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Abstract: Polyoxometalates (POMs) has proved its advantage in constructing high-performance
nanocomposite membranes such as catalytic membranes, adsorptive membranes, and forward
osmosis membranes. However, it is challenging or tedious to characterize its distribution and
effect on the membrane structures due to the equipment resolution limitation, discrete nano-scaled
structures of POMs, and limited doping amount compared to the polymeric membrane matrix.
In this paper, POMs-functionalized polyvinylidene fluoride (PVDF) membranes were fabricated by
phase inversion combined with the sol-gel method, and electrochemical impedance spectroscopy
(EIS) was utilized to analyze the nanocomposite membrane intrinsic properties. Through adjusting
the additives in the sol-forming process, a set of membranes with varied intrinsic properties were
developed accordingly. The wetting degree of the membranes related to the hydrophilic nature
of the membrane surfaces had a crucial influence on the impedance measurements at the early
stage. Through EIS analysis, it was demonstrated that the amination of the membrane matrix
through (3-aminopropyl)trimethoxysilane (APTMS) treatment and the immobilization of POMs
through electrostatic attraction would not generate new pore structures into the membrane and
only alter the membrane surface roughness and composition. To my knowledge, it is the first time
that EIS was utilized to characterize the hydrophilicity of the membranes and pore structures of the
POMs-modified membranes. Our findings indicate that EIS can provide valuable information for
probing the structures of other nano-materials-incorporated membranes.
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1. Introduction

Membrane technology has been demonstrated to be efficient for water treatment over the past
decades. Inspired by the multi-functional characteristics of biomimic membranes, incorporation
of nanomaterials, namely nanocomposite membranes, has been a promising approach to tailor
the membrane structure and impart additional unique properties in the past decade [1]. Up to
date, an extensive range of nanomaterials have been incorporated into membranes, such as
carbon nanotube (CNT) [2], graphene oxide (GO) [3], metal-organic frameworks (MOF) [4],
polyoxometalates (POMs) [5–7], etc. [8], to enhance membrane separation efficiency or other properties.
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The characterization of their distribution and effect on the membrane structures is crucial and will shed
light on nanocomposite membrane development. In general, scanning electron microscopy (SEM),
atomic force microscopy (AFM), as well as transmission electron microscopy (TEM) are frequently
utilized to directly observe the pore structures, distribution of nanomaterials, and roughness of the
membranes, respectively. These techniques are effective for the observation of nanomaterials with an
obvious structural contrast with the polymeric matrix. When the incorporated amounts of nanomaterials
were controlled to be moderately low (~0.1%) given the cost and dispersibility considerations, or their
distribution is changeable in applications, the above-mentioned characterization methods became
impotent. For instance, by constructing a GO-selective layer on the membrane surface, precise ionic and
molecular sieving in aqueous solution with high-flux could be obtained [3]. However, the interlayer
spacing of GO membranes is highly related to the ionic aqueous environment and changeable under
different concentrations of feed solution. Therefore, the observation of GO membrane morphology by
SEM, TEM, and AFM, which are typically operated in a vacuum environment, can hardly establish
the correlation between the membrane structure and membrane performances. Other techniques,
for example, electrochemical impedance microscopy (EIS) [9], has showed its advantage in providing
more information of the membrane structures in such cases.

POMs are a unique class of metal–oxygen cluster species usually in nano-sizes ranging from
~5 Å to 40 Å, with versatile composition, scale, structure, charge distribution, and redox potential [10].
They are promising candidates to construct advanced catalytic membranes [11,12], adsorptive
membranes [7], and forward osmosis membranes [5], etc. POMs can be integrated into the matrix
of the membrane by blending [13] or onto the membrane surface by plasma treatment [14], grafting
polymerization [15], and sol-gel coating [16]. When the immobilization of POMs is limited or at
the nanoscale, their characterization becomes difficult. Currently, when POMs are immobilized
onto/into the membrane surface through the sol-gel method, a deeper understanding of the correlation
between the addition of different components (for example, POMs, coupling reagent, sol-gel precursors,
and other additives) and membrane structures is deficient. Demand for an effective characterization
method of a POMs-functionalized membrane has become urgent.

Electrochemical impedance spectroscopy (EIS), as an economic and non-invasive characterization
technique, can be potentially utilized to study the membrane structures [9,17,18], membrane
fouling [19,20], and internal concentration polarization (ICP) [21]. The electrochemical relaxations are
related to the intrinsic properties of the studied systems; thus, it can reveal structural features such
as structural layers, pore structures, etc., through suitable equivalent circuit modeling. For example,
EIS has been successfully used to characterize the polyamide layer of desalination membranes [22,23],
epoxy coatings [24], homogeneous membranes [25,26], and biological membranes [27]. Compared with
other traditional structural characterization methods, EIS can provide deeper and more considerable
information of membrane structures. For instance, Luo and co-workers used EIS to probe the effect of the
graphene integrated into the polyvinylidene fluoride (PVDF) membrane matrix on the thermal stability,
illuminating that the introduction of graphene improved the membrane stability and suppressed
thermal expansion of the pore structures [9]. In addition, EIS also successfully demonstrated that
montmorillonite, as a typical two-dimensional (2D) material, adjusted the pore structures of ethyl
cellulose membranes, resulting in two different kinds of pores in the composite membranes [28].
Although several studies have been reported to interpret the impedance spectra for different membrane
systems, cursory attention should be given to the more complex cases. According to the literature, EIS
could be applied to analyze the electrochemical activity and the charged mass transport phenomena of
POMs’ layer-by-layer films [29]. Therefore, the current investigation of POMs-modified membranes by
EIS has the potential to expand its application and benefit the understanding of other membrane systems.

In this study, a Co mono-substituted Keggin-type [PW11O39Co(H2O)]4− (PWCo), was used as a
model POM to fabricate the POMs modified membranes. It has proved as a potent catalyst in various
reactions such as the removal of pesticides and dyes [30,31], electrocatalytic oxidation of methanol [32],
catalytic oxidation of alcohols [33], etc. [34]. Therefore, the exploitation of transition-metal-substituted
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POMs-functionalized membranes would promisingly expand their applications as catalytic or
electrocatalytic membranes. We designed and fabricated POMs-functionalized membranes with
two different routes involving a sol-gel method. The influence of the additives in the sol-forming
process on the membrane structures was investigated. The correlation between different fabrication
routes and the membrane properties were probed by EIS and discussed based on the equivalent circuit.
The POMs distribution and membrane properties were analyzed by EIS as well as other conventional
characterization techniques.

2. Materials and Methods

2.1. Materials and Chemicals

All materials used to make alumina/PVDF membrane substrates included Poly(vinylidene
fluoride) (PVDF, Kynar 761) from Arkema (Beijing, China), 1-methyl-2-pyrrolidone (NMP) from
Sinopharm Chemical (Shanghai, China), and aluminum sec-butoxide (ASB) from Macklin (Shanghai,
China). (3-aminopropyl)trimethoxysilane (APTMS) purchased from Macklin, and nitric acid and
iso-propyl alcohol (IPA) from Sinopharm Chemical were also used in the modification process.
K4[PW11O39Co(H2O)] (PWCo) was synthesized according to the literature [35,36]. All reagents used
to fabricate the membrane substrates and PWCo are of analytical reagent (AR) grade and used without
further purification.

2.2. Membrane Fabrication

Two kinds of alumina/PVDF flat sheet membranes were fabricated for comparison in subsequent
experiments. They were produced via the phase inversion method combined with the sol-gel method.
Two bottles of homogenous dope solutions were prepared by the PVDF powder, NMP, under stirring
at 70 ◦C for 24 h. ASB as the alumina precursor and APTMS as an additive were added to both
solutions and stirred at 90 ◦C for 12 h. After that, deionized water was added into one of them
(recorded as #2) stirring at 90 ◦C for 1 h and then nitric acid was added into it stirring at 60 ◦C for
24 h (PVDF/ASB/APTMS/HNO3/H2O/NMP at 20:2:1:0.069:0.76:89 weight ratio). The other one which
was not added with deionized water and nitric acid was recorded as #1 (PVDF/ASB/APTMS/NMP
at 20:2:1:89 weight ratio). The final dope solutions were both cooled down and degassed at room
temperature and casted into film with a casting knife whose gate height was 400 µm. The casted film
was then immersed into water at room temperature immediately to form a membrane. The resultant
membranes (Original#1 and Original#2) were stored in a water bath for at least 3 days and dried in air
before use. The preparation process was illustrated in Figure 1. Compared with Original#1, H2O and
HNO3 were added in the dope solution for Original#2. The introduction of H2O may promote the
hydrolysis rate of the precursors while increasing the instability of the dope system. HNO3 was used
as a catalyst in the sol-gel process.
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2.3. Membrane Modification

Before the POMs modification process, the alumina/PVDF membranes were aminated by APTMS.
Firstly, both alumina/PVDF original membranes (Original#1 and Original#2) were immersed into
the APTMS (2.0 wt%) in IPA/H2O (1:1 by weight) solution at 70 ◦C for 6 h, denoted as APTMS-M#1
and APTMS-M#2. Then, the membranes were rinsed by deionized (DI) water and then immersed
into a 4.0 wt% PWCo aqueous solution at 60 ◦C for 24 h. The resultant membranes (POM-M#1 and
POM-M#2) were washed using DI water and dried at room temperature.

2.4. Membrane Characterization

The membrane structure and morphologies were characterized with the field emission scanning
electron microscope (FESEM, JSM-7600F, JEOL, Tokyo, Japan) operated at a voltage of 5 kV.
Energy-dispersive X-ray spectroscopy (EDX) coupled with the FESEM, operated at 10 kV, was
utilized to analyze the elemental composition of the membranes. Attenuated total reflectance Fourier
transform infrared spectroscopy spectra (ATR-FTIR, IR Presitige-21 FTIR, Shimadzu, Kyoto, Japan)
was used to analyze the chemical bonds of the membrane surfaces. The static water contact angle of
membranes was measured using a goniometer SL2006 (Kino Tech Corp, Shanghai, China).

2.5. EIS Analysis

EIS measurements were performed in 0.01 mol/L KCl aqueous solution at room temperature
using a CS310H impedance analyzer electrochemical workstation (Corrtest, Wuhan, China) [28].
The schematic of the EIS device is demonstrated in Figure 2. A membrane with an effective area of
1.77 cm2 was fixed between two electrolytic cells. Two platinum electrodes (1 cm2 each) were installed
in the two electrolytic cells and maintained at the same interval and depth [37]. The impedance spectra
were monitored in the frequency range from 0.1 to 106 Hz. The amplitude of the input sinusoidal
voltage was 5 mV. The impedance spectra of the as-prepared membrane substrate and modified
membranes were tested in 0.01 mol/L aqueous KCl.
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2.6. EIS Theory and Equivalent Circuit Model

The principle of EIS is based on a sinusoidal potential input applied over a range of frequencies,
as shown in Equation (1), and the resulting sinusoidal current across the sample system was measured,
as expressed as Equation (2) [38]:

E(t) = E0 sin(ωt) (1)

I(t) = I0 sin(ωt + ϕ) (2)

where E0 and I0 represent the maximum of voltage and current, and ω and ϕ denote the angular
frequency and the phase shift, respectively.
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The impedance of the membrane system, which is defined as Z(ω) = E(t)/I(t), is expressed as

Z = Z′ + jZ′′ (3)

where Z′ and Z′′ represent the real and imaginary part of the impedance, respectively. The imaginary
constant j is defined by j2 = −1.

Generally, EIS data is illustrated by a Nyquist plot, which maps Z′′ as a function of Z′, which can
reflect interfacial properties between the membrane and solution. The bode plots in the form of |Z|
versus frequency or phase angle versus frequency were usually supplemented to provide a direct vision
of the magnitude |Z|which equals to E0/I0 and phase angle ϕ in response of frequency. The impedance
signal is classically modelled by an equivalent circuit and the equivalent circuit could consist of lumped
elements such as resistance, capacitance, and inductance, as well as frequency-dependent elements
such as Warburg resistance and constant phase element (CPE).

Typically, a Nyquist plot is modeled by a widely used parallel resistance–capacitance circuit when
it is a semicircle with center on the x-axis. However, the observed plot deformed occasionally, in which
the arc of a circle was shown with the center located below the x-axis. In this case, a parallel resistor
and CPE circuit is more suitable. The center of the semicircle is located at (1− n)× 90

◦

. Then, the CPE’s
impedance is given as below:

ZCPE(ω) = q−1(iω)−n (4)

where q represents the factor of proportionality and n stands for the CPE exponent that characterizes
the phase shift. For integral values of n (n = 1, 0,−1), the CPE represents C, R, and L, respectively [39].
Through establishing a suitable equivalent circuit, the membrane physicochemical properties could
be associated. For instance, R and C represent the ability to transfer ions and the ability to store
electric charges respectively, and CPE could be related with the surface roughness, varying thickness
or composition, nonuniform current distribution, and a distribution of reaction rates according to
different situations [39].

3. Results and Discussion

3.1. Membrane Physical and Chemical Properties

Morphologies of the alumina/PVDF composite membranes prepared in two routes (Original#1
and Original#2) and the POMs-modified membranes (POMs-M#1 and POMs-M#2) were analyzed
using FESEM and EDX. The results are shown in Figures 3 and 4. The disparity of the original
membranes prepared in two routes is the morphology of the bottom layer. It showed that large pores
with diameters around 1 µm occupied the bottom layer of Original#1. In contrast, the bottom layer
of Original#2 is full of microbeads with diameters around 1 µm. Compared with porous bottom
layers, the surfaces of both original membranes were much denser and consisted of pores around
100 nm. As shown in Figures 3c and 4c, a finger-like structure was formed near the surface layer while
a sponge-like structure was developed beneath the macro-voids near the bottom layer. As shown in
Figures 3d–f and 4d–f, after the two-step modification of POMs for both membranes, limited amounts
of nanospheres of POMs can be observed on the membrane surface, bottom, and matrix near the
bottom layer. Compared with the original membranes, the pore size of the POMs-M was slightly
reduced, evidenced by the images of the surface and bottom layers. EDX analysis (Figure 5) confirmed
the successful incorporation of POMs within the membranes. A homogenous distribution of Al and
W elements can be observed in Figure 5b,c, demonstrating that alumina and POMs were evenly
distributed in amorphous morphologies.
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Figure 3. Top view, bottom view, and cross-sectional view of the Original#1 and the modified
polyoxometalates (POMs-M#1) membrane by field emission scanning electron microscope (FESEM):
(a–c) for the Original#1 and (d–f) for the POMs-M#1, respectively.
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The membranes prepared in two routes were further examined by ATR-FTIR and the results are
shown in Figures 6 and 7, respectively. For Original#1 and Original#2, after APTMS modification,
the peak of –NH2, stretching at ~1541 cm−1, increased, and revealed a successful incorporation of
APTMS on the membrane, while this peak diminished after introducing PWCo (marked by dashed blue
box), which was due to the linkage of the –NH2 group [40] with the PWCo group through electrostatic
interaction. After the incorporation of PWCo, a strong peak emerged at 953 cm−1 (marked by the
dashed orange lines) which can be the characteristic vibration of the M-O (M = W or Co) groups of
the PWCo Keggin structure. The reaction mechanism is then proposed in Figure 8. Through APTMS
treatment, the hydroxyl groups of the original membranes would react with APTMS combined with
the hydrolysis and polycondensation of APTMS, resulting in membrane surfaces rich in amine groups.
Then, POMs were incorporated onto the membrane through electrostatic interaction under a slightly
acidic environment.
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Figure 6. Fourier transform infrared (FTIR) spectra of the original alumina/polyvinylidene fluoride
(PVDF) membrane (Orginal#1), the (3-aminopropyl)trimethoxysilane (APTMS)-treated membrane
(APTMS-M#1), and the Co mono-substituted Keggin-type [PW11O39Co(H2O)]4− (PWCo)-modified
membrane (POMs-M#1).
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The static water contact angle and the pure water permeation (PWP) of the prepared membranes
are listed in Table 1. Contact angles of Original#1 and Original#2 are similar. The modification of APTMS
would not make much difference on the wettability. After the POMs’ incorporation, the resultant
contact angles for both membranes decreased, demonstrating that the membrane surfaces became
much more hydrophilic, which is consistent with the hydrophilic nature of POMs. On the other hand,
the PWP of POMs-M#1 and POMs-M#2 decreased a little bit compared with the original membranes.

Table 1. Comparison of the POMs-M with APTMS-M membrane in terms of the contact angle and
pure water permeation (PWP).

Sample Code Original#1 Original#2 APTMS-M#1 APTMS-M#2 POMs-M#1 POMs-M#2

Pure water flux
(L/m2 h bar) 71.0 58.1 92.4 60.1 72.3 57.0

Contact angle (◦) 77.2 79.7 85.0 77.2 54.0 64.1
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3.2. EIS Testing

To investigate the membrane pore structures of the modified membranes, the EIS analysis was
conducted. The nature of the polymeric matrix plays a crucial role in the selection of EIS testing
parameters. In this study, PVDF, as a chemically stable polymer, was selected as the polymer matrix.
Due to its hydrophobic nature, the concentration of the electrolytes should be adjusted to 0.01 mol/L so
as to achieve a desirable response signal, while the capacitance characteristic of the electrolytes in the
equivalent circuit can be ignored. The Nyquist plots and Bode plots of APTMS-M#1 and APTMS-M#2
membranes immersed in KCl solution for different times are shown in Figures 9 and 10. The Nyquist
plot, in which each data point corresponds to a measured frequency, is the most common way to
represent the EIS data. Each Nyquist plot in Figure 8 is composed of a depressed semicircle and a
tilted spike. The depressed semicircle reflects the membrane/electrolyte interaction, which is highly
related with the membrane physicochemical properties, while the tilted spike results from the influence
of electrodes and electrolytes. Typically, the larger the semicircle gets, the higher the impedance
of the membrane, showing the harder the electrolytes penetrate into the membrane. As shown in
Figure 9a,b, the impedance of the APTMS-M#1 and APTMS-M#2 dramatically decreased after a 24 h
immersion time and then decreased slightly and remained nearly stable after 1 week. The best fitted
equivalent circuit of the system applied in this study consists of series associations of two sections
(only impedance arc was studied): resistance RS for the solution between the membrane and the
electrode and parallel association of resistance RM for the charge transfer through the membrane
and a CPE for the polymer bulk (see Figure 11) [41]. It is worth noticing that CPE fits better than
an ideal capacitor for the single time model of experimental data. Table 2 gives a summary of the
fitting values using this model. The errors for the calculated RM and CPE-T were less than 1% and
5% respectively, suggesting that the selected equivalent circuit model was desirable. Compared with
the 3.16 × 106 Ω resistance for APTMS-M#1 at an immersion time of 0 h, APTMS-M#2 is 4.57 × 105 Ω.
This may be related to the greater difficulty of the KCl aqueous solution in filling the pores of the more
hydrophobic APTMS-M#1 matrix. Then, the resistance of membranes dramatically decreased and
stabilized after 1 week. The final resistance of APTMS-M#1 was 8.80 × 104 Ω, while APTMS-M#2 was
1.92 × 104 Ω, indicating that APTMS-M#2 was slightly more porous than APTMS-M#1. On the other
hand, the resistance of POMs-M#1 and POMs-M#2 at 0 h was much smaller than APTMS-M membranes,
which may be due to the more hydrophilic nature of the POMs-M membranes, as confirmed by contact
angle results. Compared with the 4.37 × 104 Ω resistance for POMs-M#1 at an immersion time of 0 h,
POMs-M#2 is 6.47 × 104 Ω. The slightly higher resistance of POMs-M#2 was also compatible with
the higher contact angle of POMs-M#2 than POMs-M#1. It implied that the membrane wettability
influences the EIS results at the early stage. Finally, the resistance of POMs-M#1 reached 1.99 × 104 Ω,
while POMs-M#2 reached 1.71 × 104 Ω. As shown in Table 2, the CPE-T and n are CPE parameters,
where n is an adjustable parameter without any real physical basis and its value is generally less than 1
(when n = 1, it appears as an ideal capacitor). CPE-T is used in place of a capacitor to show a double
layer formation of membrane surface. The similar resistance of APTMS-M#2 and POMs-M#2 after
2-week immersion indicates that the incorporation of POMs through electrostatic attraction would not
result in thick deposition. The depressed semicircle which is fitted with a CPE instead of capacitor
should be explained by the membrane surface heterogeneity due to surface roughness, which is
consistent with the SEM images. It would not influence the pores’ structures of the membranes while
introducing hydrophilicity, which is beneficial for anti-fouling.
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Table 2. The fitted values for (a) APTMS-M#1, (b) APTMS-M#2, (c) POMs-M#1, and (d) POMs-M#2.

(a)

APTMS-M#1 RM (Ω) CPE-T (F) n

0 h 3.16 × 106 1.85 × 10−10 0.95
24 h 6.04 × 105 5.80 × 10−10 0.87
48 h 2.99 × 105 8.85 × 10−10 0.85
72 h 1.41 × 105 6.10 × 10−10 0.86

1 week 1.14 × 105 1.66 × 10−9 0.81
2 weeks 8.80 × 104 2.76 × 10−9 0.77

(b)

APTMS-M#2 RM (Ω) CPE-T (F) n

0 h 4.57 × 105 2.26 × 10−10 0.94
24 h 4.07 × 104 3.54 × 10−9 0.75
48 h 2.68 × 104 3.49 × 10−9 0.77
72 h 2.21 × 104 1.62 × 10−10 0.80

1 week 1.95 × 104 4.72 × 10−9 0.81
2 weeks 1.92 × 104 1.26 × 10−9 0.81

(c)

POMs-M#1 RM (Ω) CPE-T (F) n

0 h 4.37 × 104 7.26 × 10−9 0.70
24 h 2.42 × 104 4.77 × 10−9 0.72
48 h 2.28 × 104 3.07 × 10−9 0.75
72 h 2.19 × 104 2.29 × 10−9 0.77

1 week 2.11 × 104 2.21 × 10−9 0.77
2 weeks 1.99 × 104 2.00 × 10−9 0.78

(d)

POMs-M#2 RM (Ω) CPE-T (F) n

0 h 6.47 × 104 7.62 × 10−9 0.69
24 h 2.89 × 104 7.45 × 10−9 0.69
48 h 2.72 × 104 6.77 × 10−9 0.69
72 h 2.21 × 104 2.81 × 10−9 0.75

1 week 1.89 × 104 1.61 × 10−9 0.79
2 weeks 1.71 × 104 1.11 × 10−9 0.83

It can be clearly seen that there was only one semicircle for each Nyquist plot and only one platform
region in the Bode plots for all the membranes, suggesting a single time constant in the impedance
spectrum. Therefore, though the two-step modification was applied, the membrane model still consists
of two compartments: the membrane matrix and the empty volume of the pores. The introduction
of APTMS and POMs would not induce the formation of any new kind of pores in the membrane,
while the surface roughness and composition were changed.
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4. Conclusions

POMs-functionalized PVDF ultrafiltration membranes were fabricated in two routes involving
the sol-gel method at different membrane preparation stages. Several conventional characterization
techniques were performed to differentiate the membranes. The effects of POMs on the membrane
properties were probed by EIS and analyzed based on the equivalent circuit. EIS results showed that
the amination of the membrane matrix through APTMS treatment and the immobilization of POMs
through electrostatic attraction did not generate new pore structures into the membrane, while the
membrane surface roughness and composition were changed. The incorporation of POMs enhanced
the membrane hydrophilicity without deteriorating the membrane pore structure and sacrificing the
water permeation. It was proven that the wetting degree of the membrane relating to its hydrophilic
nature had a crucial influence on the impedance measurements at the early stage. After associating EIS
analysis with the evolution of immersion time, the hydrophilic property of the membranes along with
their pore structures could be concluded. Therefore, EIS can be potentially applied for probing the
structure evolution of different nano-materials-incorporated membranes.
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