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Abstract

In epidemiology, a typical measure of interest is the risk of disease conditional upon expo-

sure. A common source of bias in the estimation of risks and risk ratios is misclassification.

Exposure misclassification affects the measurement of exposure, i.e. the variable one con-

ditions on. This article explains how to assess biases under non-differential exposure mis-

classification when estimating vaccine effectiveness, i.e. the vaccine-induced relative

reduction in the risk of disease. The problem can be described in terms of three binary

variables: the unobserved true exposure status, the observed but potentially misclassified

exposure status, and the observed true disease status. The bias due to exposure misclassi-

fication is quantified by the difference between the naïve estimand defined as one minus the

risk ratio comparing individuals observed as vaccinated with individuals observed as unvac-

cinated, and the vaccine effectiveness defined as one minus the risk ratio comparing truly

vaccinated with truly unvaccinated. The magnitude of the bias depends on five factors: the

risks of disease in the truly vaccinated and the truly unvaccinated, the sensitivity and speci-

ficity of exposure measurement, and vaccination coverage. Non-differential exposure mis-

classification bias is always negative. In practice, if the sensitivity and specificity are known

or estimable from external sources, the true risks and the vaccination coverage can be esti-

mated from the observed data and, thus, the estimation of vaccine effectiveness based on

the observed risks can be corrected for exposure misclassification. When analysing risks

under misclassification, careful consideration of conditional probabilities is crucial.

Introduction

Measurement error and misclassification result into information bias, i.e. a systematic error in

the estimator of an exposure’s effect on an outcome [1]. If the probability of misclassification

in one variable does not depend on the level of other variables, misclassification is said to be

non-differential. When estimating vaccine effectiveness, the exposure and outcome of interest

are vaccination and occurrence of a given vaccine-preventable disease, respectively. The aim of

measuring vaccine effectiveness is to quantify the relative reduction in the disease’s risk or rate

attributable to vaccination [2, 3].
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Under the assumption that the disease is rare or that the vaccine offers complete protection

to a subset of the vaccinated individuals while leaving the rest unaffected, vaccine effectiveness

can be estimated as one minus the risk ratio [2]. The two (cumulative) risks that are compared

by the risk ratio are the two conditional probabilities of the disease in those who have been vac-

cinated and those who have not. While outcome misclassification affects the measurement of

outcome conditional on exposure, exposure misclassification affects the measurement of expo-

sure, i.e. the variable one should condition on.

De Smedt et al. [4] studied non-differential outcome and exposure misclassification bias in

the estimation of vaccine effectiveness based on the risk ratio. Regarding outcome misclassifi-

cation, their analysis is complete and in line with previous literature [5, 6]. Their mathematical

presentation of the bias caused by exposure misclassification is, however, not complete. We

here provide a detailed derivation of the bias, emphasising the need for proper conditioning

on a potentially misclassified exposure status. Finally, we show how the estimation of vaccine

effectiveness can be adjusted for exposure misclassification if the sensitivity and specificity of

exposure measurement are known or estimable from external sources. We use the register-

based estimation of influenza vaccine effectiveness in the Finnish elderly as an example [7].

Methods

A person is considered either vaccinated if a vaccine under study has been administered or

unvaccinated if the vaccine has not been administered. We refer to this classification as the

true vaccination status. In a study, however, the collected vaccination information might be

subject to underreporting, omission, coding error or inaccurate recall, so a person’s true vacci-

nation status is unknown to the investigator. We therefore refer to the classification of individ-

uals into vaccinated and unvaccinated based on study data as the observed but potentially

misclassified vaccination status.

The problem of studying vaccine effectiveness under exposure misclassification can be

described in terms of three binary variables: the unobserved true vaccination (exposure) status

(V), the observed but potentially misclassified vaccination (exposure) status ( ~V ), and the

observed true disease (outcome) status (D). Fig 1 shows how these three variables are related.

The association of interest is V!D, i.e. the risk (probability) of disease conditional on the true

vaccination status P(D = 1|V). However, from observed data one can infer directly only the associa-

tion ~V ! D, i.e. the risk of disease conditional on the observed vaccination status PðD ¼ 1j~V Þ.
Assuming the absence of other sources of bias, it follows from the dependencies depicted in

Fig 1 that the joint probability of the three model quantities is

PðV; ~V ;DÞ ¼ PðVÞ � Pð~V jVÞ � PðDjV; ~V Þ ¼ PðVÞ � Pð~V jVÞ � PðDjVÞ: ð1Þ

Fig 1. Exposure misclassification model. D: observed true disease status, binary; V: unobserved true vaccination status, binary; ~V~: observed and potentially

misclassified vaccination status, binary.

https://doi.org/10.1371/journal.pone.0251622.g001
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Let γ = P(V = 1) be the true vaccination coverage, i.e. the proportion of truly vaccinated

individuals (Table 1). Exposure misclassification is quantified by the sensitivity and specificity

of exposure measurement. The sensitivity is the probability SE ¼ Pð~V ¼ 1jV ¼ 1Þ of measur-

ing correctly the vaccination status of a vaccinated individual. Correspondingly, the specificity

is the probability SP ¼ Pð~V ¼ 0jV ¼ 0Þ of measuring correctly the vaccination status of an

unvaccinated individual. The risks of disease in the truly vaccinated and the truly unvaccinated

are π1 = P(D = 1|V = 1) and π0 = P(D = 1|V = 0), respectively. The effect measure of interest is

the vaccine effectiveness defined by the estimand VE = 1−π1/π0 (Table 1).

Since the true vaccination status and, therefore, γ, π1 and π0 are unobserved, we can only

measure the observed vaccination coverage, Pð~V ¼ 1Þ, and the risks of disease conditionally

upon the observed but potentially misclassified vaccination status, p1 ¼ PðD ¼ 1j~V ¼ 1Þ and

p0 ¼ PðD ¼ 1j~V ¼ 0Þ (Table 1).

It follows from the conditional independence of D and ~V given V, as expressed in Eq (1),

that

p1 ¼ PðD ¼ 1j~V ¼ 1Þ

¼ PðD ¼ 1;V ¼ 1j~V ¼ 1Þ þ PðD ¼ 1;V ¼ 0j~V ¼ 1Þ

¼ PðV ¼ 1j~V ¼ 1Þ � p1 þ PðV ¼ 0j~V ¼ 1Þ � p0

ð2AÞ

and

p0 ¼ PðV ¼ 1j~V ¼ 0Þ � p1 þ PðV ¼ 0j~V ¼ 0Þ � p0: ð3AÞ

The observed risks p1 and p0 can thus be interpreted as weighted averages of the true risks

π1 and π0. The four weights, each giving the probability of the true vaccination status condi-

tioned upon the observed vaccination status, can be expressed in terms of three parameters, γ,

Table 1. Notation.

Parameter Symbol Explanation

P(V = 1) γ True vaccination coverage

Pð ~V~¼ 1jV ¼ 1Þ SE Sensitivity

Pð ~V~¼ 0jV ¼ 0Þ SP Specificity

P(D = 1|V = 1) π1 Risk in the truly vaccinated

P(D = 1|V = 0) π0 Risk in the truly unvaccinated

1−π1/π0 VE Vaccine effectiveness

Pð ~V~¼ 1Þ Observed vaccination coverage

PðD ¼ 1j ~V~¼ 1Þ p1 Risk in individuals observed as vaccinated

PðD ¼ 1j ~V~¼ 0Þ p0 Risk in individuals observed as unvaccinated

1−p1/p0 Naïve estimand of vaccine effectiveness

(1−p1/p0)− VE Δ Bias

D: observed true disease status, binary; V: unobserved true vaccination status, binary; ~V~: observed and potentially

misclassified vaccination status, binary.

https://doi.org/10.1371/journal.pone.0251622.t001
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SE and SP:

p1 ¼ PðV ¼ 1j~V ¼ 1Þ � p1 þ PðV ¼ 0j~V ¼ 1Þ � p0

¼
PðV ¼ 1; ~V ¼ 1Þ

Pð~V ¼ 1Þ
� p1 þ

PðV ¼ 0; ~V ¼ 1Þ

Pð~V ¼ 1Þ
� p0

¼
Pð~V ¼ 1jV ¼ 1Þ � PðV ¼ 1Þ � p1 þ Pð~V ¼ 1jV ¼ 0Þ � PðV ¼ 0Þ � p0

Pð~V ¼ 1Þ

¼
SE � g � p1 þ ð1 � SPÞ � ð1 � gÞ � p0

SE � gþ ð1 � SPÞ � ð1 � gÞ

ð2BÞ

and

p0 ¼
ð1 � SEÞ � g � p1 þ SP � ð1 � gÞ � p0

1 � SE � g � ð1 � SPÞ � ð1 � gÞ
: ð3BÞ

If both the sensitivity SE�0.5 and specificity SP�0.5, i.e. if the observed vaccination status

~V ¼ 1 is equally likely in truly vaccinated and unvaccinated individuals, the observed risks p1

and p0 are approximately identical (p1�p0) and the vaccine effectiveness is not identifiable

from the data. We therefore assume hereafter that SE and SP are away from 0.5.

Solving Eqs (2B) and (3B) for π1 and π0, we obtain

p1 ¼
p1 � SP � ðSE � gþ ð1 � SPÞ � ð1 � gÞÞ � p0 � ð1 � SPÞ � ð1 � SE � g � ð1 � SPÞ � ð1 � gÞÞ

g � ðSEþ SP � 1Þ
and ð4Þ

p0 ¼
p0 � SE � ð1 � SE � g � ð1 � SPÞ � ð1 � gÞÞ � p1 � ð1 � SEÞ � ðSE � gþ ð1 � SPÞ � ð1 � gÞÞ

ð1 � gÞ � ðSEþ SP � 1Þ
: ð5Þ

The estimand VE follows as

VE ¼ 1 �
p1

p0

¼ 1 �
1 � g

g
�
p1 � SP � ðSE � gþ ð1 � SPÞ � ð1 � gÞÞ � p0 � ð1 � SPÞ � ð1 � SE � g � ð1 � SPÞ � ð1 � gÞÞ
p0 � SE � ð1 � SE � g � ð1 � SPÞ � ð1 � gÞÞ � p1 � ð1 � SEÞ � ðSE � gþ ð1 � SPÞ � ð1 � gÞÞ

: ð6Þ

This expression still involves the unobserved true vaccination coverage γ. However, by solv-

ing Pð ~V ¼ 1Þ ¼ SE � gþ ð1 � SPÞ � ð1 � gÞ for γ, γ can be expressed in terms of the observed

vaccination coverage Pð~V ¼ 1Þ, sensitivity SE and specificity SP:

g ¼ P V ¼ 1ð Þ ¼
Pð~V ¼ 1Þ þ SP � 1

SEþ SP � 1
: ð7Þ

Since VE thus depends only on parameters that can be estimated from the observed data

(Pð~V ¼ 1Þ; p1; p0) or might be known or estimable from external sources (SE, SP), the vac-

cine effectiveness can be estimated even under exposure misclassification. In the absence of

exposure misclassification (SE = SP = 1), Eq (6) simplifies to the standard expression of vaccine

effectiveness based on observed risks. Under exposure misclassification, however, this naïve

estimand, (1−p1/p0), differs from the correct estimand, VE. The difference Δ of the two
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estimands quantifies the bias due exposure misclassification:

D ¼ 1 �
p1

p0

� �

� VE ¼ 1 �
p1

p0

� �

� 1 �
p1

p0

� �

¼
p1

p0

�
SE � g � p1 þ ð1 � SPÞ � ð1 � gÞ � p0

ð1 � SEÞ � g � p1 þ SP � ð1 � gÞ � p0

�
1 � SE � g � ð1 � SPÞ � ð1 � gÞ
SE � gþ ð1 � SPÞ � ð1 � gÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X

: ð8Þ

The last term, X, is due to the denominators in Eqs (2B) and (3B) and results from correct

conditioning on the observed vaccination status. Of note, De Smedt et al. [4] expressed the

observed risks p1 and p0 omitting these denominators and their mathematical presentation of

bias Δ thus misses term X.

We here graphically present the difference between the two estimands, (1−p1/p0) and VE,

for different scenarios using Eqs (2B), (3B) and (6). We set π1 = 0.045 and π0 = 0.15, implying

that the true value of the vaccine effectiveness equals 0.7. The values for the true vaccination

coverage, sensitivity and specificity are taken from γ2(0,1), SE2{0.6,0.8,1}, and SP2{0.6,0.8,1}.

In addition, we demonstrate how the estimation of vaccine effectiveness can be adjusted for

exposure misclassification taking the register-based estimation of influenza vaccine effective-

ness in the Finnish elderly (aged 65 years and above) in 2016/17 as an example [7]. All individ-

uals in the study population are classified as vaccinated or unvaccinated based on their records

in the Finnish vaccination register giving the observed and potentially misclassified vaccina-

tion status ~V . Assuming the register’s specificity to be perfect, its sensitivity SE is first evaluated

as the ratio of the observed vaccination coverage in the subpopulation of individuals aged 70

to 79 years and the corresponding vaccination coverage in a representative survey [8], which

we assume to reflect the true vaccination coverage in that subpopulation. We then use Eq (7)

to calculate the true vaccination coverage γ for the whole study population and Eq (6) to assess

the vaccine effectiveness using the values of γ, SE and SP = 1, as well as the observed influenza

risks p1 and p0.

Results

Five parameters determine the magnitude of exposure misclassification bias: the risks of the

disease in the truly vaccinated (π1) and the truly unvaccinated (π0), the sensitivity (SE), the

specificity (SP) and the true vaccination coverage (γ). The last term, X, in Eq (8) arising from

proper conditioning depends on three parameters: true vaccination coverage, sensitivity and

specificity. Because X describes a ratio of two probabilities, its magnitude ranges from 0 to

infinity.

Fig 2 presents the effect size measured by the estimands (1−p1/p0) and VE under non-differ-

ential exposure misclassification. While VE accurately measures the vaccine effectiveness at

0.7, (1−p1/p0) does not quantify the vaccine effectiveness correctly unless both sensitivity and

specificity are perfect. The vertical distance between the two effect measures depicted in Fig 2

marks the magnitude of the bias. The bias is always negative. As imperfect sensitivity leads to

misclassification of the truly vaccinated, its impact is strongest when the true vaccination cov-

erage is high. Vice versa, the impact of imperfect specificity, which leads to misclassification of

the truly unvaccinated, is strongest when the true vaccination coverage is low.

In the example from the 2016/17 influenza season, the vaccination coverage in elderly aged

70 to 79 years was 51% according to the register [9] and 64% according to the survey [8]. The

sensitivity (SE) of the register-based exposure measurement was thus estimated at 80% (=

51%/64%�100%). The observed vaccination coverage in the study population, Pð~V ¼ 1Þ, was
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47% and the estimated cumulative risks (p1 and p0) were 16% and 20%, respectively [7]. It fol-

lows from Eqs (7) and (6) that the true vaccination coverage (γ) was 59% and the vaccine effec-

tiveness (VE) was 24%. The vaccine effectiveness was thus 4 percentage points higher than the

naïve estimate, (1−p1/p0), would have suggested.

Discussion

In this article, we derived an expression for the magnitude of non-differential exposure mis-

classification bias in the estimation of vaccine effectiveness based on risk ratios. The bias

depends on five factors: true vaccination coverage, sensitivity and specificity of exposure mea-

surement, and the risk of the disease of interest in the truly vaccinated and the truly unvacci-

nated. If the sensitivity and specificity are known or estimable from external sources, Eq (6)

can be used to correct the estimation of vaccine effectiveness based on the observed risks for

exposure misclassification. In absence of exact information about the sensitivity and specificity

of exposure measurement, Eq (8) can be used for assessing the potential magnitude of bias

given a range of plausible values.

Fig 2. Effect size measured by the estimands (1−p1/p0) (red squares) and VE (blue circles) under non-differential

exposure misclassification. Data points were calculated using Eqs (2B), (3B) and (6), π1 = 0.045, π0 = 0.15 and γ, SE
and SP as given in the panels. The horizontal grey line marks the true vaccine effectiveness.

https://doi.org/10.1371/journal.pone.0251622.g002
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Our findings are in line with previous literature. In contrast to non-differential outcome

misclassification, non-differential exposure misclassification leads to bias [4]. The result that

this bias is always negative must not be misinterpreted as a generic rule that any naïve estimate

derived under exposure misclassification would be an underestimate of vaccine effectiveness.

Due to random error, a single naïve estimate can under- or overestimate the true effect [10,

11]. This random error remains even after adjusting for the bias as described in this paper.

Which of the two errors dominates depends on the true values of the underlying parameters.

We described the problem of studying vaccine effectiveness under exposure misclassifica-

tion and absence of other sources of bias in terms of three binary variables and formulated the

joint probabilities of the three model quantities. Our exposure misclassification model (Fig 1)

is a special case of the model presented by Tang et al. [12] for misclassification in both expo-

sure and outcome. This approach of jointly modelling all observables and conditioning on the

actually observed variables facilitates the connection between conditional probabilities and

standard parameters such as sensitivity, specificity and risks, avoiding fallacies like the one

pointed out in this paper. Moreover, if exposure misclassification should be differential, it can

be easily incorporated in the initial model by allowing dependence of the sensitivity and speci-

ficity on the disease status or other variables.

This article pointed out the importance of proper conditioning. If misclassification in the

exposure status is not accurately taken into account, expressions quantifying the magnitude of

bias will be wrong. Based on the correct equations, a potentially biased vaccine effectiveness

(or more generally any risk ratio) estimate can be adjusted for exposure misclassification. Nev-

ertheless, this requires that the sensitivity and specificity of exposure measurement are known

or are estimable from external sources.
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