at baculoviral IAP repeat-containing 2

208737_at ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G
isoform 1

202429_s_at protein phosphatase 3 (formerly 2B), catalytic subunit,
alpha isoform

206752_s_at DNA fragmentation factor, 40kDa, beta polypeptide

213052_at protein kinase, CAMP-dependent, regulatory, type I, alpha
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specific effect (Additional File 7). Since a majority of
genes upregulated in the obese subjects are highly
expressed in erythrocytes and reticulocytes, we scaled
the gene expression data independently by the expres-
sion of two erythrocyte-specific transcripts, hemoglobin
D (HBD) and erythrocyte membrane protein, band 2
(EMPB2) and subjected the scaled data to gene-set
enrichment analysis. Of the three pathways found to be
differentially upregulated in the obese subjects, the
“ribosome” pathway remained the top differentially
expressed pathway (with the scaled data) whereas the
“apoptosis” and “oxidative phosphorylation” pathways
were no longer significantly enriched, with either of the
scaled datasets. These findings suggest that an increase
in erythrocyte/reticulocyte numbers in the obese (differ-
ential hematocrit) is a possible explanatory mechanism
for the observed increase in transcript levels for “apop-
tosis” and “oxidative phosphorylation” in the obese sub-
jects. The results for the “ribosome” pathway, in
contrast, suggest a significant upregulation of the tran-
scripts for the component genes of this pathway in the
obese subjects, even after adjustment for erythrocyte-
specific gene expression. We note one caveat to the
scaling approach used here for investigating cell number
effects. Since the same amount of cRNA was used from
each sample for hybridization, the relative enrichment of
cell types is expected to have a real effect on gene
expression only for genes that are differentially
expressed among the cell types (e.g. hemoglobin tran-
scripts that are expressed only in reticulocytes and not
lymphocytes). For genes expressed at comparable levels
across cell types, the differential cell type representation
should not have an effect on expression unless there is a
true upregulation or downregulation of these genes
between the two groups (although the cellular origin for
the differential expression may not be known). Scaling
the gene expression data by the expression of reticulo-
cyte/erythrocyte specific genes cannot distinguish
between the above two mechanisms of enhanced gene
expression and can lead to potentially incorrect conclu-
sions. However, our results clearly demonstrate that
inter-individual variations in hematocrit, especially
between obese and lean subjects, may affect interpreta-
tion of expression data and should be considered as an
important co-variate in future studies.

Several recent publications have reported on the suc-
cessful application of gene expression signatures as clas-
sifiers or predictors of phenotypic class, disease
progression and therapeutic prognosis, primarily in the
area of diagnosis and treatment of several types of can-
cers [16,46-48]. However, the biological mechanisms
linking the predictive genes to the outcomes being pre-
dicted are not always clear. This lack of mechanism has
often been criticized as a barrier to the clinical utility of
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the gene predictors. One solution to the problem is to
choose gene predictors from biological pathways asso-
ciated a priori with the phenotype or outcome of inter-
est. This approach was pursued in this study and led to
the identification of an 11-gene based classifier that
could distinguish and predict obese and lean subjects
with high accuracy. Our motivation for this exercise was
to provide proof-of-concept data to test if blood gene
expression patterns can have predictive value in the
context of obesity. While such prediction is not necessa-
rily required for distinguishing obesity from leanness,
blood based gene biomarkers can significantly advance
the clinical management of obesity by, for example,
allowing the prediction of weight loss success from diet
or bariatric surgery.

One potential downstream application of differential
gene expression analysis in whole-blood is the selection
of candidate genes with possible regulatory polymorph-
isms (single nucleotide polymorphisms in promoter
regions, for example) that associate with obesity and
help explain the observed differences in expression.
Comprehensive sequencing of the regulatory regions of
such candidate genes are expected to yield additional
insights into the genetics of obesity such as the identifi-
cation of expression QTLs (eQTLs). While a direct sub-
ject-level association of gene regulatory polymorphisms
to gene expression levels is outside the scope of the cur-
rent work, we conducted a preliminary analysis of the
existence of putative regulatory variants in the 11 gene
predictors identified in our analysis. Based on data from
the NCBI dbSNP database (Build 131), several genes
contained common sequence variants near the 5-end of
the gene spanning a region 2000 bases upstream of the
start codon (SNPs rs2515192 and rs3019164 for
ATP6VI1C1, rs1317775 and rs1318199 for BIRC2,
rs11709092 for PRKAR2A, etc.). It is reasonable to spec-
ulate that a subset of these upstream sequence variants
could influence transcription.

Our study relied on whole-blood collected in PAX-
gene tubes instead of peripheral blood mononuclear
cells (PBMCs), consistent with our ultimate goal of
identifying clinically relevant and useful predictors of
weight loss success. This procedure, however, has the
disadvantage of investigating a relatively heterogeneous
cell population where noise could mask gene expression
differences in specific cell types. PBMC’s, consisting of
lymphocytes and monocytes provide a consistent and
homogeneous sample for transcriptome analysis. How-
ever, the extra fractionation procedure for PBMCs
requires a prolonged period before RNA stabilization
leading to significant ex vivo changes in gene expression
profiling [49]. Additionally, compared to whole blood,
several cell types including neutrophils, basophils, eosi-
nophils, platelets, reticulocytes and erythrocytes are
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depleted in PBMCs which lead to loss of important
transcription information. On the other hand, PAX sam-
ples show a decrease in the number of expressed genes
and lower gene expression values with higher variability
compared to the PBMCs [50], primarily due to the high
abundance of globin transcripts that constitute over 70%
of whole blood mRNA [51]. However, the PAXgene sys-
tem employs an easy way to collect, store, transport and
stabilize RNA from whole blood and based on our over-
all goals, was the method of choice for our analysis. In
this context, the ability of gene expression signatures
from biologically relevant pathways to accurately classify
and predict obese and lean classes, as observed in this
study, provides further validation of our approach and
suggests future suitability of the PAXgene based whole
blood transcriptome for yielding clinically usable bio-
markers related to weight regulation. Additional sensi-
tivity could be obtained in future studies via selective
reduction of the globin transcript from whole blood
RNA samples [52,53].

There are the following limitations to the current
study. First, since the study employed whole blood, the
relative contribution of the number and transcriptional
programs in specific cell types towards the observed
gene expression differences cannot be clearly delineated.
Second, the relatively small sample sizes reduced the
power for detection of subtle differences in expression.
Also, due to small sample numbers, we had to rely on
cross-validation methods for calculation of prediction
errors instead of testing candidate predictors on new
samples. The possibility of over-fitting cannot, therefore,
be entirely ruled out.

Conclusions

Gene expression profiling in whole blood demonstrated
significant differences in transcript levels that were cap-
able of separating obese and lean phenotypes in multi-
variate analysis. Gene-set enrichment analysis further
identified differences in biological pathways relating to
cell survival, protein synthesis and energy harvest
between the obese and lean groups. A subset of genes
responsible for pathway enrichment also acted as effi-
cient predictors of phenotype (obese or lean) when their
expression signatures were used as inputs to Naive
Bayes or logistic regression based classifiers. Together,
our study is the first to investigate the information con-
tent in whole blood in relation to obesity. Our findings
demonstrate that the investigation of gene expression
profiles from whole blood can inform and illustrate the
biological processes related to regulation of body mass.
Additionally, the ability of pathway-related gene expres-
sion to predict class membership suggests the feasibility
of a similar approach to identify blood-based robust
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predictors of weight loss success in response to dietary
and surgical interventions.

Methods

Study Subjects

Twenty consecutive obese subjects enrolled in the
Ottawa Hospital Weight Management Program at the
Ottawa Hospital, Ottawa, with a body mass index (BMI)
of 30-50 kg/m2, were recruited for study. All subjects
were of Northern European White genetic ancestry.
Patients were excluded on the basis of medical condi-
tions possibly affecting whole blood gene expression,
including out of normal range thyroid indices (TSH,
free T3) at week 1 or week 13, diabetes mellitus treated
with insulin or oral hypoglycemic agents, cigarette
smoking, congestive heart failure, obstructive sleep
apnea, active malignancy. Patients treated with weight-
altering medications including tricyclic antidepressants,
paroxetine, mirtazepine, lithium, valproate, gabapentin
and typical and atypical antipsychotics, fluoxetine in
doses greater than 20mg, bupropion, topiramate, sys-
temic glucocorticoids and weight management drugs
were also excluded. Blood samples were collected at
baseline prior to initiation of weight loss therapy.
Twenty lean subjects from the same genetic ancestry
(Northern European White), with a BMI < the 10th per-
centile for age and sex and no prior history of having
had a BMI> 25th percentile for more than a 2 year con-
secutive period, were recruited from the Ottawa com-
munity. Lean subjects were excluded if they had any
medical conditions affecting weight gain such as
hyperthyroidism, anorexia nervosa, bulimia, major
depression, or malabsorption syndromes. BMI for obese
and lean subjects was categorized according to the
population percentiles for age and sex using the Cana-
dian Heart Health Survey data for subjects over the age
of 18 years (data on file; Health Canada). The study pro-
tocol was approved by the Human Research Ethics
Committees of the Ottawa Hospital and the University
of Ottawa Heart Institute and informed consent was
obtained from all participants prior to their enrolling
into the program.

Sample preparation for transcriptome analysis

2.5 ml of fasting whole blood was drawn from study
subjects by standard venipuncture and directly trans-
ferred to PAXgene blood RNA tubes (Qiagen, Santa
Clara, CA). PAXgene tubes were processed at designated
times after phlebotomy by the PAXgene protocol. Isola-
tion of total RNA was accomplished according to the
manufacturer’s instructions. Prior to further processing,
RNA quality was ascertained by electropherograms on
the Agilent 2100 Bioanalyzer. Extracted RNA from all
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samples was stored -70°C until processed for microarray
hybridizations.

Microarray hybridization and data analysis

Hybridization of 100 nanograms of labeled cRNA from
each sample was carried out on Affymetrix GeneChip®
Human Genome U133 Plus 2.0 Arrays according to the
manufacturer’s instructions. Microarray data was depos-
ited in the Gene Expression Omnibus data repository
(accession number GSE18897). Gene expression signals
were generated from hybridized and scanned Affymetrix
arrays by the GC-RMA algorithm [54]. Probesets with a
normalized average expression level of less than 50 units
in all of the tested groups were eliminated from further
analysis. Significance of differential gene expression was
ascertained via the signal-to-noise algorithm from the
GenePattern Comparative Marker Selection module [22],
employing a permutation-based t-test and false discovery
rate (FDR) control. The Signal-to-Noise feature selection
method is a variation of the more commonly used t-test
statistic and looks at the difference of the means in each
of the classes scaled by the sum of the standard devia-
tions: Sx = (p0-p1)/(c0 + o1) where pO is the mean of
class 0 and o0 is the standard deviation of class 0. The
Signal-to-Noise statistic penalizes genes that have higher
variance in each class more than those genes that have a
high variance in one class and a low variance in another.

Pathway analysis

Bioinformatic pathway analysis was conducted with the
Gene Set Enrichment Analysis (GSEA) software package
[27,55]. GSEA is a computational method to detect sta-
tistically significant, concordant differences in a priori
defined gene sets (pathways) between two biological
states. GSEA accomplishes this task by calculating a
weighted Kolmogorov-Smirnov statistic, adjusted for
gene-set size (known as the Normalized Enrichment
Score, NES) for each gene-set, based on the over-repre-
sentation of members of a gene-set towards the top or
bottom of a list of genes ranked by the strength of their
correlation (positive or negative) to one of the two phe-
notypes. The statistical significance of NES score is esti-
mated by a permutation test based on random shuffling
of the phenotype or tag (gene) labels. GSEA addresses
the problem of multiple testing (testing hundreds of
gene-sets simultaneously) by calculating a false-discovery
rate and a family-wise error rate on the ES p-values.

Quantitative real time polymerase chain reaction (RT-PCR)
Whole blood was collected in PAXgene™ blood tubes
(Qiagen, Santa Clara, CA) and total RNA was extracted
using the PAXgene™ blood kit. All RNA was treated
with DNase I to remove genomic DNA contamination.
The RNA was converted to ¢cDNA in a 96-well
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microtiter plate on an ABI PRISM 7700 Sequence
Detector System (Applied Biosystems, Foster City, CA)
using the Applied Biosystems High Capacity cDNA
archive kit. Gene expression was conducted on the
Applied Biosystems 7900 using TagMan® RT-PCR tech-
nology. A global median absolute deviation (MAD) was
computed from the gene expression values by taking the
median deviation for each set of technical replicates,
using either the Ct values or log, calculated abundances.
Outliers were defined as having more than five times
the global MAD. Following technical and biological out-
lier identification the data was normalized using refer-
ence housekeeper genes. The mean Ct value of all
reference genes across all samples ("global mean Ct”)
was subtracted from the mean Ct value of all reference
genes within each sample ("sample reference mean”) to
determine a normalization factor for each sample. The
normalization factor for a given sample was then sub-
tracted from its Ct value resulting in a normalized Ct.
All Ct values were then converted to log2 abundances.

Class Prediction from gene expression

Class prediction (obese or lean) from gene expression
data was carried out through the WEKA Explorer and
WEKA Experimenter applications. First, 183 genes
belonging to the 3 obese-upregulated pathways (ribo-
some, apoptosis and oxidative phosphorylation) were
used to identify a subset of maximally informative fea-
tures (genes) for classifier testing while removing irrele-
vant or redundant features that could negatively impact
algorithm performance. Feature selection was accom-
plished by two independent ‘filtering-based’ algorithms
(Information Gain and Cfs Subset Evaluator) and using
10-fold cross validation for each method [56,57]. We did
not use ‘wrapper-based’ feature-selection because we
wanted the selected features to be independent of classi-
fication algorithms [58]. Both procedures resulted in a
list of genes that were then ranked based on their
importance in each feature selection method. From
these ranked lists, we selected a total of 11 genes that
were ranked within the top 20 genes in both lists. Gene
expression signals for these 11 genes were then used as
input in 4 different classifiers (Naive Bayes, Logistic
Regression, Random Forests and ZeroR) representing 4
different algorithmic approaches (Bayesian, regression,
decision trees and rule-based, respectively) which were
independently tested for predictive performance (Addi-
tional File 13) [59,60]. Classifer-specific parameters were
kept at the defaults provided in WEKA Experimenter.
Each classifier used 66% of the samples for training
(from a total of 34 obese plus lean subjects) and 33% for
testing (chosen at random for each round) for a total of
100 iterations. For each classifier, the true positive rate,
true negative rate, false positive rate, and false negative
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rates were calculated (average plus standard deviation
over 100 iterations) and the values used to compare
individual classifiers for their predictive performance.

Additional material

Additional file 1: Comparison of expression of adipocyte and
muscle specific genes in whole blood samples utilized in the
current study. Data for adipocyte-specific and muscle-specific gene
expression was obtained from microarray data available on 79 different
tissues from the Genomics Institute of Novartis Research Foundation
http://www.gnf.org. Relative expression in whole blood was also
obtained from the same source. The average expression and standard
deviation in adipocyte-specific and muscle-specific gene expression
observed in whole blood samples used in the current study

Additional file 2: PCA model output from multivariate analysis on
obese and lean subjects based on whole blood gene expression
signals. Analysis of performance of the PCA model separating obese
from lean subjects based on blood gene expression signals.

Additional file 3: Top 100 differentially expressed genes in whole
blood from obese and lean subjects. Using the GenePattern algorithm
http://www.broadinstitute.org/cancer/software/genepattern/ a list of the
top 50 upregulated and top 50 downregulated genes in obese and lean
samples was generated and plotted on a heat-map for visualization.
Higher expression levels are indicated in red and lower expression levels
are indicated in blue. Genes (rows) are indicated by their Affymetrix
probeset identifiers and samples (columns) are indicated by their obese
or lean categories.

Additional file 4: Differential gene expression analysis between
obese and lean subjects from blood transcriptome data.
Identification of top 200 differentially expressed genes between Obese
and Lean subjects using the Comparative Marker Selection module in
GenePattern. Results for top 100 upregulated and top 100
downregulated genes (Obese vs. Lean) are shown.

Additional file 5: Description and value ranges of the parameters
used in gene-set enrichment analysis (GSEA) in the present study.
For detailed explanation of parameters and acceptable value ranges,
please see additional documentation at http://www.broadinstitute.org/
gsea/doc/GSEAUserGuideFrame.html.

Additional file 6: Custom pathway database used in the GSEA
studies. Column 1 indicates the pathway name, column 2 indicates the
source for the pathway information. Subsequent columns represent the
gene symbols for the genes constituting the pathway.

Additional file 7: List of pathways determined to be upregulated in
the Obese subjects compared to the Lean subjects and vice versa.
These results were obtained by querying the pathways in the KEGG
database (> = 10 and < = 200 gene members) and using the GSEA
algorithm.

Additional file 8: List of gene members of the 3 pathways identified
by GSEA as upregulated in obese subjects. List of genes in the
oxidative phosphorylation, ribosome and apoptosis signaling pathways
that were expressed in blood from obese and lean subjects. The column
‘Core Enrichment’ describes whether a gene contributed significantly
towards the enrichment of the respective pathway in the gene set
enrichment analysis.

Additional file 9: List of pathways determined to be upregulated in
the Obese subjects compared to the Lean subjects and vice versa.
These results were obtained by querying the pathways in a user-defined
custom database (> = 10 and < = 200 gene members) and using the
GSEA algorithm.

Additional file 10: Expression patterns of genes reported to be
enriched in erythrocyte/reticulocyte fraction among lean and obese
subjects. The average log2 expression signal in obese and lean subjects,
differential expression (log ratio) and statistical significance of the
differences in expression in the two groups are indicated.
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Additional file 11: Overexpression of erythrocyte/reticulocyte
enriched genes in obese blood samples. A scatter plot of log average
expression of genes (x-axis) versus the differences of log expression
between the obese and lean cohorts (y-axis) was created (also known as
a MA plot). Each gene is indicated by a gray dot with the exception of
genes reported to be enriched in erythrocytes/reticulocytes (compared
to other blood cell types) which are shown as black pluses. A value of 0
on the y-axis signifies no differences in gene expression between the
lean and obese cohorts.

Additional file 12: Gene set enrichment analysis between obese and
lean subjects considering male only or female only cohorts.
Pathways are ranked in descending order of their enrichment for each
comparison. Results with males only are shown first, followed by the
results with females only.

Additional file 13: Gene set enrichment analysis between obese and
lean subjects after scaling of gene expression data by expression
levels of erythrocyte membrane protein band 2 (EMPB2) and
hemoglobin D (HBD) genes respectively. Pathways are ranked in
descending order of enrichment. Top part refers to results obtained after
scaling with EMPB2; bottom part shows the results following scaling with
HBD.

Additional file 14: Description of classifiers and classifier
performance evaluators used in the study. Brief descriptions of the
Naive Bayes, Logistic Regression, Random Forests and ZeroR classifiers
along with the feature selection algorithms used (Information Gain and
Cfs Subset evaluator) are given. Mathematical formulas for true and false
positive and negative rates (classifier evaluation metrics) are also
provided.
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