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Abstract: The aim of this study was to investigate the ultrasound-assisted alkaline extraction process
and structural properties of hemicellulose from sugarcane bagasse pith. Response surface model
(RSM) was established in order to optimize the extraction conditions for the highest hemicellulose
yield based on the single-factor experiments. A maximum total hemicellulose yield of 23.05%
was obtained under the optimal conditions of ultrasonic treatment time of 28 min, KOH mass
concentration of 3.7%, and extraction temperature of 53 ◦C, and it evidently increased 3.24% compared
without ultrasound-assisted extraction. The obtained hemicellulose was analyzed by Fourier
transform infrared (FT-IR) spectroscopy. The monosaccharide composition and average molecular
weight of hemicellulose were characterized by using ion chromatography (IC) and gel permeation
chromatography (GPC). The results indicated that xylose was dominant component in water-soluble
hemicellulose (WH, 69.05%) and alkali-soluble hemicellulose (AH, 85.83%), respectively. Furthermore,
the monosaccharides (otherwise xylose) and uronic acids contents of WH were higher than that of
AH. Weight average molecular weight of WH was 29923 g/mol, lower than that of AH (74,872 g/mol).
These results indicate that ultrasonic-assisted alkaline extraction is an efficient approach for the
separation of hemicellulose from sugarcane bagasse pith.

Keywords: sugarcane bagasse pith; hemicellulose; ultrasound-assisted alkaline extraction; response
surface methodology; structural properties

1. Introduction

Sugarcane bagasse is one of the most important available by-products of sugarcane extraction,
consisting of fiber bundles and other structural elements like vessels and parenchyma, which can
be summarized under the technical term pith [1–3]. As 30% to 40% pith of bagasse causes a series
of problems, including low pulp yield, high chemical consumption, and pith-related pulp quality
problems in pulp and papermaking, it should be removed as far as possible [4–6]. In China, the annual
output of sugarcane is 100 million tons [6,7], of which nearly 23% will be converted into bagasse.
Therefore, approximately 23 million tons of sugarcane bagasse and 8 million tons of bagasse pith are
produced. The impressively abundant bagasse pith is mainly utilized as fuel or a feedstuff, but it can
be used for more value-added products.

Bagasse pith (BP) is formed by three main components: cellulose, hemicellulose, and lignin [8].
Hemicellulose is an amorphous chain of polysaccharides, which can be converted into fermentable
sugars after pretreatment and hydrolysis and produce bioethanol and biochemical [9,10]. In addition,
hemicelluloses can be regarded as film forming materials, hydrogel, binders, and emulsifiers in food,
packaging, and biomedical industries [11,12]. Therefore, extracting hemicelluloses from BP and
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retaining their characteristic structure as much as possible is very important for efficient utility of
substance. However, lignin and hemicelluloses are linked by covalent bonds, forming the lignin
carbohydrate complex (LCC) [9]. Beyond that, hemicelluloses combine closely with cellulose by
hydrogen bonds. These bonds restrict hemicelluloses isolate from the plant cell walls [13]. Therefore, it
is promising to develop an efficient extraction method to increase the hemicellulose extraction yield
and purity.

A number of extraction methods, such as dilute acid extraction, alkali extraction, hot water
extraction, and organic solvent extraction have been applied to extracting hemicelluloses [14].
Among these, alkali extraction has been commonly used due to its cost-effective and convenient
operation [15]. Recently, ultrasound-assisted extraction has received great interest in the
isolation of polysaccharides from plants because of its high efficiency, lower energy input and
environment-friendly [16,17]. The mechanism of the ultrasonic treatment is that ultrasonic wave
produces a special cavitation effect in aqueous medium, which can destroy cell wall structure [15,18,19].
In previous studies, the application of ultrasound showed an effective effect on the alkaline extraction
of hemicelluloses, the obtained hemicellulose with high yields [20] complete structure, high degree
of polymerization, and high molecular weight [21,22]. Besides, hemicellulose extracted by KOH
has high purity compared to that by NaOH [23,24]. Although, there are many literatures reporting
the extraction of hemicellulose from bamboo, corn cob, and bagasse combining alkali solution and
ultrasound treatments, few researches have focused on the extraction of hemicellulose from BP by
using a combination of alkali solution and ultrasound-assisted extraction.

Within this context, the main aim of this study was to optimize ultrasonic time, KOH mass
concentration, and extraction temperature on ultrasound-assisted alkaline extraction by response
surface methodology (RSM) with the intention to maximize the extraction yield of hemicellulose.
Meanwhile, the structural properties of water-soluble hemicellulose (WH) and alkali-soluble
hemicellulose (AH) from BP were initially characterized by Fourier transform infrared (FT-IR),
ion chromatography (IC), and gel permeation chromatography (GPC). It may provide fundamental
information for further utilization of BP hemicellulose.

2. Materials and Methods

2.1. Raw Materials

BP was obtained from Guangxi Laibin East Sugar Paper Co., Ltd. (Laibin, China). The fraction of
BP that could pass a 40-mesh screen was used in all experiments. The chemical compositions of BP
were determined according to the the following Tappi Test Methods. The results and corresponding
standards were shown in Table 1. The holocellulose was prepared by treating benzene-ethanol
extractive BP with NaClO2 solution and glacial acetic acid at 75 ◦C for 1 h, which repeated for
three times.

Table 1. Chemical composition of bagasse pith (BP).

Content (%) BP Standard

Ash 4.50 T211 om12
1%NaOH extractive 41.57 T212 om88

Benzol extractive 2.74 T204 om88
Holocellulose 69.49 GB/T 2677.10 (1995)

Pentosan 21.14 T223 om84
Klason lignin 20.28 T222 om88

Acid soluble lignin 1.95 T250

2.2. Ultrasound-Assisted Extraction and Isolation of Bagasse Pith

The dried BP raw material was first extracted with toluene-ethanol (2:1, v/v) in a Soxhlet apparatus
for 6 h, and the obtained material was allowed to dry at 105 ◦C for 12 h. Then, the dewaxed sample was
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delignified with sodium chlorite (0.6 wt %) at 75 ◦C for 1 h and repeated three times. After the treatment,
the residue (holocellulose) was filtered through glass fliters (1G2) and washed with deionized water to
neutral. Subsequently, the holocellulose was extracted with a certain mass ratio KOH solution under
different ultrasonic time. Ultrasonic processing was executed in the ultrasonic cleaner (SK2510 HP,
Shanghai Kudos ultrasonic instruments Co., Ltd., Shanghai, China), equipped with a fixed ultrasound
power (250 W) and adjustable frequency (40%–100%, 53 kHz). The mixture was then treated with the
KOH solution under continuous stir at constant temperature for 2 h. The filtrate was adjusted to pH
5.5 with acetic acid. AH was obtained by centrifuging, washing with 70% ethanol, and freeze drying.
WH was from the supernatant after centrifuging; it was also collected by precipitating the concentrated
filtrates with 3 volumes of 95% ethanol. The scheme for fractionation of hemicelluloses from BP is
illustrated in Figure 1. At the same time, compare the hemicellulose yield treated with 3.7% KOH
solution at 53 ◦C for 30 min with those treated without ultrasound. The resulting WH and AH require
freeze-dried. The yield of AH and WH is calculated as follows,

Y(%) =
m
m0

1−X

× 100% (1)

where, Y is AH (or WH) yield (%), m is the mass of freeze-dried AH or WH (g), m0 is the mass of
absolute dry BP after Benzol extraction (g), X is the content of Benzol extractive (%). The total yield of
BP hemicellulose is the sum of AH yield and WH yield.
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Figure 1. Scheme for extraction of hemicelluloses from BP.

2.3. Response Surface Methodology Design

On the basis of single-factor experiments, optimization of ultrasound-assisted alkali treatment of
the BP was implemented by using Box–Behnken Design, generated by Design-expert 8.0.6 software
(Stat-Ease Inc., Minneapolis, MN, USA). The effects of three independent variables of the response
were investigated. The variables used were ultrasonic treatment time (A: 20–30 min), KOH mass
concentration (B: 2–4 wt %), and extraction temperature (C: 40–60 ◦C) (Table A1), when the total
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hemicellulose yield was considered as response. A total of 17 experiments were conducted, including
12 factorial experiments and 5 central point repeats. The parameters were optimized by Design-expert
software, obtaining the maximum hemicellulose yield. Three-dimensional and two-dimensional
response surface plots were carried out for analyzing the mutual influence among ultrasonic treatment
time, KOH mass concentration, and extraction temperature.

2.4. Infrared Analysis

FT-IR were measured on Spectrum 10 spectrometer (PerkinElmer Inc., Waltham, MA, USA), and
frequency range of 500~4000 cm−1. The hemicellulose samples with KBr were at a ratio of 1:100 and
pressed the mixture to flake.

2.5. Sugar Analysis

The sugar and uronic acids content of hemicellulose was determined by using an Ion
Chromatography (IC) unit equipped with CarboPacTM PA1 column (Dionex-300, Dionex Corporation,
Sunnyvale, CA, USA) and a pulsed amperometeic detector (PAD) according to the procedure presented
by Cui and Saeed [25,26]. Hemicellulose samples were hydrolyzed with 4 v/v% H2SO4 solution at
121 ◦C in Autoclave of Uniclave Series (GI80DS, Zealway Instrument INC, Xiamen, China) for 120 min
to convert to sugar and uronic acids. The PAD setting for the determination was E1 = 0.1 V, E2 = 0.6 V,
and E3 = −0.8 V. The eluent was a mixture of 8 g L−1 NaOH and 20 g L−1 CH3COONa, and the flow
rate was 1 mL/min. Hemicellulose samples were diluted and filtered by 0.45 µm filter head.

2.6. Content of Residual Lignin

The total residual lignin in obtained hemicellulose was determined as the sum of acid soluble and
klason lignin. The acid soluble lignin and klason lignin content were determined by TAPPI method
T250 and TAPPI method T222, respectively.

2.7. Molecular Weight Determination

The molecular weight of the AH and WH was estimated using the procedure described by Xu
and Li [27,28] by gel permeation chromatography (GPC) equipped with waters 2414 Refractive Index
Detector (RID). The TSK-GEL columns (Tosoh Co., Ltd, Tokyo, Japan) in series were G-5000 PWXL

(7.8 mm × 300 mm) and G-3000PWXL (7.8 mm × 300 mm). The column was eluted with 0.02 mol/L
KH2PO4 aqueous solution at a flow rate of 0.6 mL/min and calibrated with the Dextran standards
(average molecular weights of 5200; 11,600; 23,800; 148,000; 273,000; 410,000; and 668,000 g/mol).
The temperature of the columns was maintained at 35 ± 0.1 ◦C. In each run, the volume of injection
was 20 µL.

3. Results and Discussion

3.1. Response Surface Analysis

The coded values of three individual variables and total BP hemicellulose yield under different
conditions were shown in Table 2. A second-order polynomial equation in terms of Coded Factors for
total hemicellulose yield can be represented by Equation (1):

Equation (1) in Terms of Coded Factors:

Y = 21.94 − 0.56 A + 2.17 B + 0.92 C + 0.09 AB − 0.96 AC + 0.47 BC − 2.99 A2
− 1.76 B2

− 1.05 C2 (2)

where Y is the predicted total yield of hemicellulose; A, B, and C are the coded values for ultrasonic
treatment time, KOH mass concentration, and extraction temperature, respectively, and so as follows.



Polymers 2020, 12, 608 5 of 13

Table 2. Analysis of variance and significance testing.

Sum of Squares Df (Degree of Freedom) Mean Square F Value p-Value Prob > F

Model 111.93 9 12.44 63.77 <0.0001
A-A 2.51 1 2.51 12.87 0.0089
B-B 37.71 1 37.71 193.40 <0.0001
C-C 6.75 1 6.75 34.63 0.0006
AB 0.032 1 0.032 0.17 0.6957
AC 3.69 1 3.69 18.9 0.0034
BC 0.89 1 0.89 4.58 0.0696
A2 37.61 1 37.61 192.87 <0.0001
B2 12.99 1 12.99 66.60 <0.0001
C2 4.61 1 4.61 23.64 0.0018

Residual 1.37 7 0.20
Lack of Fit 0.64 3 0.21 1.16 0.4272
Pure Error 0.73 4 0.18
Cor Total 113.29 16

The experimental conditions and results of 17 runs are shown in Table A2. The results of analysis of
variance (ANOVA) are presented in Table A2. p-values and F-values are used to verify the significance
between coefficients. Specifically, Prob > F values less than 0.01 or 0.05 indicate that coefficients of the
model are significant, and the values more than 0.05 indicate that coefficients of the model are not
significant [29,30]. Therefore, F Value of 63.77 and Prob > F of less than 0.01 show that the model is
significant, and there is only a 0.01% chance of such a large “Model F-value” due to noise in the model.
Additionally, the linear coefficients (A, B, C), the quadratic term coefficients (A2, B2, C2), and the
interaction of AC between ultrasonic treatment time and extraction temperature were all significant at
the lever of p < 0.05 or p < 0.01, and the other coefficients are not significant. Therefore, the coefficients
of A, B, C, A2, B2, C2, and AC were crucial factors during the BP extraction process. Above of all, it is
confirmed that the experimental model is successful, and the regression equation could be used to
predict the effects of ultrasonic treatment time, KOH mass fraction, and extraction temperature on BP
hemicellulose yield [14,31]. The final equation in terms of actual factors can be described as follows:

Equation (2) in Terms of Actual Factors:

Y = −62.85 + 2.19 A + 10.08 B + 1.28 C + 0.009 AB − 0.0096 AC + 0.047 BC − 0.0299 A2
− 1.76 B2

− 0.0105 C2 (3)

As illustrated in Figure 2, two-dimensional and three-dimensional graphs are the curve
representations for regression models, which were helpful to predict the interaction of each two
variables on total hemicellulose yield. The circle center of contour map is the condition where the
extremum is. The closer the contour map curve is to a circle, the lower correlation between the
two factors is, and the closer it is to the ellipse, the higher the correlation between the two factors
is [28]. Response surface analysis of three-dimensional graphs is primarily based on the density and
shape of contour plots. In sharp contrast, steep curve areas showed much more significant effects on
response value.

Figure 2a,b shows the effects between KOH mass concentration and ultrasonic treatment time
on the total hemicellulose yield under the conditions of extraction temperature of 50 ◦C. The total
yield increased at first and then decreased with the values of two variables increasing. From Figure 2a,
the density of contour plot with the change of KOH mass concentration was larger than that of ultrasonic
treatment time, which illustrated that effects of KOH mass concentrations on the hemicellulose yield
were more significant than that of ultrasonic treatment time, and the p-value of regression analysis also
reflected this. From Figure 2b, the contour plot was more like a circle, indicating a low correlation
between the factors of KOH mass concentration and ultrasonic treatment time, and the p-value of AB
in regression analysis also reflected that.
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Figure 2. Response surface and contour plots showing effects extraction temperature, ultrasonic
treatment time and KOH mass fraction on total hemicellulose of BP. (a) and (b) ultrasonic treatment
time vs. KOH mass fraction (extraction temperature = 50 ◦C). (c) and (d) extraction temperature vs.
ultrasonic treatment time (KOH mass fraction = 3%). (e) and (f) KOH mass fraction vs. ultrasonic
treatment time (temperature = 30 min).

Figure 2c,d indicates the impacts of ultrasonic treatment time and extraction temperature on
the total hemicellulose yield under the conditions of KOH mass concentration of 3%. The total yield
increased at first and then decreased with the values of two variables increasing. From Figure 2c,
the density of contour plot with the change of extraction temperature was larger than that of ultrasonic
treatment time, which indicated that the effects of extraction temperature on the hemicellulose yield
were more significant than that of ultrasonic treatment time, and the p-value of regression analysis also
reflected this. The contour plot was more like an ellipse, suggesting a high correlation between the
factors of extraction temperature and ultrasonic treatment time, and the p-value of AC in regression
analysis also reflected that.

Figure 2e,f reveals the interaction of KOH mass concentration and extraction temperature on the
total hemicellulose yield under the conditions of ultrasonic treatment time of 30 min. From Figure 2e,
the density of contour plot with the change of KOH mass concentration was larger than that of
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extraction temperature, which indicated that effects of KOH mass concentration on the hemicellulose
yield were more significant than that of extraction temperature, and p-value of regression analysis also
reflected this. The contour plot was more like a circle, indicating a low relation between the factors of
KOH mass concentration and extraction temperature, and p-value of BC in regression analysis also
reflected that.

The BP hemicellulose yield was optimized by Design-expert 8.0.6 software, and the optimum
levels of the variables were ultrasonic treatment time of 28 min, KOH mass concentration of 3.7%,
and extraction temperature of 53 ◦C, obtaining the predicted yield of 23.07%. According to the optimum
conditions, the obtained hemicellulose yield was 23.05%, equivalent to the predicted value of the
model, which indicates this model can be used to predict BP hemicellulose yield.

3.2. FT-IR Spectra

The FT-IR spectra of AH and WH were illustrated in Figure 3. The following analyses were
based on previous reports [20,28,32,33]. It can be seen that the typical peaks of hemicelluloses were
3420, 1630, 1407, 1043, and 898 cm−1 [34,35]. The peaks of 3420 and 2924 cm−1 were ascribed to the
O–H and C–H stretching of hemicellulose, respectively, while the absorption peak at 1407 cm−1 was
C–H stretching, and the absorption peak at 1043 cm−1 corresponded to the C–O, C–C stretching or
C–OH bending of typical xylose pyran ring. The characteristic band at 898 cm−1 assigned to the
symmetric stretching vibration of C–O–C, indicating that xylan structure was linked by β-1,4 glycosidic
bonds [36,37]. A characteristic band at 1243 cm−1 appeared corresponding to O–H or C–O–C bending,
which confirmed the existence of xylan. Otherwise, there were no significant differences on the
structure of AH and WH from Fourier-transform infrared spectra after ultrasound assisted treatment,
demonstrating that ultrasonic treatment was a physical process, which keeps the basic chemistry bonds
intact after ultrasound treatment.
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3.3. The Effect of Ultrasound-Assisted Extraction on Hemicellulose Yield and Sugar Analysis

The hemicellulose yields and monosaccharide compositions of WH and AH are implied in Table 3.
The hemicellulose extracted by alkaline extraction by means of ultrasound-assistant has a much
higher yield, which is 23.05%, compared to that of without ultrasound-assisted extraction that is
19.81%. These results were higher than those reported by Liu [38]: under conditions of NaOH charge
10%, extraction temperature of 120 ◦C, extraction time of 60 min, the hemicellulose yield of bagasse
pith was 15.37%. In addition, several researchers have investigated the positive effect of ultrasonic
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treatment on the hemicellulose extraction yield from different agricultural biomass. A total of 41.4% of
the wheat straw hemicelluloses were obtained (absolute yield increase by 1.8 using ultrasound) [39],
and 16.5% total buckwheat hulls hemicelluloses were isolated (absolute yield increase by 5.3% using
ultrasound) [20]. Moreover, the yield of AH and WH treated with ultrasound-assisted extraction is
higher than that of without ultrasound-assisted extraction. It demonstrates that ultrasonic treatment
is suitable for solubilizing hemicellulose. The total yield of hemicellulose increased from 19.81% to
23.05% when the ultrasonic treatment time was increased to 28 min. Making BP cell walls swell
and hydrate may result from the cavition of ultrasound [27]. This also makes it easier for the KOH
solution to reach the BP cell wall. Beyond that, ultrasound can loosen and destroy the chemical
bonds among hemicellulose, cellulose, lignin and other substances, making hemicellulose filled with
alkali solution, then accelerating the dissolution of hemicellulose, which could also be attributed
to the growth of hemicellulose yield. During the ultrasound-assisted process, there is a section of
hemicellulose degradation, which may be caused by radical reaction induced by ultrasonic treatment,
resulting in the fracture of glycosidic bonds among the sugars [28,40,41]. In the process of ultrasonic
assistance, the extraction yield of hemicellulose has increased a lot with low energy consumption of
ultrasound. In our work, a fabricated method for industrial extraction and separation of hemicellulose
from agricultural and forest wastes is developed, that is, ultrasound-assisted alkaline, and it has a
promising application [42].

Table 3. Yield (% hemicelluloses) and sugar composition of hemicellulose fractions.

Samples Yield 1 Ara 2 Gal 2 Glc 2 Xyl 2 GalA 2 GlcA 2 Ara 2/Xyl 2

WH-N 3 14.06 9.38 3.43 10.51 71.35 1.17 2.98 0.13
WH-U 3 16.96 10.36 3.51 10.11 69.05 1.19 2.76 0.15
AH-N 3 5.75 5.05 0.63 5.32 86.18 0.72 1.52 0.06
AH-U 3 6.09 5.47 0.84 4.34 85.83 0.72 1.46 0.06

1 % Hemicelluloses. 2 Abbreviations: Ara, arabinose; Gal, galactose; Glc, glucose; Xyl, xylose; GlcA, glucuronic acid;
GalA, galacturonic acid. 3 Samples: WH-N, water-soluble hemicellulose, extracted under the conditions of KOH
mass concentration of 3.7% and extraction temperature of 53 °C; WH-U, water-soluble hemicellulose, extracted
by ultrasound-assisted with ultrasonic treatment time of 28 min, KOH mass concentration of 3.7%, and extraction
temperature of 53 °C; AH-N, alkali-soluble hemicellulose, extracted under the conditions of KOH mass concentration
of 3.7% and extraction temperature of 53 °C; AH-U, alkali-soluble hemicellulose, extracted by ultrasound-assisted
with ultrasonic treatment time of 28 min, KOH mass concentration of 3.7%, and extraction temperature of 53 °C, so
as follows.

Table 3 also shows that xylose was the dominant component sugar in WH and AH, whether or
not they were ultrasound assisted, which was followed by arabinose and glucose. Small amounts
of galactose and glucuronic acid and minor amounts of galacturonic acid were observed as well.
Nevertheless, some differences of chemical composition between the two hemicellulosic components
were observed. The content of xylose was up to 85.83% of the total fractions in the AH obtained by
sonication. In contrast to AH, the content of xylose in WH was only 69.05% of the total fractions,
whereas other hemicellulosic mosaccharides were also significant in WH. The ratio of arabinose to
xylose (Ara/Xyl) reflected the degree of branching of hemicellulose, and the higher ratio indicated
the higher degree of branching [24]. The Ara/Xyl ratios of WH were higher than those of AH, which
suggested the AH was more homogeneous than WH.

In addition, the xylose content of the hemicellulose obtained by ultrasonic treatment was slightly
lower than that of without ultrasound. This was the opposite as the variation of arabinose and galactose.
The results might be attribute to the fact that the various cell walls position of hemicellulose components
and the different accessibility of ultrasound-assisted alkaline extraction. The effect of ultrasound on BP
cell wall can improve cell accessibility, contributing to an increase of sugar content [28]. Besides, the
Ara/Xyl ratio of WH by ultrasonic treatment was higher than that of without ultrasound. This indicated
that ultrasonic treatment had no apparent effect on original molecular structure of hemicellulose from
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BP. Since more hydrophilic sidechains were kept from WH, they were more active in chemical reaction,
which was good for hemicellulose modification and for producing functional polymers.

3.4. The Effect of Ultrasound-Assisted Extraction on Content of Residual Lignin

The lignin of dewaxed BP was removed with sodium chlorite on the first step during the BP
extraction process. Nevertheless, there was still residual lignin in obtained hemicellulose. It is well
known that lignin in the cell wall of gramineous plants links arabinose or xylosyl via ester and aryl-ether
bonds [43–45]. From Table 4, the content of residual lignin in AH was lower than that of in WH, which
might be attribute to the fact that lignin mainly links with arabinose in BP cells, and the content of
arabinose in AH is lower than that of in WH. The application of ultrasound resulted in a decrease in
the content of residual lignin in hemicellulose, which can be explained by mechanical disruption of the
ultrasound on bagasse pith cell walls resulting in the increased alkali solution accessibility and number
of broken covalent bonds between hemicellulose and lignin [46]. Similar results have been reported by
Sun and Tomkinson [39] during the extraction of hemicellulose from ultrasound-treated wheat straw.
Therefore, ultrasound-assisted alkaline extraction optimized by response surface method could further
reduce the content of residual lignin in obtained hemicellulos and improve the purity of hemicellulose.

Table 4. The content of residual lignin.

Samples Residual Lignin Content (%)

WH-N 8.44%
WH-U 7.09%
AH-N 2.77%
AH-U 1.58%

3.5. The Effect of Ultrasound-Assisted Extraction on Molecular Weight

The average molecular weight of AH and WH was determined to explore if the ultrasound
treatment could lead to a degradation of hemicellulose [27]. Weight-average (Mw) and number-average
(Mn) molecular weight, as well as the polydispersity (Mw/Mn) of AH and WH were presented in Table 5.
Hemicellulose is a heterogeneous glycan with polydispersity. The higher of polydispersity coefficient
(Mw/Mn) it is, the wider of the hemicellulose molecular weight distribution range it is. The number
average molecular weight and the weight average molecular weight of AH and WH decreased after
ultrasonic treatment, the same variation trend was discussed by Xu et al. [27], which may be due
to the fact that ultrasound was easy to break the glycosidic bonds, resulting in the degradation of
hemicelluloses [39–41]. On the other hand, ultrasonic treatment can dissolve most of the lignin, and the
residual lignin content of hemicellulose was tiny, subsequently, reducing the relative molecular weight
of hemicellulose [32].

Table 5. Mw, Mn, and polydispersity of hemicellulose.

Samples Mw
1 Mn

1 Polydispersity Index 1

WH-N 31,585 22,484 1.40
WH-U 29,923 18,560 1.61
AH-N 75,991 56,531 1.34
AH-U 74,872 54,655 1.37

1 Mw: weight-average molecular weights of hemicellulose; Mn: number-average molecular weights of hemicellulose;
polydispersity index: weight-average molecular weights to number-average molecular weights.

4. Conclusions

The ultrasound-assisted treatment was an effective method for the yield and efficiency of
hemicellulose extraction from sugarcane bagasse pith. Extraction conditions optimized by RSM were
ultrasonic treatment time of 28 min, KOH mass concentration of 3.7%, and extraction temperature of
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53 ◦C. Under these conditions, total hemicellulose yield was 23.05%, and it evidently increased 3.24%
compared with that without ultrasound-assisted extraction. In addition, the obtained hemicellulose
showed a lower content of residual lignin, a slightly lower content of xylose, and lower weight average
molecular weight. On the other hand, hemicellulose structure was integrated after ultrasound-assisted
treatment from FT-IR spectra. Sugar analysis showed that AH and WH were mainly composed of both
xylan and arabinose, and AH was more homogeneous than WH. Weight-average molecular weight of
AH is higher than that of WH. Therefore, the ultrasound-assisted alkali extraction was suitable for
preparation of hemicellulose from industrial waste bagasse pith.
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Appendix A

Table A1: Response surface analysis and level design, Table A2: Response surface design and
experimental results.

Table A1. Response surface analysis and level design.

Samples
Factors

A/min B/% C/°C

−1 20 2 40
0 30 3 50
1 40 4 60

Table A2. Response surface design and experimental results.

No. A/min B/% C/°C Yield/%

1 20 2 50 15.88
2 40 2 50 14.51
3 20 4 50 19.70
4 40 4 50 18.69
5 20 3 40 16.33
6 40 3 40 17.20
7 20 3 60 20.53
8 40 3 60 17.56
9 30 2 40 16.57

10 30 4 40 20.31
11 30 2 60 17.02
12 30 4 60 22.65
13 30 3 50 22.39
14 30 3 50 22.22
15 30 3 50 21.61
16 30 3 50 22.10
17 30 3 50 21.38
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