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Electrocardiographic
manifestations in severe
hypokalemia

Xiqiang Wang, Dan Han and Guoliang Li

Abstract

Hypokalemia is one of the most common electrolyte disturbances in the clinic and it can increase

the risk of life-threatening arrhythmias. Electrocardiographic characteristics associated with hypo-

kalemia include dynamic changes in T-wave morphology, ST-segment depression, and U waves,

which are often best seen in the mid-precordial leads (V2–V4). The PR interval can also be

prolonged along with an increase in the amplitude of the P wave. We report a case of a patient

with hypokalemia (1.31mmol/L) who showed typical electrocardiographic characteristics of

hypokalemia.
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Introduction

Hypokalemia is one of the commonly

encountered electrolyte disturbances, and

has the potential to increase the risk of

arrhythmia.1–4 Hypokalemia is defined as

a potassium level <3.5mmol/L, moderate

hypokalemia as a potassium level of

<3.0mmol/L, and severe hypokalemia as a

potassium level <2.5mmol/L. Diarrhea and

diuretic therapy are responsible for most

cases of hypokalemia in the clinic.2,5 The

level of serum potassium is vital for regulat-

ing depolarization and repolarization of the

myocardium, and hypokalemia can alter
the cardiac action potential and result in
abnormities of cardiac conduction.6

Additionally, the P pulmonale pattern is
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occasionally observed in patients with
hypokalemia, and it is transient and con-
comitant.7,8 These changes are responsible
for findings on a surface electrocardiogram
(ECG) associated with hypokalemia. When
potassium levels are <2.7mmol/L, changes
in the ECG include dynamic changes in T-
wave morphology (T-wave flattening and
inversion), ST-segment depression, and U
waves, which are often best seen in the
mid-precordial leads (V1–V4).
Furthermore, high potassium levels precip-
itate potentially life-threatening dysrhyth-
mias.9,10 Therefore, serum potassium levels
in patients who experience arrhythmia need
to be checked, especially when they have
diuretic therapy or diarrhea. We present a
case of typical ECG parameters that were
related to severe hypokalemia. This study
aimed to discuss the electrophysiological
mechanisms underlying dynamic changes
in an ECG. We also aimed to provide a
better understanding of hypokalemia-
induced arrhythmias from cell to bedside,
promoting management of this setting in
clinical practice.

Case report

This study complied with the Declaration of
Helsinki and was approved by the Ethics
Committee of the First affiliated Hospital
Affiliated of Xi’an Jiaotong University. The
patient provided written informed consent.

Case

A 57-year-old man presented with diarrhea
with approximately eight to ten stool emis-
sions per day, progressive paralysis of the
lower extremities, weakness, and inability
to walk by himself over the past 3 months.
His medical history was unremarkable. A
physical examination showed that the
patient was weak and bedridden, and tho-
racic and cardiac examinations were unre-
markable. The patient’s abdomen was soft,

with tenderness at palpation in the left lower
quadrant, and bowel sounds were hyperac-
tive. A neurological examination showed
flaccid paralysis of the lower extremities
(Medical Research Council Grade¼ 2) and
swelling of the ankles. There were no swal-
lowing or respiratory difficulties. Laboratory
tests on admission showed severe hypokale-
mia (1.31mmol/L; minimum on admission:
1.31mmol/L, at discharge: 4.28mmol/L;
normal value: 3.5–5.5mmol/L), a normal
serum sodium level (140mmol/L;
minimum on admission: 132mmol/L, at dis-
charge: 142mmol/L; normal value:
137–147mmol/L), a low serum calcium
level (1.65mmol/L; minimum on admission:
1.31mmol/L, at discharge: 1.83mmol/L;
normal value: 2.1–2.5mmol/L), and a
normal serum magnesium level (0.77mmol/
L; minimum on admission: 0.16mmol/L,
at discharge: 0.83mmol/L; normal value:
0.75–1.02mmol/L). At admission, the
patient also had an elevated creatine kinase
level (1595U/L; normal value: 50–310U/L),
elevated creatine kinase-MB level (45U/L;
normal value: 0–24U/L), elevated
myohemoglobin level (6182.1ng/mL;
normal value: 0–146.9ng/mL), normal
troponin level (14.63 pg/mL; normal value:
0–26.2 pg/mL), and normal serum
cortisol level (18.1mg/dL; normal value:
5–28mg/dL). Arterial blood gas analysis
showed the following: pH, 7.56; partial pres-
sure of oxygen, 108mmHg; partial pressure
of carbon dioxide, 35mmHg; bicarbonate,
31.3mmol/L; and oxygen saturation, 99%.
These findings indicated metabolic alkalosis.
Urinary electrolyte studies showed that
potassium excretion was normal.

ECG on admission (Figure 1) showed a
sinus rhythm of 52 beats/minute, prolonged
QU interval of 820 ms, prolonged PR inter-
val of 22 ms, ST-segment depression,
T-wave inversion, and U waves, which
were best seen in the precordial leads (par-
ticularly in leads V2 and V4). The level of
serum potassium gradually increased
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following oral and intravenous potassium

supplementation of approximately 10 g/

day. Two days later, stool emissions were

reduced to five times per day. The level of

serum potassium was 2.85mmol/L and a

simultaneous ECG examination showed

sinus rhythm of 58 beats/minute, a pro-

longed QU interval of 720 ms, ST-segment

depression, T wave inversion, and improve-

ment of U waves (Figure 2). After 5 days of

potassium supplementation, potassium

levels improved to normal levels and paral-

ysis of the lower extremities gradually dis-

appeared. ECG showed normalization of

the QT (424 ms) and QTc (439ms) inter-

vals, smaller inverted T waves, and

ST-segment elevation (Figure 3) compared

with ECG on admission. The P wave ampli-

tude of this patient was in the normal range

in the ECG on admission and at a later date.

With potassium and fluid supplementation,

the patient improved in all aspects and was

discharged 2 weeks after admission.

Discussion

U-wave development is a classic change in

the ECG in patients with hypokalemia. A U

wave is described as positive deflection after

the T wave and it is often best observed in

the mid-precordial leads. Under the condi-

tion of extreme hypokalemia, giant U

waves may often merge and then smaller

preceding T waves are covered.11 Tall P

waves, prominent J waves, ST-segment

depression, a prolonged QT interval, pre-

mature ventricular contraction, ventricular

tachycardia, and torsade de pointes can

also be observed in patients with hypokale-

mia.12–16 In the present case of severe hypo-

kalemia, the ECG showed typical

alterations in T waves, U waves, and a

Figure 1. Twelve-lead electrocardiogram taken on admission from a 57-year-old man with severe diarrhea,
paralysis of the lower extremities, weakness, inability to walk, and severe hypokalemia (1.31 mmol/L; normal
value: 3.5–5.5 mmol/L). Electrocardiography shows bradycardia, a prolonged PR interval, a prolonged QU
interval, ST-segment depression, Twave inversion, U waves best seen in the precordial leads (particularly in
leads V2–lead 4), and slurring of T waves into U waves (leads II and III), which are consistent with the
diagnosis of hypokalemia. Red arrowheads indicate prominent U waves, black arrowheads indicate T wave
inversion, and blue arrowheads indicate ST-segment depression.
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Figure 2. Twelve-lead electrocardiogram taken from the same patient following oral and intravenous
potassium replacement (potassium level was 2.85 mmol/L during the electrocardiogram). An electrocar-
diogram shows bradycardia, a prolonged PR interval, a prolonged QU interval, ST-segment depression,
T wave inversion, and improvement of U waves. Red arrowheads indicate prominent U waves, black
arrowheads indicate T-wave inversion, and blue arrowheads indicate ST-segment depression.

Figure 3. An electrocardiogram shows normalization of the QT and QTc intervals, smaller inverted
T waves (black arrowheads), and ST-segment elevation (blue arrowheads).
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prolonged QU interval. Multiple mecha-
nisms contribute to the dynamic morphol-
ogy of T waves related to hypokalemia.17

Potassium is one of the most abundant
intracellular cations and it also determines
the resting membrane potential.18

Hypokalemia leads to a more negative rest-
ing membrane potential, and in electrical
diastole, widening between the threshold
potential and the resting membrane poten-
tial leads to a decrease in membrane excit-
ability.5 Because of low extracellular
potassium levels, a delayed rectifier current
(IKr) results in an increase in the action
potential duration and a delay in repolari-
zation.5 To open the delayed rectifier chan-
nel, extracellular potassium ions are
required. Importantly, the action potential
configuration is changed by hypokalemia;
the slope of phase 2 first increases and sub-
sequently decreases, whereas the duration
of phase 3 decelerates. This results in a
long action potential, leading to a decrease
in the difference of the resting membrane
potential from the threshold potential
during the terminal phase of the action
potential and an increase in the relative
refractory period.5 Increased cardiac tissue
excitability is associated with ectopy for a
large portion of the action potential.

Conductance of potassium is often char-
acterized by an intense allosteric depen-
dence and dichotomous effects on
extracellular potassium concentrations
([Kþ]o), including the inward rectifier potas-
sium channel (IK1), the rapid component of
the delayed rectifier-like potassium channel
(IKr), and the transient outward potassium
current (Ito).

19 Because of cytoplasmic mag-
nesium and polyamines, the IK1 shows a
dichotomous effect during hypokalemia.
The IK1 has a paradoxical connection with
[Kþ]o where the IK1 peak current density is
decreased during hypokalemia.20 Even
though hypokalemia hyperpolarizes the
potassium equilibrium potential, the driv-
ing force of outward potassium flow is

increased, and the increased blocking stabil-
ity of cations in the pore results in
decreased of conductance and outward
potassium current. The mechanisms that
regulate the conductance of potassium
channels of the IKr and Ito are different.
These mechanisms speed rapid inactivation
of the IKr and slow reactivation kinetics of
the Ito to reduce outward repolarizing cur-
rent, even with moderate hypokalemia.21

Hypokalemia also leads to internalization
and degradation of IKr expression within
hours.22 In the plasma membrane,
enhanced degradation of the IKr downregu-
lates the expression of IKr and IKs.

22,23

The rate of the sodium-potassium pump
in transporting ions depends on the affini-
ties of the binding sites for sodium/potassi-
um and the resting membrane potential.
With regard to the a1 isoform of sodium-
potassium ATPase in the mouse heart, the
half maximally saturated concentration of
the external potassium binding site is
1.9mmol/L of [Kþ]o,

24 and this operates
at the half-maximal pumping rate at this
concentration. The [Kþ]o is reduced from
4.5 to 2.7mmol/L, accompanied by an
approximately 20% decrease in the ion
pumping rate.25 The ion pumping rate is
decreased by> 50% in the a2 isoform in
which the half maximally saturated concen-
tration of [Kþ]o is 2.9mmol/L.24 Because
the sodium-potassium pump generates a
net outward current and is inhibited by
hyperpolarization, the effect of hypokale-
mia is to reduce the sodium-potassium
pump ion pumping rate.26

The action potential duration is pro-
longed because of a reduced outward cur-
rent during hypokalemia, and this results in
increased calcium influx through calcium
channels.26 Intracellular calcium removal
through sodium-calcium exchange is com-
promised because of elevated intracellular
sodium concentrations, resulting from
sodium-potassium pump inhibition. All of
these processes result in increased
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cytoplasmic calcium concentration over-
load and calcium/calmodulin-dependent
protein kinase activation.26 Additionally,
the Purkinje fiber plateau is prolonged by
hypokalemia, whereas it is shortened in
ventricular fibers.27,28 The prolonged
action potential tail of the conducting

system is more than that in the ventricles,
resulting in increased dispersion of repolar-
ization.27,28 Hypokalemia increases diastol-
ic depolarization of Purkinje fibers, thereby
increasing automaticity and underlying the
basis of U waves.5,27,28

All of these molecular changes contrib-
ute to a reduction in repolarization reserve.
A decrease in potassium channel conduc-
tance is the cellular foundation for intricate
T waves. Yan and coworkers17 showed that
under normal circumstances, the T wave is
usually upright and the epicardium is repo-
larized first, coinciding with the crest of the

T wave. Finally, the M cells is repolarized,
coinciding with the end of the T wave.
During myocardial repolarization of
phases 2 and 3, the voltage gradients
between the M region lead to formation of
the ECG T wave and determine the height
and the ascending or descending limb of the
T wave. Action potentials of the ventricular
myocardium in phases 2 and 3 are predom-

inantly mediated by the IKr and IKs which
are in turn dependent on [Kþ]o. However,
under the condition of hypokalemia, degra-
dation of the IKr and IKs and decreased con-
duction of the IKr contribute to a
preferential action potential prolongation
of different transmural layers. This leads
to a change in voltage gradients between
the two sides of the M region.17,29,30 The
variation in voltage gradients contributes

to complex T wave morphologies, such as
biphasic, inverted, and triphasic T waves.
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