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A circRNA-miRNA-mRNA network plays a
role in the protective effect of diosgenin on
alveolar bone loss in ovariectomized rats
Zhiguo Zhang1†, Lifeng Yue2†, Yuhan Wang1, Yanhua Jiang1, Lihua Xiang1, Yin Cheng1, Dahong Ju3* and
Yanjing Chen1*

Abstract

Background: The present study aimed to assess the perturbation in circular RNA (circRNA)/mRNA expression
profiles and a circRNA-miRNA-mRNA coexpression network involved in the potential protective effect of diosgenin
(DIO) on alveolar bone loss in rats subjected to ovariectomy (OVX).

Methods: The Wistar rats (female) manipulated with sham operation were classified as the SHAM group and the
grouping of OVX rats administered with DIO, estradiol valerate or vehicle for 12 weeks was DIO group, EV group
and OVX group respectively. Following treatments, the plasmatic levels of osteocalcin and tumor necrosis factor-
alpha and the microstructure of alveolar bone were assayed. Based on microarray analyses, we identified
differentially expressed (DE) circRNAs and mRNAs in alveolar bone of rats in both OVX and DIO group. The DE
circRNAs and DE mRNAs involved in the bone metabolism pathway validated by RT-qPCR were considered key
circRNAs/mRNAs. On the basis of these key circRNAs/mRNAs, we predicted the overlapping relative miRNAs of key
circRNAs/mRNAs, and a circRNA-miRNA-mRNA network was built.

Results: DIO showed an anti-osteopenic effect on the rat alveolar bone loss induced by OVX. In total, we found 10
DE circRNAs (6 downregulated and 4 upregulated) and 614 DE mRNAs (314 downregulated and 300 upregulated)
in samples of the DIO group compared with those of the OVX group. However, only one circRNA (rno_circRNA_
016717) and seven mRNAs (Sfrp1, Csf1, Il1rl1, Nfatc4, Tnfrsf1a, Pik3c2g, and Wnt9b) were validated by qRT-PCR and
therefore considered key circRNA/mRNAs. According to these key circRNA/mRNAs and overlapping predicted
miRNAs, a coexpression network was constructed. After network analysis, one circRNA-miRNA-mRNA axis (circRNA_
016717/miR-501-5p/Sfrp1) was identified.

Conclusion: The mechanism of DIO inhibiting alveolar bone loss after OVX is possibly relevant to the simultaneous
inhibition of osteogenesis and osteoclastogenesis by mediating the expression of important molecules in the Wnt,
PI3K, RANK/RANKL or osteoclastogenic cytokine pathways. The circRNA_016717/miR-501-5p/Sfrp1 axis may play
important roles in these processes.
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Background
Tooth and periodontal diseases associated with alveolar
bone loss are high risk complications for and frequently
occur in postmenopausal women suffering from osteo-
porosis because of estrogen deficiency [1, 2]. Unlike
other bones, the biological metabolic cycle of an alveolar
bone is much shorter [3], but this bone is more tolerant
to estrogen deficiency than appendicular long bones [4].
Some studies have suggested that estrogen can protect
against alveolar bone loss not only in humans [5] but
also in rodents [6].
Many active constituents in plants, especially steroid sa-

ponins, are thought to have estrogen-like effects and are
called phytoestrogens [7]. Diosgenin (DIO), a phytosteroid
sapogenin, is commonly categorized as a phytoestrogen
[8–10]. The results regarding the estrogen-like effect of
DIO have been controversial. A study suggested that DIO
(20–200mg/kg) had no effect on the epithelium height,
uterine weight, volume density of endometrium, endomet-
rial/vaginal epithelia or endometrial glands in rats [11].
Nonetheless, other researchers have found that DIO had
adverse effects. For example, in ovariectomized (OVX)
mice, DIO may stimulate the growth of mammary glands
[12]. Regarding bone metabolism, our previous studies
showed that decreasing the ratio of receptor activator of
nuclear factor-kappa B ligand (RANKL)/osteoprotegerin
(OPG) of the tibia [13] or regulating the expression of
long noncoding RNAs in alveolar bone [10] was the rea-
son for the anti-bone loss effect of DIO in OVX rats.
Compared with linear RNA (e.g., mRNA, miRNA,

lncRNA) characterized by 3′ tale and 5′ cap structures,
circular RNA (circRNA) features a covalently closed
continuous loop generated by a unique splicing strategy
[14]. CircRNAs are thought to participate in various dis-
eases because of their special “miRNA sponge” function,
whereby they bind miRNAs to efficiently suppress
miRNA transcription, and this inhibitory effect on miR-
NAs can further regulate the expression of downstream
mRNAs [15]. In bone metabolism, circRNAs play an im-
portant role in modulating mRNA expression via the
circRNA-miRNA-mRNA axis not only in a murine
model [16] but also in humans [17]. Thus, we raise the
question of whether the regulatory effect of DIO on
bone metabolism was mediated via circRNA-miRNA-
mRNA interactions. To answer this question, we carried
out the present study to explore the action of DIO on
gene profiles or the circRNA-miRNA-mRNA network in
the alveolar bone of OVX rats.

Methods
Experimental animals and treatments
Six-month-old female rats undergoing ovariectomy have
been commonly used as a model to study osteoporosis
in postmenopausal women [18, 19]. This study included

48 female Wistar rats (six months old). We obtained the
rats (average weight 300 ± 20.0 g) from the National In-
stitutes for Food and Drug Control of China. All rats
were kept under a regular 12 h/12 h light/dark cycle and
at constant room temperature (22 ± 1 °C). The rats
underwent sham operation (SHAM, n = 12) or bilateral
OVX (n = 36). The ventral approach was used in bilateral
ovariectomy [20]. Briefly, at first, the anesthetized rats
were fixed ventrally and the abdominal skin in the mid-
lower back was preparated and disinfected. A 0.5 cm in-
cision closed the spine under the costal margin was
made and skin was separated. Secondly, dorsal muscle
was cut and then ovary was exposed adequately. Thirdly,
the fat tissue coating the ovary was separated by blunt
dissection and the blood vessels and oviduct were li-
gated. Fourthly, ovariectomy was completed and the pre-
served tissue or organs were put back into the
abdominal cavity, followed by suturing incision. Ovariec-
tomy on the other side was in the same way. The SHAM
group rats underwent same operation except that the
ovaries were preserved.
The model rats subjected to OVX were classified into

3 categories randomly, namely, OVX group (n = 12), es-
tradiol valerate (EV) group (n = 12) and DIO group (n =
12). According to studies published previously [21–23],
EV group rats were administered oral gavage of EV (0.1
mg/kg body weight, Bayer Health Care, Guangzhou,
China) every day, while DIO group rats were treated by
oral gavage with DIO (100 mg/kg body weight, pur-
ity≥93%, Sigma-Aldrich, Saint Louis, MO, USA) every
day. For the SHAM or OVX group, rats were adminis-
tered distilled water (of equal volume) by oral gavage. A
standard chow was used to feed all rats during our
present experiment. The treatments started one week
after the operation and lasted 12 weeks. No rats died
during the whole treatment period.

Specimen preparation
At the end of treatment, all experimental rats were anes-
thetized via intraperitoneal injection by ketamine (80
mg/kg) and xylazine (12 mg/kg) and were subsequently
exsanguinated for sacrifice. Under anesthesia, we punc-
tured the abdominal aortae to collect blood (8–10mL)
which was subsequently transferred into tubes added
with heparin. The rats subjected to haemospasia were
palpated for 5 min to ensure asystole and were consid-
ered as dead after confirming asystole, respiration cease
and corectasis. Next, the plasma was separated from
blood by centrifugation (12 min, 2500 g, 4 °C) and stored
(− 80 °C) for the following experiments. To observe and
determine the alveolar bone microstructure of the rats,
the right mandibles were first excised and kept under
the temperature of − 20 °C and then scanned using
microcomputed tomography (micro-CT). Thereafter, the
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right mandibles also served as the specimens for histo-
logical examination. For microarray assays and reverse
transcription-quantitative polymerase chain reaction
(RT-qPCR), we used osseous tissue between the first
molar and incisor in left mandibles.

Enzyme-linked immunosorbent assays (ELISA)
We used ELISA to determine plasma concentrations of
osteocalcin (OCN) and tumor necrosis factor-alpha (TNF-
alpha). A rat OCN ELISA kit (Novus Biologicals, Littleton,
CO, USA) and a rat TNF-alpha ELISA kit (Abcam, Cam-
bridge, MA, USA) were used to determine the rat plasma
levels of TNF-αand OCN from all groups. The absorption
value at 450 nm was detected by a BioTek ELISA reader
(BioTek Instruments., Winooski, VT, USA).

Micro-CT scanning
The micro-CT scanning method has been previously de-
scribed [24]. The right mandibles of the rats were
scanned by using a high-resolution micro-CT system
(Skyscan 1174, Bruker Corporation, Ettlingen, Germany)
without any sample processing. The resolution of the scan
was 9.8 μm, and analuminum filter (0.5mm) was used to
remove image noise. A global threshold (upper gray
threshold: 255, lower gray threshold: 55) was used for the
quantity of the parameters about trabecular bone.
The image capture conditions were 800 μA and 50

keV. A cube (0.5 mm × 0.5 mm × 0.5 mm) termed as
“volume of interest” (VOI) was reconstructed starting
from 0.5 mm beneath the base of crown in the first
molar. The trabecular bone morphological characteris-
tics within the VOI were measured applying the Skyscan
software package. Furthermore, a 3-D analysis was per-
formed to determine eight key parameters, namely, the
trabecular bone volume fraction (BV/TV), the bone sur-
face (BS), the trabecular separation (Tb.Sp), the trabecu-
lar number (Tb.N), the trabecular thickness (Tb.Th), the
trabecular pattern factor (Tb.Pf), the degree of anisot-
ropy (DA) and the structural model index (SMI) of the
identical VOL [25].

Observations of histology
The prepared solution containing formalin (10%) was
used to fix the right mandibles. Next, the mandibles
were decalcified with ethylenediaminetetraacetic acid
(EDTA, 14%) and embedded in paraffin. After a regular
microtome cutting process, the glass slides were used to
affix sections, which then were stained with hematoxylin
and eosin.

CircRNA and mRNA microarray analysis
Twelve samples of alveolar bones in the DIO group (n =
6) and OVX group (n = 6) were chosen for microarray

studies randomly. The microarray assay was completed
by KangChen Biotech Inc. (Shanghai, China).
For our circRNA study, we used an Arraystar Rat cir-

cRNA Array (Arraystar, Rockville, MD, USA). We used
RNase R (Epicentre, Madison, WI, USA) to digested
total RNA, and further remove linear RNA and concen-
trate circular RNA. Subsequently, we amplified and tran-
scribed the concentrated circRNA into fluorescent RNA.
This step was performed using an Arraystar Super RNA
Labeling Kit (Arraystar, Rockville, MD, USA), by a ran-
dom priming method. Thereafter, the labeled cRNA was
subjected to hybridization, washing and scanning on
Arraystar mouse circRNA Array v1.0 using DNA Micro-
array Scanner (Agilent Technologies, Santa Clara, CA,
USA).
For mRNAs, we used a rat 4 × 44 K Gene Expression

Array (Agilent Technology, Santa Clara, CA, USA). In
line with the protocol, samples were labeled and arrays
were hybridized. Then, the obtained array images were
evaluated by the Agilent Feature Extraction software
(version 11.0.1.1). The data was normalized and further
processed using an R software package.
CircRNAs/mRNAs with fold change≥1.5 and P-value<

0.05 were regarded as differentially expressed (DE) cir-
cRNAs/mRNAs.

Analysis of ingenuity pathway analysis (IPA)
All DE mRNAs obtained from our array analyses were
input into the IPA system, a system that predicts canon-
ical pathways, global functions and biological networks
of a particular gene dataset and is referred to as the In-
genuity Pathways Knowledge Base (IPKB). In IPKB,
“Role of Osteoblasts, Osteoclasts and Chondrocytes in
Rheumatoid Arthritis (ROOCRA)” pathway is a exclusive
pathway because this pathway includes nearly all known
pivotal molecules and signaling pathways that are closely
related to the development, differentiation, degradation,
mineralization and apoptosis of osteoblasts and osteo-
clasts. As this pathway is essential in bone metabolism,
the DE mRNAs that belong to the ROOCRA pathway
were therefore regarded as key DE mRNAs.

Building of a circRNA-miRNA-mRNA coexpression network
Potential target miRNAs of circRNAs were predicted by
miRanda (v3.3a) [26] and TargetScan (version 7.2) [27].
Software developed by Arraystar was applied to predict
the interactive relationship between circRNAs and miR-
NAs, while the predicted interactions of mRNAs and
miRNAs were obtained using miRanda (version 3.3a).
After Pearson correlation analyses of the predicted
mRNA-miRNA and circRNA-miRNA coexpression net-
works, the circRNA-miRNA-mRNA coexpression net-
work were constructed. Cytoscape (version 2.8.2) [28]
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was applied to visualize the whole circRNA-miRNA-
mRNA network.

Validations of DE circRNAs, key DE mRNAs and predicted
miRNAs using RT-qPCR
qRT-PCR assays used for detecting the expression levels
of the predicted miRNAs were all performed in an ABI
7500 system (Applied Biosystems, Foster City, CA, USA)
using SYBR RT-PCR kits (Takara, Dalian, Liaoning,
China). We used the method of 2-ΔΔCt cycle threshold,
and the expression of U6 served as the internal
normalization control. For circRNAs/mRNAs expression
data, the internal control was Gapdh expression.

Statistical analysis
The mean ± standard deviation was used to express all
values. We utilized SPSS 19.0 (SPSS Inc., Chicago, IL,
USA) for analyzing data statistically. The difference of
the assessed parameters between rats from two groups
or four groups was tested using the the t-test or the
one-way analysis of variance (ANOVA) and subse-
quently the least significant difference (LSD) test, re-
spectively. Kolmogorov-Smirnov statistics was used to
test the normality of data from all groups. Statistical sig-
nificance was set at p < 0.05.

Results
Regulation on plasmic OCN and TNF-alpha by DIO
Figure 1A and B showed the plasmic concentrations of
OCN and TNF-alpha in the rats that were subjected to
12-week long treatment. After the treatment, the OCN
and TNF-alpha contents of rats in the OVX group were
remarkably superior to those of rats in the SHAM group
(p < 0.01). Contrastively, the DIO and EV group rats ex-
hibited significantly lower plasmic OCN and TNF-alpha
levels than the OVX group rats (p < 0.05).

Effects of DIO on the microstructure of trabecular bones
Our micro-CT results suggested that in the OVX group,
morphological parameters of bone, such as BV/TV, BS,
Tb.Th, and Tb.N were substantially reduced, yet Tb.Pf,
Tb.Sp and SMI were raised in comparison with the
SHAM group (Fig. 2A-H). As shown in Fig. 2, significant
changes in the bone morphological parameters were
found when the rats were treated with EV or DIO. Fur-
thermore, trabecular impairment due to ovariectomy
was lessened by DIO or EV treatment (Fig. 3A-D).

Effect of DIO on histomorphological change of alveolar
bone
To understand the effect of DIO from a histological per-
spective, we observed the alveolar bone beneath the first
molar. Representative histomorphological images from
four group rats are shown in Fig. 4. It is clear that the

SHAM group rats had thicker trabeculae in alveolar
bone and scant and smaller medullary cavity (Fig. 4A) in
comparison to the OVX group rats. It appears that OVX
decreases alveolar bone volume and increases the me-
dullary cavity size (Fig. 4B). Furthermore, bone volume
beneath the first molar was significantly enlarged after
DIO or EV treatment (Fig. 4C and D), and EV appeared
to have a stronger effect in this regard. With these data,
our results from histological observations and micro-CT
were consistent with each other.

Regulation of the expression profiles of circRNA and
mRNAs by DIO
Our microarray results revealed that there were, in total,
10 DE exonic circRNAs (Table 1) and 614 DE mRNAs
(Table S4) in the alveolar bone between DIO and OVX
group rats. Four and 6 circRNAs were up-and downreg-
ulated, respectively, while almost half of the mRNAs
were increased and half were decreased (300 were upreg-
ulated and 314 downregulated).

Fig. 1 Effect of different treatments on OCN and TNF-alpha levels in
plasma. (A) OCN, (B) TNF-alpha. #p < 0.05 vs. the OVX group; *p <
0.05 vs. the SHAM group
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Fig. 2 Effect of different treatments on trabecular bone microarchitecture. (A) BV/TV, (B) BS (C) Tb.Th, (D) Tb.N, (E) Tb.Sp, (F) Tb.Pf; (G) SMI, (H) DA.
**p < 0.01 vs. the SHAM group; #p < 0.05 vs. the OVX group; ##p < 0.01 vs. the OVX group
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Regulation of the bone metabolic pathway by DIO
Eight key DE mRNAs detected from the groups of OVX
and DIO were assigned to the pathway of ROOCRA in
IPA (Table 2). Figures 5 and 6 illustrate the potential ef-
fects of these key mRNAs on osteoclasts and osteoblasts,
respectively, on the basis of the ROOCRA pathway.

Validation of DE circRNAs and key DE mRNAs using RT-qPCR
The 10 circRNA expressions are listed in Tables 1 and 8
key DE mRNA expressions listed in Table 2 were mea-
sured. As a result, rno_circRNA_016717 was the only cir-
cRNA whose RT-qPCR data were in agreement with the
microarray results (Fig. 7). As for mRNAs, RT-qPCR data
of all mRNAs except Birc3 agreed with the microarray re-
sults (Fig. 8). Tables 3-4 listed the primers of DE circRNAs
and key DE mRNAs for qRT-PCR experiments.

A circRNA-miRNA-mRNA coexpression network showing
the modulatory effect of DIO
Based on the validated DE circRNA (rno_circRNA_
016717) and 7 DE key mRNAs (Sfrp1, Pik3c2g, Wnt9b,

Csf1, Il1rl1, Nfatc4, and Tnfrsf1a), 60 potential miRNA
targets were predicted using miRanda and TargetScan.
Thereafter, a circRNA-miRNA-mRNA coexpression net-
work was established that included 380 nodes and 2173
edges (Fig. S1).
According to the interactions among circRNA, miR-

NAs and mRNAs, we searched for overlapping miRNAs
that were downstream molecules of the DE circRNA
(rno_circRNA_016717) and were upstream molecules of
one DE upregulated mRNA (Sfrp1). Finally, only one
circRNA-miRNA-mRNA axis, circRNA_016717/miR-
501-5p/Sfrp1 (Fig. 9), was explored. The roles of this axis
in the regulatory effect of DIO require further intensive
study.

Validation of the predicted miRNA by RT-qPCR
MiR-501-5p, the only predicted miRNA, was validated
by RT-qPCR. As predicted, miR-501-5p expression in al-
veolar bone of DIO group rats was decreased compared
to that in OVX rats (Fig. 10). Tables 5 listed the primers
of predicted miRNA for qRT-PCR experiments.

Fig. 3 Representative three dimensional structures of alveolar bone beneath the first molar from each group. (A) SHAM group, (B) OVX group, (C)
EV group and (D) DIO group
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Fig. 4 Observing alveolar bones beneath the first molar histomorphologically. (A) SHAM group, (B) OVX group, (C) EV group and (D) DIO group.
The arrows indicate roots of the first molar. Original magnification, × 5, scale bar = 200 μm

Table 1 Differentially expressed exonic circRNAs of alveolar
bone of rats in the DIO in comparison to those in the OVX
group (p<0.05)

CircRNA Name Fold Change

rno_circRNA_000034 2.493

rno_circRNA_016717 1.729

rno_circRNA_005275 1.537

rno_circRNA_007431 1.536

rno_circRNA_003113 −1.514

rno_circRNA_014839 −1.605

rno_circRNA_002656 −1.640

rno_circRNA_002387 −1.698

rno_circRNA_002043 −1.735

rno_circRNA_001963 −1.858

The pattern of presenting values is average value ± standard deviation (n = 6
for each group).

Table 2 Key mRNAs involved in the regulatory action of DIO on
osteoclasts and osteoblasts (p<0.05)

Gene Symbol Fold Change

Sfrp1 1.841

Tnfrsf1a −1.550

Birc3 −1.598

Csf1 −1.880

Nfatc4 −1.936

Il1rl1 −2.151

Pik3c2g −2.265

Wnt9b −3.106

The pattern of presenting values is average value ± standard deviation (n = 6
for each group).
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Fig. 5 Illustration of the differential expression of mRNAs in osteoblasts using diagrams from Ingenuity Pathway Analysis (IPA). Green and red
represent the up- and downregulated genes, respectively. White colored genes were the related genes introduced into the pathway
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Discussion
DIO is a phytoestrogen that has been shown to have an
anti-osteopenic function [29, 30]; however, the mechan-
ism of action remains unclear. Since Hansen TB et al.
demonstrated that circRNAs can play a role as “miRNA
sponge” [31], the important regulatory role of circRNAs
on miRNAs has received increasing attention. The cir-
cRNA profile and the circRNA-miRNA-mRNA network
in the protective effect of DIO on alveolar bone in OVX
rats has never been reported, so we conducted a study
combining microarray analysis and bioinformatics to fill
the gap.
In our present study, we chose a rat model induced by

OVX to mimic postmenopausal women with alveolar
high-turnover bone loss. These patients usually feature
high bone resorption and bone formation processes [32,
33]. Our 3-D bone microstructure modeling revealed

many parameters, e.g., Tb.Th, BV/TV, BS, Tb.N, Tb.Pf,
Tb.Sp, as well as SMI were significantly changed. The
observation suggested that DIO and EV group rats ex-
hibited less bone loss in alveolar bones in comparison to
the model rats in the OVX group. It is worth noting that
the anti-bone loss action of DIO on alveolar bone was
less impactful than that of EV (Fig. 2). Our histomor-
phological findings in alveolar bone (Fig. 4) were largely
in line with the results from micro-CT (Fig. 3).
Both TNF-alpha and OCN were upregulated in the

OVX group compared to the SHAM group. However,
after treatment with EV or DIO, the increased levels of
the TNF-alpha and OCN were reduced (Fig. 1A and B).
Our findings on EV are consistent with those in previous
reports [34, 35] and strongly suggested that DIO, or
other estrogens, may have a negative effect on both bone
resorption and bone formation in OVX rats; thus, we

Fig. 6 Diagram illustrating the differential expression of mRNAs in osteoclasts from Ingenuity Pathway Analysis (IPA). Green and red represent the
up- and downregulated genes, respectively. White colored genes were the related genes introduced into the pathway
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Fig. 7 RT-qPCR validation of 10 differentially expressed circRNAs. Effect of DIO on the gene expression of rno_circRNA_000034,
rno_circRNA_016717, rno_circRNA_005275, rno_circRNA_007431, rno_circRNA_003113, rno_circRNA_014839, rno_circRNA_002656,
rno_circRNA_002387, rno_circRNA_002043 and rno_circRNA_001963. #p < 0.05 vs .the OVX group
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Fig. 8 Validating 8 differentially expressed mRNAs with RT-qPCR. Roles exerted by DIO on expressions of Birc3, Csf1, Il1rl1, Pik3c2g, Nfatc4, Sfrp1,
Tnfrsf1a and Wnt9b.#p < 0.05 vs. the OVX group; ##p < 0.01 vs. the OVX group
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Table 3 Primers of differentially expressed exonic circRNAs

Gene Name Primers

Gapdh (Rat) F:5′ GCTCTCTGCTCCTCCCTGTTCTA3’

R:5′ TGGTAACCAGGCGTCCGATA3’

rno_circRNA_002043 F:5′ CGCCCGAGAAGATTGAGAACA 3’

R:5′ GGCTCCCACGTGCCCTTT 3’

rno_circRNA_014839 F:5′ TTCGAAGGAGGAGACTAGCAGTG 3’

R:5′ GAACAGTTGTCAGAGGACCATCA 3’

rno_circRNA_002387 F:5′ CTATTATGTTGCACGGAGGTGG 3’

R:5′ CCTGCTTCATACGGTGAGACA 3’

rno_circRNA_002656 F:5′ GGTTGATGAGATATTTGATGCTATA 3’

R:5′ GAGATGAGTCCACCATTCCTTA 3’

rno_circRNA_003113 F:5′ CTTGTGGAAGAGTTTATTTCAGAGA 3’

R:5′ GGTAGGCAGGGAAAGGTCTGT 3’

rno_circRNA_000034 F:5′ CCTCGCAAATGTGTGGTTC 3’

R:5′ TAGCTGTTTGCACCCTGTCA 3’

rno_circRNA_007431 F:5′ ACTGCCCTGAAAAAAGGAAAGG 3’

R:5′ TCTGGCTGAAGCTGGATTTAAAG 3’

rno_circRNA_005275 F:5′ CACCGAAACAGCAAAACAGGT 3’

R:5′ GAAGTCCAATTTCAGTCGTCAAG 3’

rno_circRNA_001963 F:5′ AGGTTCTTTACTCAGTCCTCCAA 3’

R:5′ CAACAACCAGCTTCCCTTGT 3’

rno_circRNA_016717 F:5′ GACTCAAAAGGATTAATAGTTAAGA 3’

R:5′ ACTTGTTCAGGAGACGAAATG 3’

Table 4 Primers of key mRNAs

Gene Name Primers

Gapdh (Rat) F:5′ GCTCTCTGCTCCTCCCTGTTCTA3’

R:5′ TGGTAACCAGGCGTCCGATA3’

Birc3 F:5′ GGCTACTTCAGTGGCTCCTAC 3’

R:5′ GCCTTCTCCGTGTTCATTGC 3’

Csf1 F:5′ GACACCTACAGATTTTGCAGC 3’

R:5′ CATGGTTTCCTCGATTATGACT 3’

Il1rl1 F:5′ GTGGACTCACCGTTACCTTCC 3’

R:5′ GGTTAATCGCACCTCCTCTTT 3’

Nfatc4 F:5′ AGGAAGAGGCCGCAGTGAAC 3’

R:5′ TCCGCCCATTGGAGACATAAA 3’

Sfrp1 F:5′ CTTCTACTGGCCCGAGATGC 3’

R:5′ TGTCACACGGAGGACACACTG 3’

Tnfrsf1a F:5′ CAGGTACTGCCGTGCTGTTGC 3’

R:5′ GGCTGAAGGCTGGGATAGAGG 3’

Wnt9b F:5′ GTGTGTGGTGACAACCTGAAGTA 3’

R:5′ TGACACGCCATGACACTTGC 3’

Pik3c2g F:5′ ACGGCTGCGTTCAACAAGG3’

R:5′ TGGAAAAGCTGCCCACTCTCT3’

Fig. 9 A gene axis of circRNA, miRNA and mRNA extracted from the
circRNA-miRNA-mRNA network associated with the roles exerted by
DIO on alveolar bone loss of rats subjected to OVX. The
downregulated genes are presented in green, while the upregulated
genes are presented in red

Fig. 10 Validating the predicted miRNA with RT-qPCR. Roles exerted
by DIO on expression of miR-501-5p. #p < 0.05 vs. the OVX group
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confirmed that DIO can act as an estrogen-like
chemical.
It is interesting to note that our histological observa-

tions showed that DIO had an anti-bone loss influence
on rat alveolar bones induced by OVX, and this effect
was confirmed by results from micro-CT and assay of
TNF-alpha and OCN.
We conducted microarray assays to understand the

role of perturbations of circRNA and mRNA profiles in
the anti-bone loss action of DIO. Due to poor under-
standing about the function of DE circRNAs, we focused
on the DE mRNAs involved in the anti-osteopenic ef-
fects of DIO. Seven validated DE mRNAs (Sfrp1, Csf1,
Il1rl1, Nfatc4, Tnfrsf1a, Pik3c2g and Wnt9b) were associ-
ated with the ROOCRA pathway. It is clear that DIO
has a multitarget inhibitory effect on the signaling path-
ways of both bone resorption and bone formation (Figs. 5
and 6).
The Wnt pathway is acknowledged to be one of the

key signaling pathways that mediate the osteogenic dif-
ferentiation not only mesenchymal stem cells but preos-
teoblasts [36, 37], whereas RANKL/the receptor
activator of nuclear factor-kappa B (RANK) pathway
plays an essential role in osteoclastogenic differentiation
and bone resorption [38, 39]. Interestingly, sFRPs have
dual inhibitory effects on the two pathways above. sFRPs
can function as Wnt inhibitors to resemble the ligand-
binding cysteine rich domain (CRD) of the Frizzled fam-
ily of Wnt receptors and inhibit both canonical Wnt/
beta-catenin signaling and noncanonical Wnt/planar cell
polarity (PCP) signaling [40, 41]. In osteoclasts, sFRP1
can bind to RANKL directly and further block the inter-
action of RANKL/RANK and osteoclastogenesis [42].
DIO has been reported to inhibit breast cancer stem-like
cells by deregulating the activation of Wnt/beta-catenin
signaling via sFRP4 [43]. We speculated that sFRP1
could be a key target of DIO in its anti-bone loss effect.
Phosphatidylinositol 3-kinase (PI3K) controls numer-

ous cellular functions like motility after ligand activation
and cell proliferation [44]. In osteoblasts, PI3K has been
well studied. PI3K inhibits osteoblast apoptosis through
activating Akt (protein kinase B) and further activates
PI3K/Akt by Wnt3a, and heparin promotes osteoblast
differentiation [45]. For osteoclastogenesis, the PI3K/Akt
pathway also plays a fundamental role. Some researchers

recently reported that the activation of Akt can limit
osteoclast differentiation through activating the glycogen
synthase kinase 3 beta (GSK 3beta)/nuclear factor of ac-
tivated T cells (NFAT) c1 signaling cascade [46]. PI3K-
gamma (Pik3c2g) was also characterized recently. It has
been shown that this protein is associated with the pro-
motion of osteoclastogenesis and bone mass reduction
in mice and therefore may be a potential target in osteo-
porosis [47]. In our present study, we inferred that DIO
could attenuate osteogenesis and osteoclastogenesis by
decreasing the expression of PI3K in osteoblasts and os-
teoclasts at the mRNA level.
Our data also showed that DIO could slow down the

process of bone resorption by decreasing the signaling of
three potent stimulator pathways in osteoclastogenesis
(Fig. 6). DIO attenuated the ligands or receptors of
macrophage colony-stimulating factor (M-CSF),
interleukin-1 receptor (IL-1R) and tumor necrosis factor
receptor (TNF-R) [48–50]. In particular, the results on
TNF-R1 and IL-1R from the microarray assay were con-
sistent with those of our previous study [10]. In addition,
NFATC is regarded as a master transcription factor in-
dispensable for the osteoclastogenesis induced by RANK
L. The auto amplification and activation of NFATc1 give
rise to a rapid upregulation of osteoclast-specific genes
[51, 52] and NFATc4 was necessary for the osteoclasto-
genic effect of NFATc1 [53]. In this study, we surmised
that TNF-R1, IL-1R and NFATc4 could be other target
molecules of DIO in the reduction of bone resorption.
To sum up, the findings from the gene chip and path-

way analyses suggested that the anti-bone loss action of
diosgenin on alveolar bone was ascribed to inhibition of
osteogenesis and osteoclastogenesis synchronously by
mediating the expression of important molecules in the
Wnt, PI3K, RANK/RANKL or osteoclastogenic cytokine
pathways (e.g., Sfrp1, Pik3c2g, Wnt9b, Csf1, Il1rl1,
Nfatc4, and Tnfrsf1a).
We built a circRNA-miRNA-mRNA coexpression net-

work involved in the inhibitory action of DIO on alveolar
bone loss. This network is beneficial for identifying pivotal
miRNAs that are linked to the regulatory effect of rno_cir-
cRNA_016717 on the 7 key mRNAs mentioned above.
There were 380 nodes and 2173 edges in the coexpres-

sion network (Fig. S1). However, we only found one
circRNA-miRNA-mRNA axis, circRNA_016717/miR-
501-5p/Sfrp1 (Fig. 9). In 2016, a study reported that
miR-501-5p was considerably upregulated in human
gastric cancer tissues and cell lines. The authors
found that miR-501-5p may directly bind and suppress
several important repressors of the Wnt/beta-catenin
signaling cascade [such as GSK3 beta, dickkopf-related
protein 1 (DKK1) and naked cuticle 1 (NKD1)], which
lead to hyperactivated signaling in gastric cancer cells
[54]. No study has reported the relationship between

Table 5 Primer of predicted miRNA

Gene Name Primers

U6 F:5’GCTTCGGCAGCACATATACTAAAAT3’

R:5’CGCTTCACGAATTTGCGTGTCAT3’

rno-miR-501-5p GSP:5’GGGGGAAACCGTTACCATTAC3’

R:5’GTGCGTGTCGTGGAGTCG3’
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miR-501-5p and Sfrp1 in vivo or in vitro, but we
hypothesize that this relationship likely exists consid-
ering that Sfrp1 is also a repressor of Wnt/beta-ca-
tenin signaling. Further efforts are needed with the
aim of revealing the potential mechanism of the cir-
cRNA_016717/miR-501-5p/Sfrp1 axis in the anti-
osteoporotic effect of DIO.

Conclusion
Our study proved that diosgenin had a protective effect
on rat alveolar bone loss induced by ovariectomized.
The potential mechanism of this protective effect from
diosgenin was possibly associated with circRNA_016717/
miR-501-5p/Sfrp1 axis that could inhibit osteogenesis
and osteoclastogenesis simultaneously by regulating the
expression of important molecules in the Wnt, PI3K,
RANK/RANKL or osteoclastogenic cytokine pathways.
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1186/s12906-020-03009-z.

Additional file 1. The differential expressions of mRNAs. In the current
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Additional file 2. A co-expression network of circRNA-miRNA-mRNA re-
lated to the roles exerted by DIO on alveolar bone loss among OVX rats.
The green nodes represented key mRNAs, the blue nodes were the re-
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