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Per- or polyfluoroalkyl substances (PFAS), a family of synthetic polyfluorinated
compounds, are widely used in consumer products. Ubiquitous exposures to PFAS, in
consideration of their persistence, bioaccumulation potential, and toxicities have led to
concerns regarding possible harmful effects during critical periods of development in
early-life and long-term consequences on health. The potential effects of PFAS depend on
various factors including the type of PFAS and the timing and level of exposure. We
performed a systematic review of the epidemiologic literature to assess the effects of early-
life PFAS exposure on prenatal and postnatal growth, adiposity, and puberty in children
and adolescents. For birth size, most studies indicated that prenatal PFAS exposure, in
particular long-chain PFAS, may impair fetal growth, albeit some reports of null
associations with maternal PFAS. For growth within 2 years of age, prenatal PFAS
exposure showed no associations with height and either null or negative associations with
weight. However, postnatal PFAS exposures were inversely related to height and weight
at 2 years in a cross-sectional study. For postnatal adiposity, prenatal PFAS may mostly
have negative associations with body mass index in the first 2 years of life, but positive
relationships with adiposity in childhood and adolescence, although some studies
showed null associations. For puberty, the evidence for associations between early-life
PFAS exposure and pubertal development or sex hormone levels were limited and
inconclusive. From experimental studies, plausible mechanisms through which PFAS
may affect early-life growth and puberty include PFAS-induced activation of peroxisome
proliferator-activated receptor, alterations of thyroid or steroid hormone synthesis and
metabolism, and their weak estrogenic or anti-androgenic properties. Although the
published literature suggests possible effects of PFAS exposures on early-life growth,
adiposity, and puberty, current human evidence is limited in establishing PFAS-induced
effects on early-life physical development. Further investigation is warranted to clarify
PFAS-induced effects on growth and physical development in consideration of the critical
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time-window of exposure, concomitant exposure to chemical mixtures including various
PFAS types, and possible non-monotonic dose-response relationship for growth and
adiposity trajectories.
Keywords: perfluorinated alkylated substances, birth weight, growth, adiposity, puberty, child, adolescent
INTRODUCTION

Per- or polyfluoroalkyl substances (PFAS) are a group of highly
stable synthetic polyfluorinated compounds that exhibit unique
physical and chemical characteristics, including water and oil
repellency, thermal stability and surfactant properties (1). Since
their first production in the 1940s and 1950s, PFAS have been
incorporated into numerous products such as food packaging
material, cookware, clothing, carpets, and fire extinguishers (1).
By the early 2000s, PFAS became broadly distributed in the
environment (2) and virtually all people living in industrialized
countries were exposed to many PFAS, with blood
concentrations in the ng/ml range (3).

The molecular structure of PFAS consists of a chain of carbon
atoms linked to fluorine atoms. By component, PFAS are
grouped into perfluoroalkyl carboxylic acids (PFCA) and
perfluoroalkyl sulfonic acids (PFSA). The so called “long-
chain” PFAS (PFCA with ≥ 7, and PFSA with ≥ 6
perfluorinated carbons) which includes perfluorooctanoate
(PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic
acid (PFDA), perfluoroundecanoic acid (PFUnDA),
perfluorododecanoic acid (PFDoDA), perfluorooctane sulfonic
acid (PFOS), perfluoroheptanane sulfonic acid (PFHpS), and
perfluorohexane sulfonic acid (PFHxS), have been reported have
more bioaccumulation potential and toxicities than “short-
chain” PFAS (4). Although serum levels of PFOA and PFOS,
the most widely used long-chain PFAS, are declining in some
countries since the early 2000s (5, 6), the use of short-chain PFAS
or other novel PFAS have been increasing (7).

PFAS are resistant to environmental degradation and remain
in the human body for a long time. Their half-lives are 3.8, 5.4,
and 8.5 years for PFOA, PFOS, and PFHxS, respectively (8).
Human exposure to PFAS may occur via drinking water, diet,
indoor and outdoor air, house dust, and consumer products (9),
and maternal PFAS can be transferred to the fetus across the
placental barrier (10). Young children are likely to have higher
PFAS body burdens than adults due to cumulative exposure via
placental transfer and breastfeeding, higher water intake relative
to body size, and more inhalation or ingestion of house dust due
to their behavior (11).

Ubiquitous exposures to PFAS and their bioaccumulation
potential have led to concerns regarding potential toxicities and
health effects, particularly in growing children (12). In line with
the “Developmental origins of health and diseases (DOHaD)”
hypothesis (13), early-life growth and development may be more
vulnerable to exposure to PFAS, with subsequent adverse health
outcomes in later adulthood. We review the current
epidemiologic evidence of the effects of prenatal and postnatal
PFAS exposures on growth, adiposity, and puberty in children.
n.org 2
METHODS

This systematic review was reported according to Preferred
Reporting Items for Systematic Review and meta-Analysis
(PRISMA) guidelines (14).

Definition
Exposure was defined as exposure to PFOA, PFNA, PFDA,
PFUnDA, PFDoDA, perfluorotridecanoic acid (PFTrDA),
perfluorotetradecanoic acid (PFTeDA), perfluorohexadecanoic
acid (PFHxDA), PFOS, PFHpS, PFHxS, perfluorodecane
sulfonic acid (PFDS), pentafluorobenzoic acid (PFBA),
perfluoropentanoic acid (PFPeA), perfluorohexanoic acid
(PFHxA), perfluoroheptanoic acid (PFHpA), perfluorobutane
sulfonic acid (PFBS), perfluorooctane sulfonamide (PFOSA),
N-ethyl-perfluorooctane sulfonamidoacetic acid (Et-PFOSA-
AcOH), or N-methyl-perfluorooctane sulfonamidoacetic acid
(Me-PFOSA-AcOH). For outcome measures, fetal growth was
evaluated by measures of birth weight, birth length, ponderal
index, and gestational age; postnatal growth by measures of
height/length and weight; adiposity by measures of body mass
index (BMI), ponderal index, waist circumference, skinfold
thickness, and fat mass; pubertal outcomes by measures of
pubertal stage, age at menarche, and levels of sex-hormones.

Data Sources and Selection
We searched MEDLINE, EMBASE, Web of Science, and Scopus
on May 21, 2021 with the keywords shown in Supplementary
Table 1. The selection criteria were 1) cohort studies or case-
control studies which investigated the effects of PFAS on growth,
adiposity, or puberty in children and adolescents, 2) primary
research articles in English and published in peer-reviewed
journals. Two authors independently screened titles and
abstracts using EndNote and reviewed full-text articles.
Disagreements were resolved through discussion.

Data Extraction and Risk of Bias
Assessment
Two reviewers independently extracted the data including
country, sample size, study design, timing of exposure,
exposure measures, the level of exposure of PFAS, and
outcome measures. Outcomes were expressed in terms of the
odds ratio, relative risk, or b, and described in the summary of
findings. We assessed the quality of the studies using the
Cochrane Risk of Bias In Non-randomized Studies-of Exposure
(ROBINS-E) tool (15). The preliminary template for ROBINS-E
is available online (16). Disagreements in the assessment by the
two authors were resolved through discussion and opinions of a
third investigator were considered if needed. For risk of bias
September 2021 | Volume 12 | Article 683297
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assessment, each domain of risk of bias was determined to be
low, moderate, or high. Overall risk of bias was considered high if
there was high risk in any of the seven domains, and low if there
was low risk of bias in all seven domains.
RESULTS

Study Selection
A total of 1534 articles were identified in the database. After
excluding duplications (n = 993), 542 records were screened
(Supplementary Figure 1). These articles were screened by title
(376 were excluded), abstract (73 were excluded) and full text (3
were excluded). The reasons for exclusion are shown in
Supplementary Figure 1. The 90 studies included in this
review were published between November 2007 and July 2021.

Characteristics of Included Studies
The 90 studies were comprised of 62 cohort studies, 22 cross-
sectional studies, and 6 case-control studies. Sample sizes ranged
from 70 to 6007. Twenty-two studies were performed in the United
States, 12 in Denmark, and 8 in China. To assess for the effects of
early life exposure to PFAS, 61 studies usedmaternal blood samples,
16 studies used cord blood samples, 11 studies used children’s blood
samples, and 1 study used both maternal and childhood samples. In
terms of outcomes, 49 studies evaluated for fetal growth, 5 studies
for postnatal growth, 19 studies for postnatal adiposity, 6 studies for
both fetal and postnatal growth or adiposity, and 11 studies for
pubertal outcomes or sex-hormone levels. Among various PFAS
substances, the effects of PFOA and PFOS were most frequently
evaluated, followed by PFHxS and PFNA. The median exposure
levels of PFOA, PFOS, PFHxS, and PFNA in maternal blood
samples were ranged from 0.2-21.1 ng/mL, 0.8-33.4 ng/mL, 0.1-
4.5 ng/mL, and 0.1-2.3 ng/mL, respectively. In childhood samples,
the median exposure levels were 0.5-34.8 ng/mL for PFOA, 0.8-44.5
ng/mL for PFOS, 0.2-8.1 ng/mL for PFHxS, and 0.3-1.3 ng/mL for
PFNA, respectively. Exposure levels for various PFAS substances of
each study are described in Supplementary Materials
(Supplementary Tables 2–5). The details of included articles and
the results of risk of bias assessment are also shown in
Supplementary materials (Supplementary Tables 2–9).

Fetal Growth
The effects of prenatal PFAS exposures on fetal growth have been
much studied over the past few decades. We included 52 studies
for a review of birth outcomes. Prenatal exposure to PFAS was
assessed during gestation from maternal blood (first to third
trimester) or cord blood samples (Table 1 and Supplementary
Table 2). Birth outcome measures included birth weight, birth
length, ponderal index, gestational age, low birth weight, small
for gestational age, or preterm birth.

Studies that analyzed the relationship between PFAS
exposures and birth weight have mostly shown inverse or null
associations, although the results differed by sex, type of PFAS,
and timing of exposure. Eleven studies reported inverse
associations between PFOA exposure and birth weight (17–20,
Frontiers in Endocrinology | www.frontiersin.org 3
28–32, 44, 45), while other studies showed null associations (21–
26, 33–43, 46–51). Two recent meta-analyses of 16 and 24 studies
(69, 70), found decreases in birth weight of 12.8 g (69) and 10.5 g
(70) with 1 ng/ml increases in PFOA in maternal and cord blood,
respectively. For PFOS, 14 studies showed inverse relationships
with birth weight (18, 20, 23, 31–33, 36, 43–46, 48–50), while 18
showed no associations (17, 19, 21, 22, 24–26, 29, 30, 34, 35, 37,
39–42, 47, 51). A meta-analysis of nine studies showed a 0.9 g
decrease in birth weight per 1 ng/ml increases in maternal PFOS
exposures (69).

A few studies included analyses of long-chain PFAS other
than PFOA or PFOS, such as PFNA, PFDA, PFUnDA, PFDoDA,
PFTrDA, PFHpS, PFHxS, or Me-PFOSA-AcOH. Despite
inconsistencies, the relationship between these long-chain
PFAS and birth weight was mostly inverse (18, 20, 23, 32, 38,
40, 44), a finding which was dominant in girls (20, 32, 38, 40),
while other studies showed null associations (19, 21, 22, 24–26,
29, 34, 37, 41–43, 46, 47, 51). Meanwhile, short-chain PFAS such
as PFBA, PFHpA, or PFBS were only evaluated in four studies
and showed no associations with birth weight (20, 26, 29, 44).
Only one study assessed the effects of PFAS as mixtures using
data from the Health Outcomes and Measures of Environment
(HOME) study (52) and reported a small decrease in birth
weight with increased exposure to a mixture of 5 PFAS
(PFOA, PFNA, PFDA, PFOS, and PFHxS).

The effects of PFAS exposures on birth length, ponderal index, or
gestational age were evaluated. Birth length or the ponderal index
showed inverse relationships with PFOA or PFOS exposures (26–
28, 30, 32, 37, 43, 45, 48) and PFNA, PFDA, PFUnDA, PFDoDA, or
PFHxS exposures (26, 32, 37, 40, 47), or null associations (19, 22, 24,
38, 39, 41, 46), although one study reported a positive relationship
between PFHxS exposure and birth length in boys (47). For
gestational age, some studies reported increased risk for preterm
birth and lower gestational age with increasing exposure to PFOA,
PFNA, PFOS or PFHpS in maternal blood (18, 23, 28, 42, 46),
however, no associations were demonstrated inmost studies (24, 31,
32, 34, 35, 39, 41, 45, 49, 50).

Taken together, despite some inconsistency, a preponderance
of studies suggest that maternal PFAS exposure, particularly to
long-chain PFAS including PFOA and PFOS, negatively impact
fetal growth. However, studies investigating short-chain PFAS
are limited, showing no significant effects on fetal growth.

Postnatal Growth During Infancy
and Childhood
We reviewed 12 studies with outcome measures of weight, length
and/or height in infancy (< 2 years) and childhood (2-12 years).
In 10 studies, prenatal PFAS exposure was measured in maternal
blood (during gestation or shortly after birth) or in cord blood
samples taken at birth the time of birth. Two cross-sectional
studies quantified exposure to PFAS in the child’s blood (71, 72).
The most frequently studied PFAS was PFOA, which was
quantified in all the studies that were reviewed. Many of the
studies also quantified and analyzed other long-chain PFAS, such
as PFOS, PFNA, PFDA, and PFHxS with high detection rates.
Only a few of the studies included PFUnDA, PFDoDA, Me-
September 2021 | Volume 12 | Article 683297
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TABLE 1 | Summary of studies assessing associations between prenatal PFAS exposure and fetal growth.

PFAS group Timing of exposures Outcomes

Early
pregnancy

Mid-late
pregnancy

Cord
blood

Not
available

Birth weight Birth length Ponderal
index

Gestational age

PFOA ▼ (17–19); ▼ (20)*; ↔ (21–26) ▼ (27); ↔ (19, 22,
24–26)

↔ (27) ▲ (19); ▼ (18);
↔ (23, 24)

▼ (17–19, 28–31); ▼ (32)*;
↔ (21, 22, 25, 26, 33–42); ↔

(43)**

▼ (28); ↔ (19, 22,
25, 26, 32, 33, 37–

41); ↔ (43)**

▼ (37); ↔ (28,
32, 44)

▲ (19); ▼ (18, 28);
↔ (31, 32, 34, 35,

39, 41, 42)

▼ (18, 44, 45); ↔ (21, 25, 26,
37, 46–48)

↔ (25, 26, 37, 45–
48)

▼ (37, 45);
↔ (46, 47)

▼ (18); ↔ (44–46)

↔ (49, 50) ↔ (49, 50)

PFNA ▼ (18, 23); ▼ (20)*; ↔ (19, 21,
22, 24, 26)

▼ (26); ↔ (19, 22,
24)

▼ (18); ▼ (23)**;
↔ (19, 24)

▼ (18, 40); ▼ (38)*; ↔ (19, 21,
22, 26, 29, 41, 42); ↔ (43)**

▼ (40); ↔ (19, 22,
26, 38, 41);
↔ (43)**

▼ (18, 42); ↔ (19,
41)

▼ (18); ↔ (21, 26, 44, 46, 47,
51)

↔ (26, 46, 47) ↔ (46, 47) ▼ (18); ↔ (44, 46)

PFDA ▼ (20)*; ↔ (18, 19, 22, 26) ▼ (26); ↔ (19, 22) ↔ (19)

▼ (40); ▼ (38)*; ↔ (18, 19, 22,
26, 29, 42)

↔ (19, 22, 26, 38,
40)

↔ (19, 42)

↔ (26, 44, 47, 51) ↔ (26, 47) ↔ (47) ↔ (44)

PFUnDA ▼ (20)*; ↔ (19, 26) ▼ (26); ↔ (19) ↔ (19)

▼ (38)*; ↔ (19, 26, 29, 40) ↔ (19, 26, 38, 40) ↔ (19)

↔ (26, 44, 46, 47, 51) ▼ (47)**; ↔ (26,
46)

↔ (46, 47) ↔ (44, 46)

PFDoDA ↔ (20, 26) ▼ (26)

▼ (38)*; ↔ (26, 29, 40) ↔ (26, 38, 40)

▼ (44)*; ↔ (26, 51) ↔ (26) ↔ (44)

PFTrDA ▼ (40)* ↔ (40)*

PFBA ↔ (44) ↔ (44)

PFHpA ↔ (20, 26) ↔ (26)

↔ (26, 29) ↔ (26)

▼ (44)**; ↔ (26) ↔ (26) ↔ (44)

PFOS ▼ (18, 23); ▼ (20)*; ↔ (17, 19,
21, 22, 24–26)

▼ (26); ↔ (19, 22,
27, 33)

↔ (27) ▼ (18); ▼ (23)**;
↔ (19, 24)

▼ (18, 31); ▼ (32, 33, 36)*; ▼
(43)**; ↔ (19, 21, 22, 26, 29, 30,

34, 35, 37, 39–42)

▼ (32)*; ▼ (43)**;
↔ (19, 26, 32, 33,

37, 39–41)

▼ (30, 37);
↔ (32)

▼ (18); ↔ (19, 31,
32, 34, 35, 39, 41,

42)

▼ (18, 45, 46, 48); ▼ (44)**;
↔ (21, 26, 37, 47, 51)

▼ (48); ↔ (26, 37,
45–47)

▼ (37, 45);
↔ (46, 47)

▲ (44); ▼ (18, 46);
↔ (45)

▼ (49, 50) ↔ (49, 50)

PFHpS ▼ (18); ↔ (19, 22) ↔ (19, 22) ▼ (18); ↔ (19)

▼ (18); ↔ (19) ↔ (19, 22) ▼ (18); ↔ (19)

PFHxS ↔ (18–26) ↔ (19, 22, 24, 26) ↔ (18, 19, 23, 24)

▼ (32)*; ↔ (18, 19, 21, 22, 26,
29, 34, 40–42); ↔ (43)**

▼ (32)*; ↔ (19, 22,
26, 40, 41);
↔ (43)**

↔ (32) ↔ (18, 19, 32, 34,
41, 42)

↔ (18, 21, 26, 37, 44, 47, 51) ▲ (47)** ▼ (37); ↔ (47) ↔ (18, 44)

Me-PFOSA-AcOH ▼ (41); ↔ (42) ↔ (41) ↔ (41, 42)

PFBS ↔ (26) ↔ (26)

↔ (26) ↔ (26)

(Continued)
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PFOSA-AcOH, PFHpA, PFDS, and PFBS (Table 2 and
Supplementary Table 3).

Postnatal Length/Height
For early postnatal growth, there have been seven studies that
analyzed for length/height outcomes by measures of postnatal
length/height (in cm) or height z-scores. Six studies assessed for
associations between prenatal PFAS exposures and length/height
within the first 2 years of life. All of the studies that assessed for
gestational PFOA and PFOS exposures by sampling maternal
blood or cord blood showed null associations with measures of
the child’s length after birth to 2 years (48, 73, 74, 76–78).
The lack of associations to length measures was also seen in other
PFAS including PFNA, PFDA, PFTrDA, PFTeDA, PFHxDA,
PFHxS, PFDS, and PFBS in the same studies. The only study that
reported any significant associations between prenatal exposure
and postnatal length was by Cao et al., in which length at 19
months of age was positively associated with the highest tertiles
of cord blood PFDoDA (in boys) and PFUnDA (in girls).
However, the results were not consistent, as the same study
also noted an inverse association between higher exposure to
PFDS and postnatal length (77). Only one cross-sectional study,
in which growth parameters was analyzed according to the
children’s PFAS concentrations, showed consistent dose-
response inverse associations of PFOA, PFNA, PFDA, PFOS,
and PFHxS with height at 2 years of age (71).

For childhood growth past 2 years, four studies have been
conducted (38, 48, 72, 76) with conflicting results. Two studies
continued to assess for the effects of prenatal PFAS exposures on
height measures in childhood past 2 years by including participant
data up to 5 years (76) and 9 years (48) of age. While the study by
Gyllenhammer et al. of the Persistent Organic Pollutants in Uppsala
Primiparas (POPUP) cohort continued to show no associations
between PFAS (PFOA, PFNA, PFDA, PFUnDA, PFOS, PFHxS, and
PFBS) and height up to 5 years of age (76), Chen et al. noted that the
height in boys of the Taiwan Birth Pnel Study (TBPS) between 24 to
60 months and between 60 and 108 months were both positively
associated with cord blood PFOS (48). In contrast, Wang et al.
reported inverse associations of prenatal (3rd trimester) exposures to
Frontiers in Endocrinology | www.frontiersin.org 5
PFDA, PFUnDA and PFDoDA with height z-scores from 2 to 11
years of age in girls, without significant interactions by age (38). A
cross-sectional study using data from the National Health and
Nutrition Examination Survey (NHANES, 2013-2014) of the
United States also reported inverse associations between PFOS
and PFHxS exposures and height z-scores in children 3-11 years
old (72).

Most of studies to date with regards to postnatal length/height
within the first 2 years of life suggests the absence of significant
associations with maternal or cord blood PFAS levels. Only one
cross-sectional study demonstrated inverse associations between
PFAS exposures and height at 2 years. Few studies analyzed for
changes in height into later childhood and they showed
conflicting associations with PFAS levels.

Postnatal Weight
Studies that analyzed postnatal weight have found either null or
inverse associations between PFAS and measures of weight (weight-
for-age, weight-for-length, and change in weight z-scores) (Table 2
and Supplementary Table 3). For prenatal PFOA exposure, the
majority of the studies noted no associations with weight
parameters during the first 2 years of life (32, 48, 73, 75, 76, 78).
However, two studies did demonstrate consistently inverse
associations between PFOA and weight before 2 years of age. In a
study of 334 infants with repeated anthropometric measurements
from 4 weeks to 2 years of age, prenatal PFOA exposure was
inversely associated with weight-for-age or weight-for-height (74).
PFOA was also inversely associated with postnatal weight in boys at
19.7 ± 3.2 months of age, however the association was significant
only between the second and first tertiles of PFOA (77). For PFOS,
there were more studies that suggested associations with weight in
the first 2 years (32, 48, 73–75) as opposed to null associations (76–
78). Prenatal PFOS exposures were inversely related to weight
measures in 5 month-old girls (75), in both sexes between 4
weeks and 2 years (74) and at 12 months (73). Similarly, weight
z-scores in girls significantly decreased from 6 to 12 months (-0.25,
95% CI -0.47, -0.04) and 12 to 24 months (-0.24, 95% CI -0.41,
-0.06) per ln-unit increase in cord blood PFOS (48). One study
contrastingly showed a positive association between first trimester
TABLE 1 | Continued

PFAS group Timing of exposures Outcomes

Early
pregnancy

Mid-late
pregnancy

Cord
blood

Not
available

Birth weight Birth length Ponderal
index

Gestational age

↔ (26) ↔ (26)

Mixture ▼ (52)
Septemb
er 2021 | Volume
PFOA, perfluorooctanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUnDA, perfluoroundecanoic acid; PFDoDA, perfluorododecanoic acid; PFTrDA,
perfluorotridecanoic acid; PFBA, pentafluorobenzoic acid; PFHpA, perfluoroheptanoic acid; PFOS, perfluorooctane sulfonic acid; PFHpS, perfluoroheptanane sulfonic acid; PFHxS,
perfluorohexane sulfonic acid; Et-PFOSA-AcOH, N-ethyl-perfluorooctane sulfonamidoacetic acid; Me-PFOSA-AcOH, N-methyl-perfluorooctane sulfonamidoacetic acid; PFBS,
perfluorobutane sulfonic acid ▲, Positive associations; ▼, Inverse association; ↔, Null association; * significant only in girls; ** significant only in boys.
Early and mild-late pregnancy refer to 1st trimester, and 2nd or 3rd trimester, respectively.
Long-chain PFAS include PFOA, PFNA, PFDA, PFUnDA, and PFDoDA in perfluoroalkyl carboxylic acids (PFCA) group, and PFOS, PFHpS, PFHxS, Et-PFOSA-AcOH, and Me-PFOSA-
AcOH in perfluoroalkane sulfonic acids (PFSA) group. Short-chain PFAS include PFBA and PFHpA in PFCA group, and PFBS in PFSA group.
Shading boxes indicate exposure timing.
Four studies with small sample size (less than 100) (53–56), 6 studies investigating the effects of mixture of various chemicals (57–62), and 6 studies focusing on the mediating factors (63–
68) are not described in the table. Further information of the included studies are described in Supplementary Table 2.
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TABLE 2 | Summary of studies assessing associations between PFAS exposure and postnatal growth outcomes.

PFAS group Timing of exposures Outcomes

Birth to 2 years 2 to 12 years

Early
pregnancy

Mid-late
pregnancy

Maternal
postpartum

Cord
blood

Child Height Weight Height Weight

Prenatal
exposure

PFOA ↔ (73) ↔ (73)

↔ (74) ▼ (74); ↔ (32, 75) ↔ (38) ↔ (38)

↔ (76) ↔ (76) ↔ (76) ↔ (76)

↔ (48, 77, 78) ▼ (77)**; ↔ (48, 78) ↔ (48) ↔ (48)

PFNA ↔ (74) ↔ (74, 75) ↔ (38) ↔ (38)

↔ (76) ↔ (76) ↔ (76) ↔ (76)

↔ (77) ↔ (77)

PFDA ↔ (75) ▼ (38) ↔ (38)

↔ (76) ↔ (76)

↔ (77)

PFUnDA ▼ (38) ↔ (38)

↔ (76) ↔ (76) ↔ (76) ↔ (76)

▲ (77)* ↔ (77)

PFDoDA ↔ (77) ▼ (38) ↔ (38)

▲ (77)

PFTrDA ↔ (77) ↔ (77)

PFTeDA ↔ (77) ↔ (77)

PFHxDA ↔ (77) ↔ (77)

PFOS ↔ (73) ▼ (73)

↔ (74) ▲ (32)*; ▼ (74, 75)

↔ (76) ↔ (76) ↔ (76) ↔ (76)

↔ (48, 77, 78) ▼ (48)*; ↔ (77, 78) ▲ (48)** ↔ (48)

PFHxS ↔ (74) ▼ (75)*; ↔ (32, 74)

↔ (76) ↔ (76) ↔ (76) ↔ (76)

↔ (77) ↔ (77)

PFDS ▼ (77) ↔ (77)

Me-PFOSA-
AcOH

↔ (75)

PFBS ↔ (76) ↔ (76)

Postnatal
exposure

PFOA ▼ (71) ↔ (71) ▼ (72)

PFNA ▼ (71) ▼ (71)

PFDA ▼ (71)

PFUnDA ↔ (71) ↔ (71)

PFHpA ↔ (71) ↔ (71)

PFOS ▼ (71) ↔ (71) ▼ (72)

PFHxS ▼ (71) ↔ (71) ▼ (72) ▼ (72)
Frontiers in Endocrinology | w
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 12 | Article
PFOA, perfluorooctanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUnDA, perfluoroundecanoic acid; PFDoDA, perfluorododecanoic acid; PFTrDA,
perfluorotridecanoic acid; PFTeDA, perfluorotetradecanoic acid; PFHxDA, perfluorohexadecanoic acid; PFOS, perfluorooctane sulfonic acid; PFHxS, perfluorohexane sulfonic acid; PFDS,
perfluorodecane sulfonic acid; Me-PFOSA-AcOH, N-methyl-perfluorooctane sulfonamidoacetic acid; PFBS, perfluorobutane sulfonic acid; PFHpA, perfluoroheptanoic acid
▲, Positive associations; ▼, Inverse association; ↔, Null association; * significant only in girls; ** significant only in boys.
Early and mild-late pregnancy refer to 1st trimester, and 2nd or 3rd trimester, respectively.
Long-chain PFAS include PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA and PFHxDA in PFCA group, and PFOS, PFHxS, PFDS, and Me-PFOSA-AcOH in PFSA group.
Short-chain PFAS include PFHpA in PFCA group and PFBS in PFSA group.
Shading boxes indicate exposure timing.
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maternal serum PFOS and weight in girls at 20 months of age (32),
however, the positive association was only significant in those born
in the lower and upper birth weight stratums and not in those of the
middle birthweight stratum. For all other prenatal PFAS including
PFDA, PFUnDA, and PFHxS, there were no significant associations
in terms of changes in weight in children before 2 years of age.
However, for postnatal PFAS exposures, a cross sectional analysis of
2-year-old children found that PFOA and PFNA levels were
inversely associated with weight in both sexes, although only
PFNA was significant after adjustment (71). For postnatal weight
in childhood past 2 years, three studies (38, 48, 76) demonstrated no
associations between all prenatal PFAS exposures and childhood
weight, while one cross-sectional studies showed inverse
associations between PFOA and PFHxS with weight z-scores
between 3-11 years of age (72).

Weight measures demonstrated more significant associations
with prenatal and/or postnatal PFAS exposures, particularly in the
first 2 years of life. When the results of studies that assessed for
PFOA and PFOS exposures are taken together, about half of the
studies show associations to weight parameters that are statistically
significant. In the majority of these studies, the direction of the
associations was largely negative, especially for PFOS. The evidence
suggests that PFAS may have either a null effect or a negative on
weight within the first two years of life, without definite associations
with weight parameters after 2 years of age.

Postnatal Adiposity
We reviewed 23 studies that examined the relationship of PFAS
with measures of adiposity in infancy, childhood, adolescence and
early adulthood (Table 3 and Supplementary Table 4). Outcome
measures varied according to age and included the ponderal index
(SDS), weight gain (change in weight z-scores), body mass index
(BMI, z-scores), waist circumference (z-scores, waist-to-height ratio,
and/or waist-hip ratio), skinfold thickness, and fat mass as a
percentage of total body mass (by air displacement plethys
mography, dual-energy X-ray absorptiometry or bioelectric
impedance). Prenatal exposures to PFAS were measured in
maternal samples taken during gestation or shortly afterwards
and in cord blood at birth. Five studies were cross-sectional, and
assessed exposure and outcomes in children and adolescents
between the ages of 7 and 21 years. PFOA and PFOS were the
most frequently analyzed and included in all studies reviewed. More
than half of the reviewed studies also analyzed for the effects of other
PFAS including PFNA, PFDA, and PFHxS. PFAS that were
included in some of the studies were PFDA, PFDoDA, PFHpS,
PFOSA, Me-PFOSA-AcOH, PFHpA, and PFBS.

For infant adiposity before 2 years of age, six studies assessed
various adiposity measures in infants ranging from 3 to 18 months,
including the BMI (48, 74, 79, 91), ponderal index (79), trajectory of
BMI changes (83), waist circumference (79), and body fat mass (75,
79, 91). For studies reporting BMI outcomes, the association to
prenatal PFOA was mostly inverse (74, 83) or null (48, 91), except
for one study (79). Repeated anthropometric measures between 4
weeks and 2 years showed monotonic decreases in BMI z-scores of
0.14 and 0.36 in the second and third tertiles of maternal PFOA (74)
and analysis of the BMI trajectory showed that the infancy BMI
Frontiers in Endocrinology | www.frontiersin.org 7
zenith was lower in magnitude in the highest tertile of PFOA (83).
Similarly, inverse associations between BMI and PFOS were
reported in the same studies (74, 83) as well as by Chen et al.,
who reported decreases in BMI between 6 and 24 months in girls
with increasing PFOS (48). These findings, taken together with the
generally inverse associations to weight at birth and in early life, may
support evidence of continued negative effects on weight by prenatal
PFAS exposures. However, inconsistencies remain, as PFOS was
positively associated with BMI and the risk of being overweight at
18months of age (91), and PFOAwas also positively associated with
other measures of adiposity (75, 79). PFOA, along with PFNA and
PFDA showed a positive association with the ponderal index in
infant girls (79), and increased PFOA and PFNA were related to
gains in fat mass percentage in infant boys at 5 months (75).

For BMI measures in early and mid-childhood, more than half
of the studies showed positive associations with prenatal PFOA
exposures. Maternal and cord blood PFOAwas positively associated
with higher risk of being overweight between 5 and 9 years of age
(84, 86, 91), greater waist-to-height ratio (85, 86, 88), and/or BMI z-
scores (76, 84) in childhood. Most of the studies that showed
positive associations were those that had assessed PFOA in mid to
late pregnancy, while those studies that had assessed early
pregnancy PFOA showed null associations with adiposity in
childhood. Only one study from the ALSPAC cohort showed
inverse associations between prenatal PFOA exposures and both
BMI and waist circumference in girls (87). Maternal PFOS was also
modestly associated with increased BMI z-scores (76, 80, 84), waist-
to-height ratio (86), skinfold thickness (84) and increased risk of
being overweight/obese in childhood (84). However, other studies
reported null associations with maternal PFOS (80–82, 85, 86, 88,
89, 91, 92), and one study showed inverse associations with BMI
and waist circumferences in girls (87). For other prenatal PFAS
exposures, PFHxS was associated with increases in the waist-to-hip
ratio and the risk of overweight/obesity (88). One study from China
demonstrated a positive association of PFBS, but inverse association
of PFDoDA with waist circumference, waist-to-height ratio, body
fat mass and body fat percentage at 5 years of age (92). For
childhood exposures of PFAS and adiposity measures, one study
reported consistently decreased BMI and waist-to-height ratios in 7-
year old children with increased PFOA, PFDA, PFOS, and Me-
PFOSA-AcOH concentrations (94), however, other studies showed
null associations (88, 95).

While many studies reported positive associations of prenatal
exposures PFOAandPFOS exposureswith adipositymeasures, non-
monotonic dose-responses were noted in two studies of the HOME
prospective cohort between maternal PFOA levels and adiposity
measures (83, 85). Measures of BMI, waist circumference and body
fat between2 and8years increase up to the second tertile, followedby
declines in the third tertile of PFOA (85). BMI trajectories from 4
weeks to 12 years of age showedmonotonic inverse associations with
PFOS and PFHxS, null associations with other prenatal PFAS, but
non-monotonic dose-responses to PFOA: the timing andmagnitude
of the infancyBMIzenithwas similar in thefirst and second tertiles of
PFOA, followed by more rapid increases to a higher BMI between 8
and12years in the second tertile.The third tertile, in comparison,had
an earlier and lowermagnitude of the infancy BMI peak, followed by
September 2021 | Volume 12 | Article 683297
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TABLE 3 | Summary of studies assessing associations between PFAS exposure and adiposity outcomes.
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PFAS group Timing of exposures O

Pregnancy Maternal
postpartum

Cord
blood

Child Birth to 2 years 2 to 12

Early Mid-late BMI/PI WC BF% BMI WC

Prenatal
exposure

PFOA ▲ (79)* ↔
(79)

↔ (79) ↔ (80–82) ↔ (80

▼ (74, 83) ▲ (75)** ▲ (84);
▲ (83, 85)†; ▲ (86)*; ▼

(87)*
; ↔ (88, 89)

▲ (85, 88)†

▼ (
*

↔ (91) ▲ (76, 91)

↔ (48) ↔ (48, 88, 92) ▲ (88);

PFNA ▲ (79)* ↔
(79)

▲ (79)* ↔ (80, 82) ↔ (80

↔ (74, 83) ▲ (75)** ↔ (83, 85, 88, 89); ↔
(87)*

↔ (85, 88)

↔ (91) ▲ (76); ↔ (91)

↔ (88, 92) ↔ (88

PFDA ▲ (79)* ↔
(79)

▲ (79)*

↔ (75)

↔ (91) ↔ (76, 91)

↔ (92) ↔ (9

PFUnDA ↔ (76)

↔ (92) ↔ (9
PFDoDA ↔ (92) ▼ (

PFOS ↔ (79) ↔
(79)

↔ (79) ↔ (80–82, 86) ↔ (80

▼ (74, 83) ↔ (75) ▲ (84); ▼ (83); ▼ (87)*
; ↔ (85, 86, 88, 89)

▲ (86)*;
;↔ (85

▲ (91) ↔ (91) ▲ (76)

▼ (48)* ▲ (48)*
;↔ (88, 92)

↔ (88

PFHxS ↔ (79) ↔
(79)

↔ (79) ↔ (80, 82) ↔ (80

▼ (83)
↔ (74)

↔ (75) ▼ (83); ↔ (85, 88, 89);
↔ (87)*

↔ (85, 88)

↔ (91) ▲ (76); ↔ (91)

↔ (88, 92) ▲ (88);

PFBS ↔ (92) ▲ (

PFOSA
Me-PFOSA-
AcOH

↔ (75)
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increases in absolute BMI from 8 to 12 years that were similar to the
first tertile of PFOA (83).

For adiposity measures in adolescence (past 12 years of age)
and young adulthood, only four studies were present including
two longitudinal cohort studies that assessed exposures in
maternal blood (90) or during childhood (96) and two cross-
sectional study during adolescence (93, 97). Both longitudinal
cohort studies showed positive associations, with Halldorsson
et al., demonstrating a positive association between maternal
PFOA and offspring BMI, waist circumference, and the risk of
being overweight at 20 years of age (in females) (90) and
Domazet et al., demonstrating that PFOS exposure at 9 years
of age was positively associated with adiposity measures at 15
years (BMI, skinfold thickness and waist circumference) and at
21 years (skinfold thickness) of age (96). For cross-sectional
studies, one study from NHANES showed an increased risk of
overweight and/or obesity with higher PFOA exposures but not
with PFOS exposures in adolescents aged 12 to 18 years (93).
One other study demonstrated no definite associations between
PFOA and PFOS and adolescent BMI, but significant positive
relationships of PFHxS and PFHpS with the presence of
overweight and obesity in adolescents aged 15 to 19 years (97).

In summary, studies of adiposity in infancy mostly support
evidence for continued inverse effects of PFAS on BMI in the first
2 years of life. However, there are inconsistencies in the results,
reflecting the complexities of analyzing adiposity during infancy,
a time characterized by dynamic physiologic changes in weight
and height (98). Studies of childhood and adolescent adiposity
were split between either null or positive associations with
different PFAS. For those studies that did report significant
associations, the direction of the association were mostly
positive for PFOA, with similar but more modest findings in
regards to PFOS.

Puberty, Menarche, and Sex
Hormone Levels
Puberty is a time of transition, characterized by physiological and
psychological changes, to achieve sexual maturation and fertility.
The intrauterine milieu, birth size, nutrition, and endocrine
disrupting chemicals (EDCs) may affect adiposity trajectory,
pubertal timing and progression, with adiposity itself also
contributing to changes in puberty and sex hormone levels
(99–101). The relationships of PFAS exposures with pubertal
onset, menarche, and sex hormone levels during childhood and
adolescence have been evaluated in eleven studies (Table 4 and
Supplementary Table 5). The outcome measures included self-
assessed pubertal stage, age at menarche, and levels of luteinizing
hormone (LH), follicle stimulating hormone (FSH), testosterone,
estradiol, and sex hormone-binding globulin (SHBG).

With regards to girls’ pubertal development and menarche, five
studies showed inconsistent results (Table 4) (102–105, 108). For
pubertal development, the Danish National Birth Cohort (DNBC)
study recently reported substance-specific and non-monotonic
associations between prenatal PFAS exposure and onset of
pubertal indicators in girls (102). In detail, prenatal exposures to
PFNA, PFDA, PFOS, PFHpS, and PFHxS were associated with
earlier age at onset for pubertal milestones, with non-monotonic
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TABLE 4 | Summary of studies assessing associations between PFAS exposure and puberty, menarche, and sex hormone levels.
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Earlier
pubertal onset
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▼ (102)*
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PFAS group Timing of exposures Outc

Girls

Early
pregnancy

Mild-late
pregnancy

Child Adolescent Earlier
pubertal onset

Earlier
menarche

Sex hormone levels

Testosterone Estradiol Others

Prenatal
exposure

PFOA ↔ (102)*

▼ (103); ↔
(104, 105)

▲ (106) ↔ (106)SHBG

PFNA ▲ (102)

↔ (104, 105) ↔ (106) ↔ (106)SHBG

PFDA ▲ (102)*

↔ (104, 105)

PFOS ▲ (102)*

↔ (103–105) ▲ (106) ↔ (106)SHBG

PFHpS ▲ (102)*

PFHxS ▲ (102)

↔ (104, 105) ▲ (106) ↔ (106)SHBG

PFOSA ↔ (104, 105)

Et-PFOSA-
AcOH

↔ (104, 105)

Me-PFOSA-
AcOH

↔ (104, 105)

Postnatal
exposure

PFOA ↔ (107) ↔ (107)

▼ (108) ↔ (107, 109–
111)

↔ (107,
109, 110)

▼ (109)SHBG

↔ (109)LH,FS

PFNA ↔ (107) ↔ (107)

↔ (109–111) ↔ (109, 110) ↔ (109)LH,FSH,S

PFDA ↔ (110) ↔ (110)

PFUnDA ↔ (109) ↔ (109) ▼ (109)FSH;
(109)LH,SHBG

PFDoDA ▼ (110) ↔ (110)

PFTeDA ↔ (110) ↔ (110)

PFHxA ↔ (110) ↔ (110)

PFOS ▼ (107) ↔ (107)

▼ (108) ▼ (109),↔
(110, 111)

↔ (109, 110) ↔ (109)LH,FSH,S

PFHxS ↔ (107) ↔ (107)
o

H

↔
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dose- responses for PFDA, PFOS, and PFHpS showing earlier
pubertal indicators in the middle rather than in the highest
exposure tertiles, with the lowest as a reference. For age at
menarche, three prospective studies evaluated maternal exposure
during pregnancy (103–105) and one cross-sectional study
investigated postnatal exposure during adolescence (108). The
DNBC study (103) reported later age of menarche with higher
levels of prenatal PFOA exposure, while data from the Avon
Longitudinal Study of Parents and Children (ALSPAC) cohort
showed no associations between prenatal PFAS exposures and age
at menarche (104, 105). On the contrary, the C8 Health project
from United States reported a cross-sectional relationship in which
higher concentrations of PFOA and PFOS were related to decreased
odds of postmenarche, suggesting a later age of puberty in
adolescent girls (108).

For girls’ hormone levels, five studies evaluated the relationship
between PFAS exposures and testosterone, estradiol, and
gonadotropin levels in girls, and the results were inconsistent
(106, 107, 109–111). The ALSPAC cohort study showed positive
associations between prenatal exposures to PFOA, PFOS, and
PFHxS and serum testosterone levels in 15-year-old girls (106).
On the contrary, three cross-sectional studies found inverse
associations between postnatal PFOS (107, 109) or PFDoDA
exposures (110) and serum testosterone levels in 6 to 9-year-old
girls from the C8 Health project (107) or adolescent girls from
Taiwan (109, 110). A cross-sectional study using data from
NHANES (2011–2012) from the United States reported no
relationships between PFAS exposures and testosterone levels in
girls (111). Three studies showed no relationships between PFAS
exposures and estradiol levels in girls during childhood and
adolescence (107, 109, 110). One study reported inverse
associations between PFAS exposures with FSH or SHBG levels
in adolescent girls (109).

For boys’ pubertal indicators, two studies showed inconsistent
results according to the timing of exposure (prenatal or postnatal)
(102, 108). The aforementioned DNBC study (102) also reported
substance-specific and non-monotonic associations between
prenatal PFAS exposures and pubertal development in boys. In
detail, prenatal PFHpS, and PFHxS exposures were associated
with younger age at onset for pubertal milestones, whereas
prenatal PFNA and PFDA exposures were related to later age
of pubertal indicators in boys, with non-monotonous associations
for PFNA and PFDA. On the contrary, the C8 Health project
reported a cross-sectional relationship of reduced odds of reached
puberty assessed by testosterone levels (> 50 ng/dL) with
increasing PFOS levels in boys (108).

For boys’ hormone levels, five cross-sectional studies have been
reported (107, 109–112). Postnatal exposure to PFOA, PFNA,
PFDA, PFOS, or PFHxA showed inverse associations with serum
testosterone levels (107, 110), positive associations (112), or null
associations (109, 111). The cross-sectional relationships between
PFAS exposures and estradiol levels were also inconsistent; positive
(110), inverse (107), or null (109) according to the subjects’ age or
type of PFAS. One study reported inverse associations between
PFAS exposures and FSH levels in adolescent boys (109).

Overall, pediatric studies that evaluated the associations
between early-life PFAS exposures and pubertal development
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or sex hormone levels were limited with inconsistent results
according to timing, level of exposure, and type of PFAS.
DISCUSSIONS

In this review, we focused on the effects of prenatal to postnatal
PFAS exposures on growth, adiposity, and puberty in children
and adolescents. Contrary to relatively sufficient evidence on fetal
growth and childhood adiposity, few studies have been conducted
on childhood growth and puberty. Furthermore, the results were
inconsistent according to sex, timing of exposure, type of PFAS,
and levels of exposure. For birth size, prenatal PFAS exposure
may mostly impair fetal growth. For growth within the first 2
years, prenatal PFAS exposure exhibited no association with
height, but null or negative relationships with weight. However,
postnatal PFAS exposure showed inverse relationship with height
and weight at 2 years in a cross-sectional study. For postnatal
adiposity, prenatal PFAS may mostly have negative impact on
BMI in the first 2 years of life, but a positive effect on childhood
and adolescent adiposity, although some studies showed no
associations. For pubertal development or sex hormone levels,
the evidence was limited and inconclusive.

Although mechanisms through which PFAS affect early-life
growth, adiposity, and pubertal development in humans remain
unclear, experimental studies have proposed potential modes of
action. For prenatal and postnatal growth, one possible mechanism
of PFAS toxicity is PFAS-mediated activation of the peroxisome
proliferator-activated receptor a (PPARa) or PPARg (113).
Prenatal PFAS-activated PPAR signaling may alter placental and
fetal metabolic tissue development, leading to impairments in fetal
growth (114). In mouse models, PFOA-induced developmental
toxicity and growth impairment in utero occurred in the presence
of PPARa activity (115). Althoughmost studies have focused on the
effects of PFOA or PFOS, a recent in-vitro study demonstrated the
human PPAR activating potential of various PFAS substances
including short-chain PFAS (116). PPARs were also shown to be
involved in modulating glucose and lipid metabolism or adipocyte
differentiation (117). Recent epidemiologic studies showing inverse
associations between maternal PFAS exposures and fatty acids
during pregnancy (36) suggest a negative impact of prenatal
PFAS exposures on birth weight, through reduced availability of
maternal fatty acids in utero. Meanwhile, PFAS-induced activation
of PPARg can lead to adipogenesis and inflammation (118),
contributing to increased adiposity and risk of obesity in children
and adolescents.

PFAS have been identified as thyroid disrupting chemicals,
potentially affecting hypothalamic-pituitary-thyroid axis, thyroid
hormone synthesis and metabolism (119, 120). Since thyroid
hormones play a crucial role in normal growth and development,
altered thyroid function can affect early-life growth and adiposity
during critical periods of development. There is a possibility that the
effect of PFAS on early-life growth can be mediated by thyroid
hormone disruption, although a recent study did not provide
evidence of the mediating role of thyroid hormones (63).
In addition, some PFAS can interfere with steroid hormone
Frontiers in Endocrinology | www.frontiersin.org 12
synthesis and metabolism. PFAS can inhibit 11-b hydroxysteroid
dehydrogenase 2 with subsequent increases in glucocorticoid
concentrations (121), leading to alterations in placental
development and function, and impairment of fetal growth (122).
PFOS suppresses estradiol, progesterone, and human chorionic
gonadotropin secretion by placental syncytiotrophoblasts (123),
which may also disrupt normal placental development
and function.

For pubertal development, PFAS can affect the hypothalamic-
pituitary-gonadal axis (124). PFAS can also directly affect gonads
through their weak estrogenic or anti-androgenic actions (125)
and perturb pubertal development. Neonatal and juvenile
exposure to PFOA and PFOS in female rats altered gene
expression in the kisspeptin system in the hypothalamus,
leading to advanced pubertal onset (126). The effect of PFAS
on childhood adiposity (127) can trigger the metabolic and
peripheral signals linked to pubertal development (128). Also,
PFAS can affect adrenal or gonadal steroidogenesis through
altering enzyme activity (121, 129, 130).

Although experimental animal studies have suggested various
plausible mechanisms, evidence in humans is still lacking.
Current human evidence on the impact of PFAS exposures on
childhood growth, adiposity, and puberty are limited with
inconsistent data. The reasons for the discrepancies in human
studies are complex, probably due to various factors, including
the variety of PFAS in the environment, the developmental time-
window of exposure, concomitant exposure to chemical
mixtures, and the possibility of non-monotonic dose-response
relationships. This complexity renders it difficult to build a
reliable epidemiological model to fully reveal the mechanisms
of EDC actions and to determine the real clinical impact of EDC
on human health outcomes (131).

PFAS are comprised of more than 4000 individual
compounds, however, previous studies mainly focused on
long-chain PFAS, especially PFOA or PFOS. With the
restrictions on the use of long-chain PFAS due to their
persistence, bioaccumulation potential, and toxicity, they have
been mainly replaced by structurally similar short-chain or other
novel PFAS (132). New generation PFAS are expected to have
lower toxicities due to shorter half-lives. However, the increased
use of short-chain PFAS has also generated concerns regarding
childhood health effects, since they have high water solubility,
resistance to degradation from the environment, and modes of
action similar to long-chain PFAS (7, 133). Additionally,
cumulative or interactive toxicities of PFAS as mixtures remain
unknown, since most studies have examined PFAS as individual
compounds. A few in vitro studies revealed that the interactions
between PFAS compounds can be complicated, as they can act
additively or interact synergistically or antagonistically,
depending on the species, dose ranges, duration of exposure,
and mixture components (134). As humans are exposed to
complex mixtures of PFAS in daily life, the combined effects or
potential interactions of multiple PFAS need to be further
clarified (135). Moreover, non-monotonic dose-responses,
defined as a nonlinear relationship between dose and effect, are
common in studies of hormones and EDCs (136). The more
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disruptive effect of PFAS at medium dose levels than high dose
levels has been identified for childhood adiposity (83, 85) and
puberty (102). Future investigation on the relationship between
PFAS and health effects should include assessment of non-
monotonic dose-response relationships with appropriate
statistical modelling. In terms of outcomes, dynamic changes
and trajectories of childhood growth, adiposity, and puberty
need to be further studied with studies of prospective and
longitudinal design.
CONCLUSIONS

Early-life exposure to PFAS during critical periods of development
may affect fetal and postnatal growth, adiposity, and pubertal
development, potentially leading to latent health effects in
adulthood. The current epidemiologic evidence has mostly
suggested that prenatal PFAS exposures may impair fetal growth
and increase childhood adiposity, although data on the effects of
early-life PFAS exposures on childhood growth or pubertal
development are still limited and inconsistent. The mechanisms
through which PFAS affect early-life physical development in
humans remain unclear, although experimental animal studies
have suggested potential modes of action including PFAS-induced
PPAR activation, altered thyroid and steroid hormone synthesis and
metabolism, and weak estrogenic or anti-androgenic activity.
Further research, designed to evaluate the various types of PFAS
Frontiers in Endocrinology | www.frontiersin.org 13
as mixtures, and in consideration of dynamic growth and adiposity
trajectories, the critical time-window of exposure, and possible non-
monotonic dose-response relationships, is warranted.
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