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ABSTRACT Genome-wide association studies are widely used to identify “disease genes” conferring resistance/susceptibility to in-
fectious diseases. Using a combination of mathematical models and simulations, we demonstrate that genetic interactions between
hosts and parasites [genotype-by-genotype (G X G) interactions] can drastically affect the results of these association scans and
hamper our ability to detect genetic variation in susceptibility. When hosts and parasites coevolve, these G X G interactions often
make genome-wide association studies unrepeatable over time or across host populations. Reanalyzing previously published data on
Daphnia magna susceptibility to infection by Pasteuria ramosa, we identify genomic regions consistent with G X G interactions. We
conclude by outlining possible avenues for designing more powerful and more repeatable association studies.
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NFECTIOUS diseases are pervasive. So pervasive, in fact,

that without effective mechanisms of resistance, host pop-
ulations can be quickly reduced in size or even driven to
extinction. For instance, chestnut blight effectively wiped
out the American chestnut, which had little if any resistance
to this novel pathogen, after its introduction to North Amer-
ica in the early 1900s (Anagnostakis 2000; Anderson et al.
2004). Similarly, when Myxoma virus was introduced to
Australia in the 1950s, local rabbit populations were almost
entirely susceptible, resulting in millions of deaths and the
decimation of local populations (Ratcliffe et al. 1952). Hu-
man populations, too, have been heavily affected by infec-
tious disease in the past, perhaps most notably during the
1918 influenza pandemic that killed >50 million people
before fading away in 1920 (Johnson and Mueller 2002;
Taubenberger and Morens 2006). Although these examples
are striking and demonstrate the impact of unchecked
infectious disease, they are far from the norm. More com-
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monly, host populations have effective mechanisms of resis-
tance against pathogens they encounter regularly (Revers et al.
2014), with significant variability between populations depend-
ing on their history of exposure (Bartholomew 1998; Weatherall
and Clegg 2002).

The existence of substantial variation in resistance to in-
fectious disease within host populations has generated hope
that it may be possible to identify the genes conferring re-
sistance. Identifying such resistance genes would pave the
way for genetic engineering of resistant crops and livestock,
focus drug development efforts on likely targets, and open the
door to gene therapeutic approaches within human popula-
tions. As the genomic revolution has progressed, it has become
increasingly common to search for these “resistance genes”
using genome-wide association studies (GWAS) (Newport
and Finan 2011; Rowell et al. 2012). Loosely speaking, these
studies compare the marker genotypes of individuals infected
with disease and those uninfected and ask which loci predict
an individual’s infection status. The GWAS approach has now
been used to successfully identify a range of candidate genes
thought to be important in resistance to infectious disease
in plants and animals (Chapman and Hill 2012; Khor and
Hibberd 2012; Wang et al. 2012; Zila et al. 2013; Gurung
et al. 2014).

Despite the successes of the GWAS approach in some cases,
it is becoming increasingly recognized that the approach has
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significant limitations. For instance, GWAS are most powerful
when resistance depends on common genetic variants with
relatively large phenotypic effects (Manolio et al. 2009). In
addition, which candidate genes are identified by this method
may depend on the environment in which the study is con-
ducted (Thomas 2010). These limitations apply to GWAS in
general, not just those studies focused on infectious disease,
and are widely recognized. When GWAS are used to under-
stand the genetic basis of resistance to infectious disease, how-
ever, a potentially more important problem arises. Specifically,
the resistance genes identified within the host population may
depend on the genetic composition of the infectious disease
itself (Newport and Finan 2011). This sensitivity of the GWAS
approach to the genetic composition of the infectious disease
becomes acute any time genotype-by-genotype (G X G) inter-
actions exist; in other words, when particular combinations of
host and pathogen genes yield resistance whereas other com-
binations lead to susceptibility. These G X G interactions may
have drastic effects on the results of genetic association studies
and our understanding of disease resistance (Lambrechts
2010), similar to the effects of gene-by-environment interac-
tions. One particularly disconcerting possibility is that rapid
pathogen evolution or host-pathogen coevolution will cause
the host resistance genes that can be identified by GWAS to
fluctuate rapidly over time.

Here we quantitatively explore the performance of GWAS
when resistance to infectious disease involves G X G interac-
tions between host and disease. We begin by presenting a
general mathematical model of an association study to inves-
tigate disease resistance and evaluate the role of G X G inter-
actions for several forms of host—parasite interactions. We then
simulate host—pathogen coevolution to illustrate the extent to
which G X G interactions may vary across time and/or space.
We conclude by reanalyzing published genome-wide associa-
tion data (Bourgeois et al. 2017) of Daphnia magna resistance
to its Pasteuria ramosa pathogen, distinguishing regions of the
genome associated with overall health from those involved in
resistance specific to a particular P. ramosa strain.

Model

We consider a scenario, common in practice, where host re-
sistance is measured as a continuous quantitative trait. This
would be the case, for instance, if host resistance is assessed by
measuring viral load, duration of infection, or damage to host
tissues. Our model assumes that host resistance depends on the
value of a quantitative trait in the host, 2y, relative to the value
of a quantitative trait in the pathogen, zp. Specifically, we as-
sume host susceptibility, S, is given by the following function:

S :f(ZH—Zp). (1)

The function f is sufficiently general to accommodate many
commonly observed resistance mechanisms. For instance, in
the interaction between the snail Biomphalaria glabrata and
its trematode parasites, resistance depends on the relative
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quantities of reactive oxygen molecules in the snail (zy)
and reactive oxygen scavenging molecules produced by the
parasite (zp) (Bayne 2009; Mon et al. 2011). In cases like
these, the function f may take a sigmoid form which we call
the phenotypic-difference model (Figure 1A) (Nuismer et al.
2007; Ashby and Boots 2017):

1

1+ ea(ZH*ZP)' (2)

flzr—2p) =
In contrast, in the interaction between the schistosome par-
asite, Schistosoma mansoni, and its snail host, B. glabrata,
resistance depends on the degree to which the conformation
of defensive FREP molecules produced by the snail (zy)
match the conformation of parasite mucin molecules (zp)
and successfully bind to them (Mitta et al. 2012). In such cases,
the function f may take a Gaussian form which we call a
phenotypic-matching model (Figure 1B) (Kopp and Gavrilets
2006):

Flau—2p) = e =)’ (3)

To study the effects of genetic interactions on susceptibility to
infection, S, we must integrate genetics into our phenotypic
model. For a haploid host and pathogen where zy and zp
depend on ny and np biallelic loci, respectively, we can write
general expressions for these phenotypes as functions of al-
leles present in each species:

ny ny
ZH = bHO + Z bHiXHi + Z bHi,HjXHiXHj
i=1 ij
i#
Ny
+ ) by XeXeXe + - + e
ijk
i#j#k

np np
2p =bpo+ Y bpiXpi + Y bpi piXpiXp;
i=1 ij

i#j
np
+ Z bpi pj prXpiXpiXpk + - - - + €p 4
ij.k
itk

In these expressions, Xy is an indicator variable describing
the allelic state (0 or 1) of an individual of species M at locus i,
b is the phenotype of an individual of species M with all “0”
alleles, and by; is the additive effect of carrying a “1” allele at
locus i in species M. The remaining coefficients (bu; s,
busi mj vk, etc.) describe epistatic interactions among loci. Fi-
nally, €y captures an environmental contribution to the phe-
notype of species M, which is assumed to have mean 0, a
constant variance, and be uncorrelated with an individual’s
phenotype. Substituting Equation 4 into Equation 1 yields a
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Figure 1 Host-parasite interaction models. Susceptibility to infection as a function of the distance between host and pathogen phenotypes, zy — zp, for the
(A) phenotypic-difference and (B) phenotypic-matching model. Red curves show exact functions whereas black curves are the quadratic approximations.

model of host susceptibility as a function of host and patho-
gen genotypes.

Our goal now is to use this genetic model to predict the
sensitivity of GWAS to the genetic composition of the path-
ogen population. We will explore both traditional, single-
species GWAS approaches and a novel approach that takes
genetic information from both host and pathogen into account
(co-GWAS). Our investigation will rely on a pair of comple-
mentary approaches. First, we will develop and analyze an-
alytical approximations that quantify the sensitivity of GWAS
and co-GWAS approaches to changes in pathogen genotype
frequencies. These analytical approximations will rely on
simplified genotype-phenotype maps and will not explicitly
integrate evolution and coevolution. Second, we will develop
and analyze simulations that allow us to explore the conse-
quences of rapid pathogen evolution and coevolution be-
tween the species on the performance of both GWAS and
co-GWAS approaches.

Analytical Approximation

To simplify the genetic model of resistance developed in the
previous section sufficiently for mathematical analysis, we
begin by considering the case where ny = np = 2. In addition,
we assume that the phenotypes of host and pathogen are not
too far from one another, such that the quantity zy — zp is
small relative to the extent of phenotypic specificity (« in
Equations 2 and 3). Under this assumption, Equation 1 can
be approximated by its second order Taylor series expansion.
This allows the genetic model of susceptibility to be simpli-
fied to the following approximate expression:

S~ f(0) +f'(0)[(bro + bm1Xm + buoXu2 + €n)
— (bpo + bp1Xp1 + bpaXpy + €p)]

1
+ Ef "(0)[(bro + be1Xp1 + baoXp2 + €n)
— (bpo 4 bp1Xp1 + bpaXps + €p)]*

+ 0[(ZH—ZP)3], (5)

where primes indicate derivatives with respect to the distance
between host and pathogen phenotypes. With (5) in hand, we
have a model that predicts host resistance as a function of host
and pathogen genotypes. In the following two sections, we will
use (5) to investigate how the genetic composition of the path-
ogen population influences the results of GWAS and co-GWAS.
Extending these models to complete G X G association studies
requires a large number of pathogen loci (np >> 2) and thus may
be computationally prohibitive. For many pathogens, however,
strain type or subtype may be known and capture much of the
relevant genetic variation in the pathogen population. In these
cases, tracking pathogen types can greatly reduce the effective
number of loci, even to np = 2 as in Equation 5. Such simplifi-
cations should allow us to expand beyond two host loci to a
whole host genome (ng > 2), while avoiding the computa-
tional complexity of tracking all possible genetic interactions
between the full host genome and the full parasite genome.

Single-species GWAS

We envision a standard GWAS where susceptibility to infec-
tion has been measured for some number of host individuals,
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each of which has also been genotyped at a large number of
marker loci. To focus our model on the effects of species inter-
actions, we will assume this data accurately provides us with
the genotype of individuals at the two host resistance loci.
Using this data, the goal of the genetic association study is to
partition host susceptibility between these genes relative to
their effects. This can be done by fitting susceptibility with a
linear combination of the genetic indicator variables:

S = Bro + By1XH1 + BuaXu2 + B HaXH1XH2, 6

where the B coefficients can be found using least squares
regression. The biological interpretation of this linear model
is straightforward. The intercept coefficient, By, is the
expected host resistance when both 0 host alleles are present.
The coefficients By; and By, are the inferred additive effects
of the 1 alleles at the first and second loci, respectively, and
Br1 .o captures the epistatic interaction between the two host
1 alleles. Solving for the coefficients in (6) we have (see
Supplemental Material, Mathematica notebook in File S1):

Bro = £(0) +£(0) {BHO - <Bpo +bp1gp1 + bpquz>]
2
1 " 7 7 2 2
+§f (0){ (bHo—bpo) + bp1gp1 + bpogp
+ 2 {(bPlQPl + bPZQPZ)(BHO - BPO)

— bp1bpa(qpigp2 + DP):| }
Bri = f'(0)bg;
1
+3 £"(0) [blz-[i + 2bgi(bro — bpo — qp1bp1 — Qszpz)}

Br1m2 = f"(0)br1bm2, )

for i = {1,2}, where f(0), f'(0), and f” (0) are the resistance
function and its first and second derivative evaluated at O as
in Equation 5, and where BHO = byo + ey and Ep() = bpy + €p.
Importantly, these expressions for the coefficients depend on
the allele frequency at the pathogen loci, gp; and gpy, as well
as the linkage disequilibrium between them, Dp. Note that
the relevant allele frequencies and linkage disequilibrium are
among pathogens to which the host is exposed, which may
not be equivalent to the pathogen population as a whole.
As a result of the dependence of the coefficients in (7) on
the pathogen allele frequencies and linkage disequilibrium,
the allelic effects (B8’s) inferred by a host-only GWAS can be
quite sensitive to the genetic composition of the pathogen
population (Figure 2). Changes in pathogen allele frequency
can alter the magnitude and sign of the inferred effects. From
a practical standpoint, if susceptibility is assayed in two host
populations that are exposed to pathogen populations that
differ greatly in their allele frequencies, one may find a host
allele has a protective effect in one population but increases
risk in the other. Similar to hidden host population structure,
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uncontrolled differences in the pathogen population can
greatly alter the inferences of single-species GWAS.

A second result that can be drawn from Equation 7 is that
when the resistance function is approximately linear, f” (0) = 0,
the inferred additive and epistatic effects, By1, By2, and By po
are independent of the pathogen allele frequencies. For exam-
ple, in contrast to the nonlinear phenotypic-matching model
where the inferred effects vary with pathogen allele frequency,
the inferred effects remain constant in the approximately linear
phenotypic-difference model (Figure 2). A third conclusion from
Equation 7 is that, at least under the assumption that zyg — 2p is
small, the epistatic interaction between the host loci, By 12, is
independent of pathogen genetics. We will explore the conse-
quences of this dependence on the pathogen allele frequencies
for the stability of GWAS-inferred effects across evolutionary
time (See the Host—Parasite Coevolution section below).

In addition to identifying the allelic effects on host resistance,
an important metric of GWAS performance is the proportion of
phenotypic variation explained by the identified causative loci.
Given the dependence of the estimated allelic effects on path-
ogen allele frequencies, we calculated the total phenotypic
variation explained by the host loci across the range of pathogen
allele frequencies (Figure 2, C and D). When the pathogen
population is monomorphic (gp; = qpz = 0 or 1), the host loci
can explain 100% of the genetic variation in the phenotype. If
the pathogen population is polymorphic, however, the host-only
approach may explain as little as 10% of the variation. Partition-
ing the total variation explained into the additive and epistatic
contributions demonstrates that, due to changes in the additive
effect size by, the relative contribution of additive and epistatic
effects also varies with pathogen allele frequency and depends
on the form of the host—parasite interaction.

Two-species co-GWAS

The results derived in the previous section demonstrate that
traditional single-species GWAS may be sensitive to the genetic
composition of the pathogen population at loci involved in
host—pathogen specificity. In this section, we attempt to over-
come this problem by developing an alternative GWAS design
in which both host and pathogen genetics are incorporated. In
contrast to the traditional method where only host genotypes
are recorded, this design requires that both host and pathogen
genotypes are known. As with Equation 6, we now attempt to
fit host resistance as a linear function of the allelic indicator
variables, but we include pathogen indicators as well as in-
teraction terms between host and pathogen loci:

S & Bo + BuiXu1 + Bu2Xu2 + Br1 p2Xm1Xu2 + Bp1Xp1
+ BpoXp2 + Bp1 poXp1Xp2 + By1 p1XH1XP1
+ Bu1,poXm1Xp2 + Bz p1XH2Xp1 + B poX2Xpo.
)
As with Equation 6, the coefficients of this equation have straight-

forward biological interpretations. The intercept, 3, describes the
expected host resistance when all host and pathogen loci have
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Figure 2 Host-only model with resistance dependent on phenotypic differences (A,C) or phenotypic matching (B,D) between hosts and parasites. (A and B) Allelic
effects inferred using the host-only design from Equation 6: B (black), B, and By, (solid red lines), By 4, (dashed red). (C and D) Variation explained by host
additive effects only (solid line), and host additive and epistatic effects (dashed line) as given by the host-only model in (6).

0 alleles. Terms 2, 3, 5, and 6 describe the additive effects of
each individual host and pathogen 1 allele; and terms 4 and
7 describe the epistatic interactions between loci within the host
and pathogen, respectively. The remaining four terms describe
the G X G interactions between pairs of host and pathogen loci.

Bro = £(0) +£(0) (BHo - Bpo) i

Despite the complexity of Equation 8, and hence the
logistical and computational challenges of applying it, the
expressions for each of these coefficients in terms of the host
and pathogen phenotypic effects are simple (see Mathematica
notebook in File S1):

%f" (0) (BHO _BPO> i

Bui = f'(0)by; + %f” (0)bpi [bHi +2 (BHO - Bpo)} fori={1,2}

Br1m2 = f"(0)bu1bma
Bpi =

Bpipz = f"(0)bp1bpa

Bripj =

—F"(0)bibpy fori = {1,2}, j = {1,2}.

=10 = 3 (O b + 2 bo —bro ) | for 1= 11,2}

9
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(C and D) Variation explained by host additive effects only (solid red), host additive and epistatic effects (dashed red), host and pathogen additive and
epistatic effects (dashed blue), and a full host-pathogen model as given in Equation 8.

Comparing the equations in (9) with the coefficients in (7)
reveals an important conclusion: the effect sizes no longer
depend on the pathogen allele frequencies nor the linkage
disequilibrium (Figure 3, A and B). This result suggests that the
two-species, co-GWAS approach is more robust to changes in
the genetic composition of the pathogen population and thus
may be much less sensitive to rapid evolution and spatial
genetic structuring within the pathogen population.

In addition to stabilizing the estimated allelic effects across
pathogen allele frequencies, the total phenotypic variation
explained by the co-GWAS greatly exceeds that of the host-
only GWAS. For the two-locus case explored here, the co-
GWAS approach can explain 100% of the variation regardless of
pathogen allele frequency (Figure 3, C and D). The contribu-
tions of additive, epistatic, and G X G interactions do, however,
vary with pathogen allele frequency. As with the host-only
approach, when the pathogen population is monomorphic
the host effects explain all of the observed phenotypic
variation. In summary, unlike the host-only model, the
effect size coefficients (Equation 9) and the total variation
explained, no longer vary with pathogen allele frequency.
This contrast between the host-only and co-GWAS ap-

784 A. MacPherson, S. P. Otto, and S. L. Nuismer

proaches is particularly relevant any time the composition
of the pathogen population is likely to differ between the
sample used for the association study and the population
in which the resulting inferences are applied. In the fol-
lowing section we explore how temporal changes in the
host and pathogen populations driven by coevolution af-
fects the reproducibility of GWAS over time and, by exten-
sion, space.

Host-Parasite Coevolution

To simulate host—parasite coevolution, we envision a system
where each host comes into contact with a single parasite
each generation. The probability that this contact results in
infection is determined by host susceptibility, S, which is a
function of the host and parasite genotype. Infected hosts
experience a fitness cost &, whereas their infecting parasites
receive a fitness benefit &p. In the absence of infection, both
hosts and parasites have a fitness of 1. Together, these as-
sumptions lead to the following fitness of a host with geno-
type {Xu1,Xn2} that comes into contact with a pathogen with
genotype {Xp1,Xp2} :



Wi =1 = €uS(Xu1, Xu2, Xp1,Xp2); (10)
whereas the pathogen has a fitness of
Wp =1+ &pS(Xu1, Xn2, Xp1,Xp2)- 1n

Given these fitnesses, we simulate allele frequencies and
linkage disequilibrium over time assuming random mating, a
per-locus mutation rate of p, and a recombination rate r (see
Mathematica notebook in File S1). We then use Equations
7 and 9 to calculate the inferred allelic effect sizes by using a
host-only GWAS or co-GWAS for each generation over the
course of coevolution for both the phenotypic-difference
and phenotypic-matching models (Figure 4).

As expected, using the host-only GWAS approach, the
inferred allelic effects can vary over time but only under
the quadratic-shaped, phenotypic-matching model. As noted
above, the estimated effects can even change sign, having
large positive values when sampled in one generation and
large negative values when sampled only a few generations
later. In contrast, the inferred effects remain constant in the
co-GWAS approach regardless of the coevolutionary model. In
terms of the phenotypic variation explained, the host-only
approach explains only a portion of genetically determined
phenotypic variation, whereas the co-GWAS approach can
explain up to 100%. The contribution of different genetic
components to the total variation explained remains approx-
imately constant under the phenotypic-difference model but
varies rapidly as allele frequency changes in the phenotypic-
matching model.

Data availability

The analysis, numerical simulations, and scripts to generate
the original figures were coded in Wolfram Mathematica
11 (File S1) and are available for download from the Dryad
Digital Repository (DOL: https://doi.org/10.5061/dryad.tb25q).

Daphnia-Pasteuria GWAS

Taken together, our analytical model and simulations illus-
trate that incorporating pathogen genetic information into the
search for disease genes can greatly increase the explanatory
power and repeatability of genome scans. Testing these the-
oretical predictions with biological data is a critical step in
evaluating the power of the co-GWAS approach relative to a
traditional single-species GWAS. Analysis of biological data
will include several complications that we ignored above,
including finite sample sizes, arbitrary forms of coevolution-
ary interactions, and complex genomic architectures. Unfor-
tunately, we know of no studies that include full host and
parasite genomic data as well as the outcome of infection
experiments. Further, the computational tools to perform a
co-GWAS in the form of Equation 8 do not yet exist. We can,
however, use recently published data by Bourgeois et al.
(2017) on the susceptibility of D. magna to two P. ramosa
strains, C1 and C19, as a preliminary test of our analytical

predictions. In particular, we compare the results of ge-
nome scans for C1 and C19 susceptibility analyzed sepa-
rately to a single genome scan for susceptibility using all
the data but ignoring pathogen strain type. Our analytical
model predicts that, despite having half the sample size,
the separate genome scans for C1 and C19 resistance
should reveal loci that determine host—parasite specificity,
whereas the full data scan will have lower power to do so.
Note that strain type captures almost all of the relevant
genetic information in this case, given that the parasite is
clonal.

The original data set, provided on Dryad by the authors
(Bourgeois et al. 2017), sampled 97 D. magna clones from
three distinct geographic regions—1 site in Germany, 1 in
Switzerland, and 11 sites in Finland—and provided the se-
quence at 6403 SNPs. Host susceptibility (S: susceptible; R:
resistant) infection by each P. ramosa strain, C1 and C19, was
determined by assessing whether fluorescently labeled
spores attached to the host’s esophagus (Duneau et al.
2011). All four possible combinations of susceptibility and
resistance to the two strains (SS, SR, RS, and RR) were pre-
sent. By performing two separate association studies, one for
each strain, Bourgeois et al. (2017) used this experimental
design to identify genomic regions associated with suscepti-
bility to a specific parasite strain. Following the methods in
the original work, we compare their results to a third genome
scan including all the data, a total of 194 samples, ignoring
the Pasteuria strain type tested. All genome scans were per-
formed using the R package GenAbel, adjusting for popula-
tion structure and repeated measures of the same host
genotype using the Eigenstat method (Aulchenko et al.
2007).

To accurately assess which genomic regions are associated
with susceptibility to C1, C19, and/or “overall” susceptibility
from the complete data set, we used the Daphnia genetic map
constructed by Dukic et al. (2016) to array the scaffolds into
10 linkage groups. To limit the detection of false positives, we
followed an approach analogous to that used in Bourgeois
et al. (2017) where SNPs were only considered significantly
associated with a given susceptibility phenotype if there
existed four SNPs in a 10-cM region with a log-likelihood
score >2 (Figure 5). Multiple genomic regions are signifi-
cantly associated with susceptibility to C1, C19, and to dis-
ease susceptibility in the complete data set without strain
information. Four linkage groups (4, 5, 7, and 9), with a
total of 28 significant SNPs, are associated with C1 sus-
ceptibility. Three linkage groups (1, 4, and 7) with 38 SNPs
are associated with C19 susceptibility, and two linkage
groups (4 and 5) with 35 SNPs are associated with suscep-
tibility in the complete data set. Thus, while the complete
data set has twice as many measures of disease suscepti-
bility, it has less power to detect genetic regions underlying
disease susceptibility because of the lack of parasite
information.

The contrast between the associations for C1 and C19
susceptibility to overall susceptibility in the complete data
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effects all overlap at 0 and hence are not all visible.

set provides additional information about the nature of the
genetic basis to resistance. Genomic regions associated with
the overall resistance regardless of parasite type, particularly
when these regions are also associated with C1 and C19
resistance, provide increased resistance regardless of the
parasite strain tested and are consistent with general host
health and nonspecific immune response. By contrast, sites
that are not associated with overall resistance—despite the
data set having twice the size—but are associated with either
C1 or C19, are good candidates for loci that act in a parasite-
specific manner. Examining Figure 5, we therefore conclude
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that linkage group 4 and possibly 5 are involved in general
health and resistance. In contrast, the regions on the far left
and right of linkage group 7 as well as the regions on linkage
group 1 and 9, which are associated only with C1 or C19
resistance, are indicative of parasite-specific resistance
loci.

These conclusions are in agreement with the hypothesized
model and previous molecular work on Daphnia resistance to
Pasteuria. In particular, resistance to Pasteuria is hypothe-
sized to be controlled by a three-locus, matching-alleles
system. One of these loci (the C locus) determines overall
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Figure 5 GWAS of D. magna susceptibility. Genetic associations of each
SNP with C1 (red @), C19 (blue W), and overall susceptibility in the com-
plete data set without parasite-type information (green A). Hence, each
SNP is represented three times, once for each genome-wide scan. Note
that closely linked SNPs often overlap with one another and are not all
individually visible. Significant SNPs are shown in color while those below
the log-likelihood of two threshold or that are not clustered within a
10-cM region of three other significant SNPs are shown in gray. The
10 linkage groups are delineated by vertical dashed lines.

host susceptibility regardless of pathogen strain and is
thought to reside on linkage group 4 (Bento et al. 2017). In
the absence of protection from the C locus, a second ‘A locus”
is thought to confer resistance to C1 when the dominant
allele is present. The regions detected on linkage groups
7 and 9 in the hosts exposed to C1 may only be candidates
for such C1-specific resistance. Finally, if the C locus and A
locus are both homozygous recessive, a third “B locus” deter-
mines susceptibility to the C19 strain. Such a locus would
likely be hard to detect in a GWAS due to epistasis between
the A, B, and C loci; nevertheless, the regions associated with
only C19 resistance (on linkage groups 1 and 7) would be
candidates for such a B locus. Overall we conclude that sig-
nificant SNPs obtained without accounting for parasite type
may signal general health status. Against this background, a
co-GWAS can help identify genes whose regions are likely
critical to host—parasite specificity and variation in host
susceptibility.

Discussion

Identifying genes that determine a host’s susceptibility to in-
fection is a promising frontier with a wide range of applica-
tions, including agriculture and human health. Yet, as our
mathematical models demonstrate, association studies focus-
ing on identifying genes in a single species without account-
ing for the genetics of the interacting species can drastically
affect our ability to detect disease genes involved in host-
pathogen specificity and limit our ability to account for the
genetic variation in disease susceptibility. When the genetic
composition of the pathogen population varies over time
and/or space, this can further lead to inconsistencies in the
results of genetic association studies. Finally, using previ-

ously published data on D. magna resistance to its Pasteuria
parasite, we illustrate that performing association studies
with and without information about pathogen type can be
used to distinguish genomic regions affecting general vs.
specific resistance to pathogens. Consistent with current
models for Daphania—Pasteuria interactions, we identify one
region associated with general health as well as candidate
regions more directly involved in mediating host—pathogen
specificity.

The mathematical analysis presented above focuses on
host—pathogen interactions of a specific form, given by Equa-
tion 1. Although we have relied on an approximation that
assumes weak phenotype differences, i.e., 2y — 2p is small,
we postulate that the power to detect strain-specific resis-
tance genes will be increased whenever parasite information
is incorporated, even when genes have major effects and
phenotypic differences become large. Similarly, the methods
used above can be extended to include alternative interaction
types such as a “matching-alleles” interaction (see Mathema-
tica notebook in File S1). The expressions for the B8 coeffi-
cients under this interaction model are unruly and difficult
to interpret. Using a numerical approach, we observe that
once again G X G interactions can explain a significant pro-
portion of the variation in susceptibility (Figure S1 available
on Dryad), particularly in highly variable pathogen pop-
ulations. Unlike the phenotypic-difference and pheno-
typic-matching models, however, the co-GWAS approach
(Equation 8) no longer explains all of the variation in sus-
ceptibility and the coefficients vary with pathogen allele
frequency. This is a result of higher order interactions not
included in our model. Hence, although the co-GWAS ap-
proach performs significantly better than a single-species
approach, it will not always capture the full genetic basis
of infection because of the second order approximation used
in Equation 8.

Regardless of the form of the interaction, our analytical
models and simulations illustrate that incorporating pathogen
genetics into the search for disease genes can greatly increase
the explanatory power and repeatability of genome scans.
Unfortunately, several logistical and computational chal-
lenges preclude applying a full two-species GWAS. Most
notably, such a design requires additional genetic data that
is not currently available. More specifically, this design re-
quires genotyping all hosts and the pathogens to which they
are exposed, not just the host—parasite combinations observed
in infected individuals. Future exploration is warranted to
determine whether uninfected individuals can simply be
treated as unknown with respect to pathogen exposure, and
what the consequences of doing so would be for the statis-
tical power of our approach.

The complexity of the two-species design (Equation 8)
relative to that of a single-species design (Equation 6) also
introduces computational challenges. In addition to requiring
larger sample sizes, estimating the effects of the large number
of potential G X G interactions in a full host-genome by
parasite-genome study is computationally unrealistic. In
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addition to the large number of pairwise interactions be-
tween hosts and pathogens, depending on the form of the
interaction, higher order genetic interactions may be neces-
sary to fully explain the variation in susceptibility. These
higher order interactions can be particularly important as
the number of loci underlying susceptibility, ny and np, in-
creases. Although incorporating complete pathogen genetic
data may be unfeasible, there often exists some form of path-
ogen typing, which is largely indicative of the pathogen’s
genotype and may be sufficient for the purposes of a host
genome-wide scan. For example, despite its vast diversity,
Hepatitis C virus has been subdivided into seven genotypes
(Irvine et al. 1993; Murphy et al. 2015), which may capture
much of the relevant variation in host susceptibility.

The Daphnia—Pasteuria data set we analyzed provides a
valuable test case for a two-species co-GWAS. In this study,
we know exactly to which pathogen type individuals have
been exposed, which is generally not known in natural pop-
ulations. This information may have increased the power of
the study to detect loci underlying C1 and C19 susceptibility.
Despite this increased power, we chose to use the arguably
lenient significance threshold of a log-likelihood score >2
plus clustering of four or more SNPs, as in the original article.
Requiring more stringent threshold corrections for multiple
sampling, such as a Bonferroni correction, does not yield any
significant SNPs. Given the correspondence between the
GWAS results and those of functional studies (Bento et al.
2017), however, many of the observed SNPs are arguably not
false positives. Using the log-likelihood of two and clustering
threshold, we observe fewer genomic regions associated with
overall susceptibility when parasite information is not incor-
porated than when conducting GWAS with exposure to ei-
ther C1 or C19, despite the complete data set containing
twice the number of data points. As an alternative to analyz-
ing the complete data set, we could hold the sample size
constant in a combined analysis by randomly choosing
whether the host was exposed to C1 or to C19 for each host
genotype (Figure S2 available on Dryad). Interestingly, this
“mixed” GWAS not only identifies the same regions on link-
age group 4 and 5 but also identifies regions on linkage
groups 1, 9, and 10, as were found in the single pathogen-
type GWAS. The fact that this mixed analysis picks up some of
the potentially parasite-specific loci is likely due to randomly
sampling an excess of C1- or C19-tested clones. Consistent
with this interpretation, exactly which parasite-specific re-
gions are identified varies with the random sample chosen.
Nevertheless, as with the complete data set, a comparison
between C1, C19, and mixed susceptibility provides addi-
tional information about which genes are involved in general
health vs. parasite-specific susceptibility.

The results presented here highlight several important
avenues for future research. First and foremost, designing
genome-wide association methods that allow for G X G in-
teractions is critically important, as is the collection of ge-
notypic data from hosts and pathogens. This could be
approached, for example, by adapting GWAS designs and
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analyses used to detect gene-by-environment interactions
(Winham and Biernacka 2013). Recognizing the importance
of host—pathogen genetic interactions is important for under-
standing the applicability and limitations of single-species
association scans. Developing metrics that capture relevant
variability in host and pathogen populations may facilitate
the application of these results. Finally, incorporating G X G
interactions into our association studies will also enable us
to understand what mathematical models of host—parasite
interactions best predict the genetic interactions observed
in natural systems, allowing for further refinements of the
models.
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