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Abstract: Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests
as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs
(ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is
relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and
body fluids from patients with PD indicate that variations in ncRNAs and their target genes could
trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers
of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and
aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and
evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA)
mechanisms in disease development. In this review, we discuss the current knowledge regarding
the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing
on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and
propose potential target identification and treatment in the early stages of PD.

Keywords: Parkinson’s disease; non-coding RNAs; neuroinflammation; microglia; dopaminergic
neurons

1. Introduction

Non-coding RNAs (ncRNAs) are a cluster of unique transcripts that regulate cell
function through various mechanisms that control gene expression at the transcriptional
and post-transcriptional levels [1–4]. Although they are incapable of being transcribed as
proteins to constitutive cell structures or modulate physiological processes, their specific
regulatory mechanisms, such as competing for endogenous RNAs (ceRNAs), also are
involved in the development of many diseases. It is widely acknowledged that some
ncRNAs are closely associated with neurodegenerative diseases owing to their massive
expression of transcripts and potential signaling pathways in the central nervous system
(CNS), such as the substantia nigra striatum [5–7]. Notwithstanding such discoveries in
ncRNAs, our understanding of the connection between ncRNAs and Parkinson’s disease
(PD) pathogenesis is largely superficial. One possible mechanism is that ncRNAs participate
in neuroinflammation mediated by microglial cells [8–12]. In recent years, many pathogenic
factors have been associated with neurodegeneration in nigrostriatal dopamine neuron
apoptosis or death caused by neuroinflammation [13–16] (Figure 1). These factors are
potential targets that interfere with the disease process of PD [8,17,18]. In this review, we
primarily concentrate on miRNAs, lncRNAs, and circRNAs, as well as the details of their
roles and potential regulatory mechanisms in the pathogenesis of PD.
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roles and potential regulatory mechanisms in the pathogenesis of PD. 

 
Figure 1. The self-propelled deterioration cycle in PD. Microglia are active under the pathogenic 
conditions of PD and release anti-inflammatory cytokines to heal the tissues, saving neurons from 
apoptosis or death. Continuous stimulation of pathogenic factors, on the other hand, increases the 
number of toxic phenotypes of microglia, resulting in the release of a significant number of inflam-
matory cytokines such TNF-, IL-1, iNOS, and IL-6, all of which lead to neuronal damage. Further-
more, damaged or dead DA neurons can directly activate microglia, resulting in an increase in re-
active oxygen species (ROS) and pro-inflammatory cytokines. Microglia activation and DA neuronal 
injury thus form a self-propelled degeneration cycle in PD. 

2. ncRNAs 
2.1. Introduction 

Non-coding (ncRNAs) RNAs are broadly defined as a cluster of RNA transcripts that 
are incompetent to code proteins. In recent years, as the development of sequence and 
structure analysis has accelerated, techniques such as next-generation sequencing have 
deepened our understanding of ncRNAs. Most genomes can be converted into RNAs. 
However, only 2% of that can ultimately be translated into proteins. Thus, RNAs are clas-
sified into two types, coding RNA and ncRNAs; ncRNAs are further divided into struc-
tural and regulatory ncRNAs. From an evolutionary perspective, structural ncRNAs are 
conserved and expressed in almost all species of creatures, including plants, yeast, viral 
and procaryotic organisms, and the housekeeping genes for these creatures are rRNA and 
tRNA. Concurrently, the conservation of regulatory ncRNAs is poorer than that of struc-
tural ncRNAs, including small ncRNAs such as miRNAs, medium-long ncRNAs, and 
long non-coding RNAs (lncRNAs). This observation is consistent with the conclusion that 
ncRNA explains the complexity of multicellular organisms. Although ncRNA was ini-
tially recognized as “dark transcriptome” or “genomic dark matter” [19,20], an increasing 
number of reports has demonstrated that ncRNA exhibits a crucial role in regulating cel-
lular pathways and functions on both genetic and epigenetic levels. For instance, ncRNAs 
can guide DNA synthesis and genome rearrangement and protect genes from exogenous 
nucleic acids [3]. The mechanism of ncRNAs has been a topic of interest in recent years. 
Some underlying mechanisms, such as competing endogenous RNA (ceRNA), have been 
confirmed, but many potential mechanisms are not fully understood. 

Figure 1. The self-propelled deterioration cycle in PD. Microglia are active under the pathogenic
conditions of PD and release anti-inflammatory cytokines to heal the tissues, saving neurons from
apoptosis or death. Continuous stimulation of pathogenic factors, on the other hand, increases
the number of toxic phenotypes of microglia, resulting in the release of a significant number of
inflammatory cytokines such TNF-, IL-1, iNOS, and IL-6, all of which lead to neuronal damage.
Furthermore, damaged or dead DA neurons can directly activate microglia, resulting in an increase
in reactive oxygen species (ROS) and pro-inflammatory cytokines. Microglia activation and DA
neuronal injury thus form a self-propelled degeneration cycle in PD.

2. ncRNAs
2.1. Introduction

Non-coding (ncRNAs) RNAs are broadly defined as a cluster of RNA transcripts that
are incompetent to code proteins. In recent years, as the development of sequence and
structure analysis has accelerated, techniques such as next-generation sequencing have
deepened our understanding of ncRNAs. Most genomes can be converted into RNAs.
However, only 2% of that can ultimately be translated into proteins. Thus, RNAs are
classified into two types, coding RNA and ncRNAs; ncRNAs are further divided into
structural and regulatory ncRNAs. From an evolutionary perspective, structural ncRNAs
are conserved and expressed in almost all species of creatures, including plants, yeast,
viral and procaryotic organisms, and the housekeeping genes for these creatures are rRNA
and tRNA. Concurrently, the conservation of regulatory ncRNAs is poorer than that of
structural ncRNAs, including small ncRNAs such as miRNAs, medium-long ncRNAs,
and long non-coding RNAs (lncRNAs). This observation is consistent with the conclusion
that ncRNA explains the complexity of multicellular organisms. Although ncRNA was
initially recognized as “dark transcriptome” or “genomic dark matter” [19,20], an increasing
number of reports has demonstrated that ncRNA exhibits a crucial role in regulating cellular
pathways and functions on both genetic and epigenetic levels. For instance, ncRNAs can
guide DNA synthesis and genome rearrangement and protect genes from exogenous
nucleic acids [3]. The mechanism of ncRNAs has been a topic of interest in recent years.
Some underlying mechanisms, such as competing endogenous RNA (ceRNA), have been
confirmed, but many potential mechanisms are not fully understood.

2.2. ncRNAs in PD

The brain contains several types of ncRNAs, including miRNA, lncRNA, circRNA,
and piwiRNA, which play essential roles in neuronal growth, differentiation, organization,
operation, and protection of the CNS throughout the life cycle. Based on fundamental exper-
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imental studies on the potential mechanisms, insights from such research offer substantial
proof that ncRNAs can regulate diverse signaling pathways associated with neurodegener-
ation, including cell apoptosis, mitochondrial dysfunction, oxidative stress, altered protein
handling, neuroinflammation, and specific protein aggregation [21–24]. Some lncRNA,
miRNA, and circRNA can also participate at the transcriptional and post-transcriptional
levels through the ceRNA pathway to regulate target proteins and thus affect neurodegen-
eration. Others can directly regulate related proteins, and exosomes secreted by neurons
can control some proteins. Although the molecular mechanism of PD has been thoroughly
researched, the occurrence and promotion mechanisms of PD remain unclear.

3. LncRNA
3.1. Introductionn

Long non-coding RNA (lncRNA) refers to enormous RNA families defined by a
length over 200 nucleotides, limited protein-coding potential, and no detectable open
reading frames, which are necessary for protein-coding potential. Meanwhile, lncRNAs are
considered to serve as a cryptic, but critical, layer in the genetic regulatory code associated
with diverse physiological and pathological responses, dysfunction is closely related to the
occurrence of diseases [25].

3.2. lncRNAs in the Pathogenesis of PD

lncRNAs have received increased research focus, especially regarding neurodegen-
eration in brain function and CNS disorders. Many lncRNAs have been reported to be
abnormally expressed in the cytoplasm in PD. For example, Kraus performed a comprehen-
sive analysis of the expression levels of 90 well-annotated lncRNAs in 30 brain specimens
derived from 20 patients with PD and 10 controls as a preliminary report on the significance
of lncRNAs in PD. They found that the H19 upstream conserved 1 and 2 is significantly
downregulated in PD. Additionally, lincRNA-p21, LINC-PINT, metastasis-associated lung
adenocarcinoma transcript 1 (Malat1), small nucleolar RNA host gene 1 (SNHG1), and tiny
non-coding RNAs are significantly upregulated [26]. Additionally, microarray analysis has
reported that the upregulation of lncRNAs HOTAIRM1 and AC1131056.3 and downregula-
tion of lncRNA XIST may contribute to PD pathogenesis through dopaminergic neuron
injury [23,27]. M’arki et al. predicted that lncRNA BCYRN1 SNPs rs13388259 is associated
with PD because it is located close to the binding site of the transcription factor HNF4A,
which is upregulated in peripheral blood [28].

Additionally, abnormal deposition of α-syn has been implicated in the function of
lncRNAs. lncRNA NEAT1, previously known as an oncogene in malignant tumors, was
found to accelerate α-syn aggregation and simultaneously promote neuronal apoptosis
in MPTP-induced PD mice [29]. Lin et al. found that lncRNA G069488, RP11-142J21.2
and AC009365.4. corresponded to α-syn deposition in α-syn oligomer-induced cells using
microarray analysis [21].

Autophagy plays a significant role in PD pathogenesis. The disharmony of autophagy
is significantly associated with α-syn aggregation. L1CAM, an exosome derived from
neurons, has been reported to correspond to the autophagic-lysosomal pathway, at least
partly participating in autophagy. Zou et al. demonstrated that linc-PIU3F3 exerted a
positive regulatory effect on α-syn in L1CAM [30]. Similarly, the α-syn pathogenetic
aggregation, lncRNA-T199678 has been identified to serve as a sponge of miR-101-3p
to relieve dopaminergic neuron injury [31]. Additionally, Huang et al. and Quan et al.
recruited patients with PD and healthy controls to evaluate the expression of lncRNA MEG3,
which is downregulated in patients with PD. They found that overexpression of MEG3
protected MPP+ SH-SY5Y cells from apoptosis by boosting LRRK2 expression [32,33].

Another pathogenesis in which lncRNAs participate is that of neuroinflammation.
Together, lincRNA-p21 and miR-181/PKC-δ forms a double-negative feedback loop that
facilitates sustained microglial activation and the deterioration of PD [34]. A recent study
showed that overexpression of lncRNAGAS5-activated microglia promoted NLRP3 ex-
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pression and consequently improved neuroinflammation in PD by sponging the miR-223-
3p/NLRP3 signaling pathway [35].

Abnormal expression of lncRNAs in the cytoplasm has been shown to be associated
with apoptosis. Lnc-MKRN2-42:1 in exosomes has been reported to contribute to the
pathogenesis of PD using next-generation sequencing and bioinformatics analysis [36].
LINC-PINT, a cancer-promoting gene, has recently been found to exert a neuroprotective
role in PD [37], and lncRNA GAS5 is expressed differently in the hippocampus region of
young and old mice and is associated with cell proliferation and apoptosis [38]. Addi-
tionally, lncRNA UCA1 and lncRNA HOTAIR promote caspase-3 activation and enhance
apoptosis in the MPP+-induced cell model by respectively upregulating the expression of
SNCA and LRRK2 [39,40] (Table 1) (Figure 2).

Table 1. lncRNA in pathogenesis and neuroinflammation of PD.

Species of lncRNAs
Changes in lncRNAs

Levels in PD’s Brain, CSF
and Serum

Changes in lncRNAs
Levels in Genetic Mouse
Models and Cell Models

for PD

Response of lncRNAs to
PD “Triggers” In Vitro

(Exposure Time
if Relevant)

lncRNAs Target Genes
(Experimentally

Validated)

H19 ↓/PD’s brain [26]

lincRNA-p21 ↑/PD’s brain [26]

LINC-PINT ↑/PD’s brain [26]

Malat1 ↑/PD’s brain [26]

SNHG1 ↑/PD’s brain [26]

HOTAIRM1 ↑/PD’s circulating
leukocytes [23]

↑/apoptosis
↑/neuroinflammation MAPK, Jak-STAT

AC1131056.3 ↑/PD’s circulating
leukocytes [23]

↑/apoptosis
↑/neuroinflammation MAPK, Jak-STAT

XIST ↓/PD’s serum [27] ↓/apoptosis hsa-miR-133b/IGF1R

PART1 ↓/PD’s serum [27] ↓/apoptosis hsa-miR-133b/IGF1R

rs13388259 ↓/PD’s serum [28] ↑/apoptosis HNF4A

NEAT1 ↑/MPTP induced
C57BL/6 mice [29]

↑/α-synuclein
aggregation ↑/apoptosis Bax/Bcl-2 caspase-3

G069488 ↑/α-synuclein
aggregation

RP11-142J21.2 ↑/α-synuclein
aggregation [21]

AC009365.4. ↑/α-synuclein
aggregation [21]

Linc-POU3F3 ↑/L1CAM exosome in PD
plasma [30]

↑/autophagy
↑/α-syn concentrations GCase

MEG3 ↓/PD’s serum [35] ↓/MPP+ treated SH-SY5Y
cells [32,33] ↓/apoptosis LRRK2

HOXA-AS2 ↑/PD‘s PBMCs [41] ↑/neuroinflammation
↑/microglial activation ↓/PGC-1α ↑/PRC2

MALAT1
↑/MPTP-induced PD mice

↑/LPS/ATP-induced
microglia cells [42]

↑/inflammasome
activation

↑/reactive oxygen species
(ROS)

↓/Nrf2

RMST ↑/brain SN of PD rats ↑/oxidative stress
↑/apoptosis ↑/TLR/NF-Kb

Lnc-MKRN2-42:1 ↑/PD’s serum [36]
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Table 1. Cont.

Species of lncRNAs
Changes in lncRNAs

Levels in PD’s Brain, CSF
and Serum

Changes in lncRNAs
Levels in Genetic Mouse
Models and Cell Models

for PD

Response of lncRNAs to
PD “Triggers” In Vitro

(Exposure Time
if Relevant)

lncRNAs Target Genes
(Experimentally

Validated)

LINC-PINT ↑/PD’s serum [37] ↓/cellular survival
↑/oxidative stress

UCA1
↑/PD mice brain
↑/MPP+-induced

SH-SY5Y cells [39,40]

↑/caspase-3 activation
↑/apoptosis ↑/SNCA

HOTAIR
↑/PD mice brain
↑/MPP+-induced
SH-SY5Y cells [41]

↑/caspase-3 activation
↑/apoptosis ↑/LRRK2

GAS5 ↑/old mouse brain [38] ↓/cell cycle progression
↑/apoptosis
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3.3. lncRNAs in the Neuroinflammation of PD

The remaining abnormally labeled lncRNAs have been demonstrated to mediate in-
flammatory responses in other diseases, but they seem to be under investigation in the
inflammatory pathogenesis of PD. SNHG1 promotes neuroinflammation in the pathogene-
sis of PD by modulating the miR-7/inflammasome pyrin domain-containing 3 (NLRP3)
pathway. Downregulation of SNHG1 suppresses the activation of microglia and NLRP3
inflammasome, as well as DA neuron loss in the midbrain substantia nigra, pars compacta
(SNpc) in MPTP-induced PD mice [43]. Additionally, Wang et al. Found that SNHG1
facilitates neuronal injury by modulating miR-181a-5p/CXCL12, miR-125B-5p/MAPK1,
miR-216A-3P/Bcl-2, miR-221/222/p27/mTOR, miR-15b-5p/GSK3β, and the miR-153-
3p/PTEN/AKT/mTOR axis in neuroblastoma cells [22,44–49]. HOXA-AS2 was consider-
ably upregulated in peripheral blood mononuclear cells of patients with PD and showed
a reversible regulatory relationship with PGC-1α expression. HOXA-AS2 promotes neu-
roinflammation by accelerating the conversion of microglia to an anti-inflammatory M2
phenotype [41].
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Moreover, the lncRNA HOXA11-AS was overexpressed in an animal model of PD:
MPTP (+)-induced NLRP3 inflammatory expression and LPS-induced microglial activa-
tion in a PD cell model was enhanced by HOXA11-AS and FSTL1 upregulation and/or
miR-124-3p knockdown [50]. Moreover, activating the inflammasome and producing ROS
are important mechanisms by which MALAT1 is involved in the pathogenesis of PD by
restraining Nrf2 expression in both microglial cells and mouse models [42]. Inhibition
of lncRNA RMST mitigated oxidative stress and neuronal apoptosis, augmented the ex-
pression of TH and SYN, and induced neuronal impairment through the TLR/NF-κB
signaling pathway [51]. miR-625/TRPM2 is another neuroinflammation-related signal-
ing pathway that promotes oxidative stress via lnc-p21, leading to PD development [52]
(Table 1) (Figure 2).

3.4. Circulating lncRNA in the Pathogenesis and Neuroinflammation of PD

Circulating lncRNAs have been recently reported to be dysregulated in the circulation
of patients with PD, which indicates that the expression level of circulating lncRNAs
might be considered a biomarker for PD. Kasra et al. profiled lncRNA expression in the
peripheral blood of patients with PD and healthy controls using qRT-PCR. HULC, PVT1,
MEG3, SPRY4-IT1, LINC-ROR, and DSCAM-AS1 lncRNA expression levels were measured.
HULC and PVTA levels were lower in patients with PD, while MEG3, SPRY4-IT1, LINC-
ROR, and DSCAM-AS1 levels were higher. HULC and PVTA have been shown to regulate
apoptosis [53–55]. These results indicate the potential role of circulating lncRNAs as
treatment markers for PD. However, none of these lncRNA expressions were related to
patient age, disease stage, Mini-Mental State Examination scores, or Unified Parkinson’s
Disease Rating Scale scores [56].

Previous studies have shown that nuclear factor-κB (NF-kB) regulates the activity of
inflammatory intermediates during inflammation and oxidative stress, which contribute to
the neurodegenerative process in PD [57,58]. Thus, to appraise their possible application
as disease markers, Ghafouri-Fard et al. identified circulating lncRNAs involved in the
modulation of NF-kB signaling in the circulation of patients with PD versus healthy individ-
uals, including CEBPA, ATG5, PACER, DILC, NKILA, ADINR, DICER1-AS1, HNF1A-AS1,
CHAST, and H19. PACER and HNFA1-AS were lower, while DILC, CEBPA, ATG5, and
H19 were higher. CEBPA, DILC, and ATG5 were determined to be the most appropriate
markers. These results provide evidence for the participation of NF-κB-related lncRNAs in
the pathogenesis of PD [59].

4. microRNA (miRNA)
4.1. Introduction

miRNAs are small ncRNA molecules containing approximately 22 nucleotides that
are initiated from pre-miRNAs transcribed by RNA pol II [60–63] (Figure 2). It could play a
complex role in regulating transcription of multiple genes via combining with Argonaut
and other proteins into the RNA-Silencing Complex. This complex binds to mRNA and
promotes post-transcriptional regulation by promoting the degradation of mRNA and
subsequently inhibiting the expression of target genes [64,65]. miRNAs are well-known
for cancer pathogenesis. However, many miRNAs are also pivotal regulators of normal
CNS function by regulating neuronal proliferation and differentiation [66,67]. Additionally,
the altered expression of miRNAs could contribute to neurodegeneration in neurological
disease [68], including Alzheimer’s disease [69], amyotrophic lateral sclerosis [70], and
frontotemporal dementia [71]. Therefore, identifying the impact of miRNA on PD is
necessary (Figure 3).
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Figure 3. The targeted regulation mechanism of miRNA and competitive endogenous RNAs (ceR-
NAs). (A) The regulation function of miRNAs is to target mRNA molecules with complementary
sequences. As a result, the genes can be silenced by cleavage of the mRNA strand. (B) LncRNA and
circRNA combine with miRNA so that mRNAs are protected from degradation and consequently
translate to proteins.

4.2. microRNA in the Pathogenesis of PD

The abnormal expression of miRNAs is attributable to the development and progres-
sion of numerous diseases. Similarly, in patients with PD, the serum and striatal brain
tissue and DA neurons from the SNpc demonstrated dysregulation of miRNA expression.
On the one hand, some miRNAs were downregulated in PD; for instance, miR-153 and
miR-223 were observably decreased in the saliva, serum, and brain of patients with PD
compared to normal controls [72]. An exciting result showed that the expression levels of
miR-132-3p, miR-146-5p, and miR-29b were significantly decreased in the serum of patients
with severe PD compared to those in regular patients with PD and the healthy group,
which indicated that the levels of these miRNAs were related to memory performance and
cognition [73,74]. In addition, the levels of other miRs were improved in PD, and the level
of miR-132 was elevated in the PD serum compared to that in healthy controls [75]. One
investigation found that miR-486-5P expression was significantly enriched in colonic biop-
sies from patients with PD compared to that in the control group, offering a potential gene
treatment target for PD [76]. Besides miR-132 and miR-486-5P, miR-105-5p and miR-195
are similarly expressed at higher levels in idiopathic PD than in healthy groups [65,77].
miR-29c expression is notably increased in Turkish patients with PD [78]. Dysregulated
miRNA expression profiles indicate potential therapeutic targets for PD. In addition to
dysregulated miRNAs in the cytoplasm, an exploratory study showed that miR-34a-5p
expression was markedly upregulated in small extracellular vesicles from patients with PD
compared to that in normal subjects [79].

As miRNA dysregulation may participate in PD pathogenesis, we conclude the specific
mechanism of miRNAs in reference to PD. Excessive activation leads to autophagy failure,
thereby increasing the aggregation of α-syn. MiR-599 was found to serve as a negative
regulator of LRRK2, and when microRNA-599 is expressed, LERK2 is highly expressed in
cell and animal models [80]. In addition, MiR-155-5p has been reported to be expressed
heavily in patients with PD [81] and modulating α-synuclein-triggered inflammatory
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response in a PD mice model [82]. This result was also found in PD mice treated with
RA, a neuroprotective substance in PD [83]. Meanwhile, miR-153/miR-223 was shown
to be downregulated by overexpression of HO-1 in stressed astroglia to promote α-syn
production and toxicity [84]. In addition, upregulation of miR-204-5p also contributes
to the increase in α-syn and other neurotoxicity protein aggregation via inhibition of the
DYRK1A-mediated ER stress and apoptosis cascade [85].

Research findings have also shown that competitive endogenous RNAs (ceRNAs)
networks regulate mitochondrial dysfunction and lead to loss of dopaminergic neurons,
inducing loss of dopaminergic neurons. Failure to eliminate damaged mitochondria leads
to the accumulation of dysfunctional mitochondria and DA neuronal impairment [24,86],
which was verified to partially correspond to the increased amount of miR-146a bound to
NF-kβ via repression of PRKN expression [87]. Several miRNAs have been demonstrated
to target PINK1S, which is vital for mitochondrial autophagy, such as miR-27a and miR-
27b. Kim et al. found that miR-27a/27b can bind to the 3′ untranslated region (3′UTR)
of PINK1 mRNA to inhibit PINK1 function and mitophagy. Predominantly, miRNA-144
induces microglial autophagy and inflammation following intracerebral hemorrhage [88].
In contrast, miR-144 and its target gene β-amyloid precursor protein regulate MPTP-
induced mitochondrial dysfunction [89].

Injured autophagy in dopamine neurons leads to α-syn in PD. miR-128 was previously
predicted to be linked to TFEB, a critical gene involved in autophagy and lysosome phago-
cytosis, and its overexpression could rescue α-syn toxicity in midbrain neurons [90]. In
brain autopsies of patients with PD, the TFEB content was highly decreased in the midbrain.
The downregulation of miR-29c-3p has been reported in the SNpc DA neurons of PD mice
and may be accompanied by autophagy by inhibiting TET2 [91]. Lack of IFNB/interferon-β
blocked neuronal autophagy associated with impaired autophagosome degradation, lead-
ing to the accumulation of various neurotoxic aggregation-prone proteins, and an exciting
study observed that miR-1 could play a pivotal role in the loss of IFNB-induced impaired
autophagy by targeting TBC1D15/RAB7 [92,93]. By inhibiting the expression of XBP1, miR-
326 overexpression enhances autophagy of neurons and suppresses iNOS immune-positive
cells through the JNK signaling pathway in in vitro and in vivo PD models [94]. In addition
to inhibiting autophagy, miR-326 suppresses apoptosis and improves the proliferation of
dopaminergic neurons by repressing the MAPK/KLK7 signaling pathway [95].

Apoptosis is the terminal outcome of dopaminergic neurons in patients with PD. The
mechanisms described above ultimately contribute to apoptosis. MiR-380-3p suppressed
cell proliferation and aggravates PQ-induced PD, and the potential tool is that miR-380-3p
block the translation of Sp3 mRNA [96]. The upregulation of miR-15b-5p represses the
rate of apoptosis and caspase-3 activity in the MPP (+)-induced SH-SY5Y cell mode l
and the MPTP-induced mouse model by downregulating the Akt3-mediated GSK-3β/β-
catenin signaling pathway [97]. miR-185 was downregulated in a PD model, and its
restoration mitigated oxidative stress by targeting IGF1 to invoke the PI3K/AKT signaling
pathway [98].

In addition to experimental validation, several studies have conducted computational
prediction to propose evidence of the participation of miRNAs in PD pathogenesis; ISG15,
RRM2, FBXW11, FOXM1, and the miR-181 family were found to be aberrantly expressed in
PD [99]. Hsa-miR-626 was significantly decreased in the cerebrospinal fluid of patients with
PD [100]. Another microarray analysis showed that hsa-miR-19b-3p levels were higher than
healthy [101]. Additionally, miR-7-5p, miR-331-5p, miR-145-5p, hsa-miR-335-5p/hsa-miR-
3613-3p, hsa-miR-335-5p/hsa-miR-6865-3p, and miR-335-5p/miR-3613-3p/miR-6865-3p
were verified to have diagnostic value for PD using other microarray analyses [102,103].
Although many miRNAs have been found to increase or decrease in patients with PD, the
specific mechanism of action has not yet been elucidated. However, some studies have
identified new potential therapeutic targets [104] (Table 2) (Figure 4).
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Table 2. microRNAs in PD pathogenesis.

Species of miRNAs
Changes in miRNA

Levels in PD’s Brain, CSF
and Serum

Changes in miRNA
Levels in Genetic Mouse
Models and Cell Models

for PD

Response of miRNA to
PD “Triggers” In Vitro

(Exposure Time
if Relevant)

miRNA Target Genes
(Experimentally

Validated)

miR-1 ↓/CSF ↓/autophagy ↑/TBC-7 ↑/TBC1D15
[92,93]

miR-1-3p FAIM [105]

miR-15b-5p ↓/SH-SY5Y cells ↑/apoptosis
↑/Akt3

↑/CSK-33β/β-catenin
[97]

miR-26a ↓/PBMCs ↓/C57 BL/6 ↑/α-syn ↑/DAPK1 [106]

miR-27a/27b ↑/midbrain ↑/mitochondrial
fragmentation ↑/ROS

↓/PARKIN
↓/PINK1 [6]

miR-29c ↑/serum [78]

miR-29c-3p ↓/DA neuron ↓/autophagy ↑/TET2

miR-29b ↓/serum [74,82]

miR-34a-5p ↑/EVs [79] ↑/SH-SY5Y cells ↑/ER stress ↓/IRE1α [107]

miR-103 ↓/MN9D cells ↓/C57BL/6
mice

↑/LC3-II
↑/p62 ↑/CDK5R1/CDK5 [108]

miR-105-5p ↑/serum [77]

miR-107 ↓/MN9D cells ↓/C57BL/6
mice

↑/LC3-II
↑/p62 ↑/CDK5R1/CDK5 [108]

miR-123-3P ↓/hippocampal tissue ↓ ↑/apoptosis ↑/Axin1
↓/Wnt/β-catenin [109]

miR-124 ↓/brain ↓/C57BL/6 mice ↑/cytokines ↑/apoptosis
↓/autophagy

↑/MEKK3/NF-κB [8]
↑/62/p38 [110]

↑/Hedgehog [111]

miR-125b-5p

miR-128 ↑/brain ↑/DA neuron ↓/autophagy ↑/α-syn ↓/TFEB [90]

miR-132-3p ↓, ↑/serum [73–75]

miR-133a ↓/PC-12 cells ↑/apoptosis ↑/RAC1 [112]

miR-133b FAIM [105]

miR-137 ↑/plasma ↑/ROS ↓/OXR1 [113]

miR-138-5p ↑/SH-SY5Y cells ↑/TNF-α ↑/IL-1β ↑/ROS ↓/SIRT1 [114]

miR-144 ↓/brain
↓/autophagy

↑/mitochondrial
fragmentation

↑/mTOR [115]
↑/β-amyloid precursor

protein [89]

miR-146a ↑/SH-SY5Y cells ↑/mitochondrial
fragmentation ↑/ROS ↓/PARKIN [87]

miR-146-5p ↓/serum [73,74]

miR-153
↓/brain

↓/serum [72,84]
↓/saliva

↑/α-syn ↑/HO-1 [84]

miR-155 ↑/C57BL/6 mice ↑/α-syn
↑/iNOS ↑/MHCII [80]

miR-155-5p ↑/PBMCs [107] ↑/α-syn
↑/iNOS [81]

miR-181a ↓/serum ↓/SK-N-SH ↑/apoptosis
↓/autophagy ↑/p38MAPK/JNK [116]
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Table 2. Cont.

Species of miRNAs
Changes in miRNA

Levels in PD’s Brain, CSF
and Serum

Changes in miRNA
Levels in Genetic Mouse
Models and Cell Models

for PD

Response of miRNA to
PD “Triggers” In Vitro

(Exposure Time
if Relevant)

miRNA Target Genes
(Experimentally

Validated)

miR-183 ↑/brain ↑/substantia nigra
neurons ↑/apoptosis ↓/OSMR [117]

miR-185 ↓ ↑/ROS ↓/PI3K/AKT
↓/IGF1 [98]

miR-195 ↑/serum ↑/neuroinflammation ↑/ROCK1 [78,118]

miR-200a-3p ↓/MPP-ADEXx ↑/apoptosis ↑/MKK4 [119]

miR-204-5P ↑/brain ↑/α-syn [104] ↑/DYRK1A [85]

miR-206 FAIM [105]

miR-216 ↓/apoptosis ↓/Bax [120]

miR-217 ↑/SH-SY5Y
↑/TNF-α
↑/IL-1β
↑/ROS

↓/SIRT1 [84]

miR-218-5p ↓/brain ↓/brain SN of PD rats
↑/apoptosis

↑/ROS
↑/NF-Kb

↑/LASP1 [121]

miR-223 ↓/brain [72]
↓/serum↓/saliva

miR-291 ↓/ROCK2 [122]

miR-326 ↓/brain

↓/autophagy
↑/iNOS

↑/apoptosis
↑/α-syn

↑/XBP1 [94,95]
↑/MAPK/KLK7

miR-331-5p ↓/CSF [103]

miR-342-3p ↑/C57BL/6 mice ↑/apoptosis ↓/PAK1
↓/Wnt [123]

miR-380-3p ↑/N2a ↑/apoptosis ↓/Sp3 [96]

miR-486-5p ↑/colonic biopsies [76]

miR-599 ↓/brain ↑/LERK2 [80]

hsa-miR-626 ↓/CSF [100]

hsa-miR-19b-3p ↑/CSF [124]

4.3. microRNA in Neuroinflammation of PD

Recent research has shown that miRNA can directly regulate the activation of microglia
and affect neuroinflammation development in PD. Some miRNAs are specifically expressed
in microglia (e.g., miR-125b-5p, miR-342-3p, and miR-99a) [125]. Postmortem analysis of
patients with PD and healthy subjects showed that miRNAs were negatively correlated
with cytokines. The downregulation of miR-218, miR-124, and miR-144 is related to PD
through the activation of the NF-κB signaling pathway [126]. Our previous study showed
that miR-124 can inhibit neuroinflammation during the development of PD by regulating
the mitogen-activated protein kinase kinase kinase (MEKK3)/NF-κB signaling pathways.
Overexpression of miR-124 or knockdown of MEKK3 could prevent neuronal death and
apoptosis following microglial activation in the microglial culture supernatant transfer
model or PD mouse model [8]. We also found that miR-124 suppressed the secretion of
pro-inflammatory mediators by targeting 62/p38 expression and promoting autophagy in
the inflammatory pathogenesis of PD [110]. Increased miR-124 expression can suppress
neuroinflammation and autophagy in PD development by inhibiting the Hedgehog signal-
ing pathway [111]. MiR-155 regulates alpha-synuclein-induced inflammatory responses in
PD models. miR-155 likely lies upstream of the primary histocompatibility complex class II
(MHC II) antigen presentation because knocking out miR-155 can prevent the induction
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of MHC II expression in PD [82]. The change in TNF-α expression precedes the change
in IL-1β, IL-6, iNOS, and COX-2 expression, and the downregulation of miR-7116-5p in
microglia MPP+ sensitizes TNF-α production to induce DA neuron damage in PD [127].
MiR-7 targets nod-like receptor protein three inflammasomes to modulate neuroinflamma-
tion and protect DA neurons against degeneration in the pathogenesis of PD [128]. CDC42,
a candidate gene for PD involved in neuronal death, has been identified as a potential
target for miRNAs 29a-3p and 103a-3p, while Rho-associated coil-containing protein kinase
(ROCK)/CDC42-mediated microglial motility and glimpse formation leads to phagocy-
tosis of degenerating DA neurons in vivo [129]. MiR-135b upregulates cell proliferation,
apoptosis, and production of inflammatory cytokines such as TNF-α and IL-1β in MPP+-
intoxicated SH-SY5Y cells by directly targeting glycogen synthase kinase-3β (GSK3β) [130].
Increased miR-129 levels prevent inflammation-induced neuronal and blood–spinal cord
barrier (BCSB) damage by inhibiting high-mobility group box-1 (HMGB1) and TLR3-related
cytokines, thereby preventing ischemia-reperfusion (IR) [131]. By targeting AKT3, miR-150
suppresses the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and inhibits
the neuroinflammatory responses of cells treated with LPS [132,133]. miR-217/miR-138-5p
downregulation evokes inhibition of ROS and TNF-α release, lactate dehydrogenase (LDH)
activity, and cell apoptosis [134]. MiR-375 has been shown to be observably downregulated
in PD [135]. Overexpression of miR-375 was verified to ameliorate abnormal behavior
and the loss of dopaminergic neurons and abate oxidative stress and release of TNF-α,
IL-6, and other neuroinflammation factors via inhibition of SP1, a transcriptional factor
that lowers expression, indicating favorable neuronal survival [136]. Downregulation of
miR-21 promotes the release of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and
ROS production by negatively modulating the expression of Bcl-2 [137]. Additionally,
miR-3473b modulates the secretion of TNF-α, IL-β, and other inflammatory factors by
targeting TREM2/ULK1 expression to affect autophagy’s function in neuroinflammation
in PD [138].
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In the past few years, the mechanism of miRNA and microglial activation has been
further revealed, and these miRNAs also play a critical role in the pathogenesis of PD.
For instance, inhibition of miR-155 modulates endotoxin tolerance by upregulating sup-
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pressor of cytokine signaling-1 in microglia. Notably, the expression of miR-155 can be
modified by levodopa treatment; in fact, a downregulation of miR-155 with the highest
dosage is observed in patients with PD [81,139]. Moreover, knockdown of miR-146a can
suppress the activation of microglia in mice, and analysis of miRNA expression shows
that miR-146a-5p expression is downregulated in patients with PD compared to that in
HCs [81,140]. Accordingly, miR-7 alleviates the secondary inflammatory response of mi-
croglia caused by cerebral hemorrhage by inhibiting toll-like receptor 4 (TLR4) expression,
while facilitating the degradation of α-syn and its aggregates by promoting autophagy
to protect against DA neuronal loss in vivo [141–143]. Moreover, microRNA-330 sponges
could suppress LPS-induced polarization of microglia in a chronic neuroinflammatory
model, prospectively by negatively modulating NF-κB activity and inflammatory cytokines
such as iNOS by targeting SHIP1 in microglia [144]. MiR-let-7a expression was found to
be decreased in a PD mouse model, and its overexpression negatively regulated α-Syn-
induced BV-2 microglial cell activation and the release of pro-inflammatory factors by
inhibiting STAT3 expression [145]. miR-155-5p reinforced the microglial activation and
inflammatory factors release, enhanced oxidative stress and cell apoptosis, as well as al-
leviating the motivation of PD mice through targeting SOCS1 and Nrf2 [125]. Another
anti-inflammatory component, Triptolide, was also verified to attenuate the inflammatory
impairment via miR155-5p/SHIP1 pathway [146]. Interestingly, treatment of patients with
PD with different medications (dopamine receptor agonists: pramipexole at a dosage of
1.5 mg/day or piribedil at a dosage of 150 mg/day, L-dopa at a dosage of 150–200 mg/day,
and amantadine at a dosage of 300 mg/day) significantly increased the levels of miR-7,
miR-9-5p, miR-9-3p, miR-129, and miR-132 [147]. Additionally, miR-19b may act as a poten-
tial biomarker for levodopa therapy by modulating ubiquitin-mediated proteolysis [148].
The miRNAs that have been shown to regulate downstream genes in PD inflammation are
summarized in Table 3 and Figure 5.

Table 3. microRNAs in PD neuroinflammation.

Species of miRNAs
Changes in miRNA

Levels in PD’s Brain, CSF
and Serum

Changes in miRNA
Levels in Genetic Mouse
Models and Cell Models

for PD

Response of miRNA to
PD “Triggers” In Vitro

(Exposure Time
if Relevant)

miRNA Target Genes
(Experimentally

Validated)

miR-7 ↓/PD’s serum [128]
↓/MPTP/p-treated

mice↓/A53T tg/tg mice
[128]

↓/IL-1β↓/α-syn
aggregation [142]
↑/autophagy [142]

↓/NLRP3 [148]
↓/TLR4 [141]

miR-let-7a ↓/C57BL/6 mice
↓/LPS-exposed BV2 cells

↓/microglia activation
↓/TNF-a, IL-6, IL-1b, and

IL-12
↓/STAT3 [145]

miR-21 ↑/MPP(+) treated
MES23.5 cells [137]

↑/iNOS ↑/IL-1β, IL-6 and
TNF-α ↑/apoptosis ↓/Bcl-2

miR-29a-3p ↑/microglial motility
↑/phagocytosis ↑/ROCK/CDC42 [129]

miR-30a-5p ↓/microglial [149] ↓/TNF-α, IL-1β and IL-10 ↓/Neurod 1
↓/MAPK/ERK

miR-93 ↓/LPS-exposed BV2 cells
[150]

↓/microglial activation
↓/iNOS, IL-6 and TNF-α ↓/STAT3

miR-99a ↑/C57BL6 mice microglial
[125]

miR-103a-3p ↑/microglial motility
↑/phagocytosis ↑/ROCK/CDC42 [129]

miR-181 ↓/BV2 cells [34] ↓/iNOS, NO and ROS
↓/microglial motility ↑/PKC-δ
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Table 3. Cont.

Species of miRNAs
Changes in miRNA

Levels in PD’s Brain, CSF
and Serum

Changes in miRNA
Levels in Genetic Mouse
Models and Cell Models

for PD

Response of miRNA to
PD “Triggers” In Vitro

(Exposure Time
if Relevant)

miRNA Target Genes
(Experimentally

Validated)

miR-124 ↓/PD’s brain [8] ↓/BV2 cells [8]

↓/neuroinflammation
[111]↓/neuronal death

[111]↓/apoptosis [8]
↓/TNF-α, iNOS, and IL-1b
[110] ↑,↓/autophagy [110]

↓/MEKK3/NF-κB [8]
↓/p62/p-38 [129]
↓/Hedgehog [130]

miR-125b-5p ↑/C57BL6 mice microglial
[125]

miR-128 ↑/A9,A10 DA neurons
[90,151] ↑/α-syn aggregation ↓/p38 ↓/TFEB

miR-129-5p ↓/C57BL6 mice [152]
↓/inflammation↓/blood–

spinal cord barrier
(BCSB)

↓/HMGB1 ↓/TLR3

miR-135b ↓/SH-SY5Y cells [128]
↑/TNF-α, IL-1β

↑/apoptosis ↓/pyroptosis
[153]

↑/GSK-3β ↓/FoxO1 [153]
↓/TXNIP, NLRP3,

Caspase-1 [153]

miR-138-5p ↑/MPP(+) induced
SH-SY5Y cells [134]

↑/iNOS
↑/IL-1β and TNF-α ↓/SIRT1

miR-144 ↓/PD’s brain ↑/NF-κB [126]

miR-146a ↑/PD’s PBMCs [81,140] ↑/microglial activation

miR-150 ↓/PD‘s serum ↓/BV2 cells [154] ↓/IL-1β, IL-6 and TNF-α
[154,155] ↓/AKT3

miR-155 ↑/PD’s PBMCs [81] ↑/C57BL6 mice [82] ↑/iNOS [82] ↑/microglial
activation ↑/MHCII ↓/SOCS1

miR-155-5p ↑/PD’s PBMCs [81] ↑/C57BL6 mice [124]

↑/microglial
activation↑/oxidative

stress
↑/apoptosis

↑/TNF-α and IL-1β

↓/SOCS1
↓/Nrf2

miR-188-3p ↓/PD’s serum ↓/pyroptosis [156]
↓/autophagy

↓/CDK50
↓/NLRP3

miR-190 ↓/LPS-induced BV2 cells
[157]

↓/iNOS, IL-6 and TGF-β
↑/IL-10 ↓/NLRP3

miR-195 ↓/LPS-induced BV2 cells
[118]

↓/IL-6 and TNF-α
↑/IL-4 and IL-10 ↓/ROCK1

miR-217 ↑/MPP(+) induced
SH-SY5Y cells [134]

↑/iNOS
↑/IL-1β and TNF-α ↓/SIRT1

miR-218 ↓/PD’s brain ↑/NF-κB [147]

miR-221

↑/CCI-induced rat model
[158]

↓/6-OHDA treated PC12
pheochromocytoma cells

[159]

↑/TNF-α,IL-1β, and IL-6
↓/apoptosis

↓/SOCS1
↑/NF-κB

↑/p38 MAPK
↓/PTEN

miR-330 ↓/LPS-induced BV2 cells
[144]

↓/microglial polarization
↓/iNOS

↓/NF-κB ↑/SHIP1 and
Arg1

miR-342-3p ↑/C57BL6 mice microglial
[131]

miR-375 ↓/6-OHDA treated Wistar
rats substantia nigra [136]

↓/TNF-α, IL-6 and IL-1β
↓/SOD and GSH-Px

↑/MDA
↓/SP1

miR-3473b ↑/LPS treated BV2 cells
[138] ↑/C57/BL6 mice

↑/microglial motility
↑/autophagy ↓/TREM2/ULK1

miR-7116-5p ↓/C57BL6 mice microglia
[127]

↓/IL-1β, IL-6,TNF-α and
iNOS
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4.4. ceRNA in the Pathogenesis and Neuroinflammation of PD

ceRNA has been widely associated with the pathogenesis of PD and neuroinflam-
mation in PD. The lncRNA PLK2 has been found to facilitate a-syn aggregation-induced
autophagy by sponging the miR-126/PLK2 signaling pathway [160]. Additionally, the
lncRNA SNHG, considered a pivotal regulator in various cancers, is also associated with
neurodegenerative diseases. SNHG1 promotes the aggregation of α-syn via the R-15b-
5/SIAH1 axis [40]. Another signaling molecule, SNHG14, was verified to alleviate dopamin-
ergic neuron injury and suppress α-syn aggregation via a sponge of miR-133b [161].

ceRNAs are crucial regulators of autophagy dysfunction in PD. As mentioned above,
NEAT1 is attributable to autophagy in PD [162], and miR-34-5p/SYT1 has been demon-
strated to serve as a sponge lncRNA NEAT1 and influence autophagy and apoptosis [163].
Moreover, the HOTAIR lncRNA could aggravate dopaminergic neuron autophagy by
modulating the miR-221-3P/NPTX2, miR-874-5p/ATG10, and miR-126-5p/RAB3IP axis
both in vitro and in vivo [164–166]. With miR-125-5p sponged, lncRNA BDNF-AS negative
repression is likely to enhance cell proliferation as well as restrain autophagy and apoptosis
both in vivo and in vitro [167].

Accumulating evidence indicates that ceRNAs are another inflammatory mediator
network that activates inflammasomes during PD pathogenesis and induces microgliosis.
Boros et al. and Simchovitz et al. detected the expression level of NEAT1, and the outcome
showed an elevated level of NEAT1 in the peripheral blood cells and substantia nigra of
patients with PD [168,169]. NEAT1 also exhibited a negative regulatory effect on neuron
viability, activating the inflammatory response and oxidative stress by decreasing the ex-
pression of miR-1277-5P and consequently improving ARHGAP26 presentation [170]. The
exhaustion of lncRNA NEAT1 reduced the release of TNF-α, IL-1β, and other neuroin-
flammatory cytokines and increased cell viability by targeting miR-124-3p and modulating
PDE4B [171]. Wang et al. confirmed that miR-519a-3p/SP1 is another pathway regulated
by NEAT1 [172]. It was discovered that NEAT1 was increasingly expressed in PD mouse
and cell models, targeting the miR-212-3p/AXIN1, miR-212-5p/RAB3IP, miR-124/KLF4,
and miR-374c-5p axis to suppress viability and promote the release of IL-1β, IL-6, and
other inflammation factors [173–176], similarly participating in neuroinflammation, NEAT1



Pharmaceuticals 2022, 15, 811 15 of 33

serves as a stimulative role of α-syn-induced activation of the NLRP3 inflammasome by
targeting miR-1301-3p/GJB1 [177]. In addition to numerous animal and cell experiments,
bioinformatics analysis also verified the crucial role of NEAT1 in ceRNAs in PD [144]. As a
sponge for miR942-5, the lncRNA SRY-box regulates oxidative stress, inflammation, and
neuronal apoptosis by indirectly mediating NAIF1 [178]. Additionally, lncRNA NORAD
acts as a sponge of miR-204-5p by holding SLC5A3, and NORAD overexpression causes
cytotoxicity, inflammatory response, and oxidative stress [179,180]. LncRNA AL049437
is a ceRNA for miR-205-5p, upregulated both in vivo and in vitro in PD models, and has
been shown to induce neuroinflammation and oxidative stress in the disease by mod-
ulating MAPK1 [181]. Additionally, through the downregulation of miR-101, lncRNA
Mirt2 inhibits the secretion of inflammatory cytokines and oxidative stress by blocking the
TNF-α-triggered NF-κB/p38MAPK pathway [182]. With HOTTIP sponging to miR-615-
3p, HOTTIP downregulation alleviates microglial activation, pro-inflammatory cytokine
secretion and neuron death by lowering the expression of FOXO1 [183]. By binding to
the miR-425-5P/TRAF5 axis, SNHG7 serves as a ceRNA to modulate inflammation and
oxidative stress in cell and mouse models [184].

Abnormal apoptosis elicitation is involved in the pathogenesis of PD, and ceRNA
networks have been linked to inappropriate apoptosis control, leading to dopamine neu-
ron death. For instance, miR-51PA-3p can directly bind to NEAT, thereby inhibiting its
expression, and its knockdown was verified to inhibit MPP(+)-induced repression of cell
viability [172]. LINC00943 was found to be upregulated in MPP(+) cells, and increased
the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), oxidative injury,
and apoptosis by inhibiting the miR-15b-5p/RAB3IP [185], miR-7b-5p/CXCL12 [186], and
miR-142-5p/KPNA4/NF-κB axis [187]. The Wnt/β-catenin signal pathway plays a vital
role in neurorestoration [188], while overexpression of lncRNA H19 protects dopaminergic
neurons from loss by activating the Wnt/β-catenin pathway by repressing miR-301b-3p
dependent HPRT1 expression [189]; moreover, H19 has been reported to attenuate neuronal
injury by targeting the miR-585-3p signaling pathway [190]. Neural stem cells (NSCs)
are now an effective therapeutic method for PD; miR-204-5p was found to increase in the
course of NSCs differentiating into both neuron and astrocyte cells, as well as the repression
of lncRNA ADNCR and TCF3, suggesting that lncRNA ADNCR may act as a sponge for
miR-204-5p to regulate NSC differentiation by regulating TCF3 expression [191] (Table 4)
(Figure 6).

Table 4. ceRNA in pathogenesis and neuroinflammation of PD.

Non-Coding
RNA

Species of
ncRNAs Expression Related Genes Functional Role in PD References

lncRNA OIP-AS1 ↓ miR-126/PLK2
↓/α-synuclein

aggregation
↑/autophagy

[160]

SNHG1 ↑

miR-15b-5/SIAH1
miR-7/NLRP3

miR-181a-5p/CXCL12
miR-125B-5p/MAPK1

miR-216A-3P/Bcl-2
miR-221/222/p27/mTOR

miR-15b-5p/GSK3β
miR-153-

3p/PTEN/AKT/mTOR

↑/α-synuclein
aggregation
↑/apoptosis

↑/microglial activation

[40,44–48]

SNHG14 ↑ miR-133b/α-synuclein
miR-124-3p/KLF4

↑/DA neuron injury
↑/α-synuclein

aggregation ↑/apoptosis
↑/inflammation

[161]
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Table 4. Cont.

Non-Coding
RNA

Species of
ncRNAs Expression Related Genes Functional Role in PD References

SNHG7 ↑ miR-425-5P/TRAF5

↑/neuronal apoptosis
↑/TH-positive cell loss
↑/microglial activation

↑/oxidative stress
↑/neuroinflammation

[184]

NEAT1 ↑ miR-34-5p/SYT1
miR-51PA-3p

↑/autophagy
↑/apoptosis ↓/cell

proliferation
[162,163,172]

HOTAIR ↑

miR-221-3P/NPTX2
miR-874-5p/ATG10
miR-126-5p/RAB3IP

miR-326/ELAVL1

↑/autophagy
↑/apoptosis

↓/cell proliferation
↑/NLRP3

inflammasome
activation

[164]
[165]
[166]
[192]

BDNF-AS ↑ miR-125b-5p
↑/autophagy
↑/apoptosis

↓/cell proliferation
[167]

NEAT1 ↑

miR-1277-5P/ARHGAP26
miR-124-3p/PDE4B

miR-519a-3p/SP1
miR-212-3p/AXIN1
miR-212-5p/RAB3IP

miR-124/KLF4
miR-374c-5p

miR-1301-3p/GJB1

↑/neuroinflammation
(IL-6,TNF-α,IL-1β)
↓/neuron viability

↑/apoptosis
↑/NLRP3

inflammasome
activation

[163,170–
174,176]

SRY-box ↑ miR942-5/NAIF1

↑/apoptosis ↑/cleaved
caspase-3 protein

expression ↑/TNF-α,
IL-1β, ROS and LDH

[178]

NORAD ↓ miR-204-5p/SLC5A3

↓/cytotoxicity
↓/inflammatory

response ↓/oxidate
stress (ROS)

[179,180]

AL049437 ↑ miR-205-5p/MAPK1
↑/cytotoxicity↑/inflammatory

response ↑/oxidate
stress (ROS)

[181]

Mirt2 ↓ miR-101/NF-
κB/p38MAPK

↓/inflammatory
response

(IL-6,TNF-α,IL-1β)
↓/oxidate stress (ROS)

↓/apoptosis

[182]

HOTTIP ↑ miR-615-3p/FOXO1

↑/microglial activation,
↑/proinflammatory

cytokine secretion (IL-lβ,
IL-6, IL-18, TNF-α,

iNOS, COX2, NF-κB)
↑/apoptosis

[183]

LINC00943 ↑
miR-15b-5p/RAB3IP

miR-7b-5p/CXCL12 miR-
142-5p/KPNA4/NF-κB

↑/TNF-α, IL-1β and
IL-6 ↑/oxidative injury

↑/apoptosis
[185–187]
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Table 4. Cont.

Non-Coding
RNA

Species of
ncRNAs Expression Related Genes Functional Role in PD References

BACE1-AS ↑ miR-34b-5p/BACE
↑/TNF-α, IL-1β and

IL-6 ↑/oxidative injury
↑/apoptosis

[193]

H19 ↓

miR-301b-
3p/HPRT1/Wnt/β-

catenin
miR-585-3p

↓/neuron loss
↓/neuronal injury [189,190]

UCA1 ↑ miR-423-5p/KCTD20 ↑/cytotoxicity
↑/apoptosis [194]

SOX21-AS1 ↑ miR-7-5p/IRS2 ↑/cell injury [195]

MALAT1 ↑ miR-135b-5p/GPNMB ↓/cell proliferation
↑/apoptosis [196]

TUG1 ↑ miR-152-3p/PTEN
↑/cell apoptosis
↑/oxidative stress

↑/neuroinflammation
[197]

HAGLROS ↑ miR-100/ATG10
PI3K/Akt/Mtor

↑/cell apoptosis
↓/proliferation [154]

MIAT ↓ miR-34-5p/SYT1 ↓/apoptosis [198]

HOXA11-AS ↑ miR-124-3p/FSTL1
↑/NLRP3

inflammasome activity
↑/microglial activation

[50]

Linc-p21 ↑ miR-625/TRPM2
miR-181/PKC-δ ↑/oxidative stress [26,34]

ADNCR miR-204-5p/TCF3

T199678 ↓ miR-101-3p ↓/oxidative stress
↓/apoptosis [31]

GAS5 ↑ miR-223-3p/NLRP3 ↑/microglial activation,
↑/apoptosis [35]

circRNA circSNCA ↑ miR-7

↑/cell apoptosis
↑/α-synuclein

aggregation
↓/autophagy

[199]

circDLGAP4 ↓ miR-134-5p/CREB
↑/autophagy

↓/mitochondrial
dysfunction ↓/apoptosis

[200]

circSAMD4A ↑ miR-29c-
3p/AMPK/mTOR

↑/autophagy
↑/apoptosis [201]

circzip-2 ↓ miR-60-3p/Daf-16 ↓/α-synuclein
expression ↓/ROS [202]

circSLC8A1 ↑ miR-128/Ago2 ↑/oxidative stress [203]

Circ_0070441 ↑ miR-626/IRS2 ↑/cell apoptosis
↑/inflammation [204]
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Figure 6. ceRNA representative signal pathways involved in Parkinson’s disease pathogenesis.
Straight arrows indicate ceRNAs regulate gene (protein) expression in PD pathogenesis. Two consec-
utive arrows mean that there may be other participants in the process.

4.5. Circulating miRNA in the Pathogenesis Neuroinflammation of PD

miRNAs are enriched in the brain tissue and play an essential role in the pathogen-
esis of Parkinson’s disease; therefore, they have been considered as potential diagnostic
biomarkers. However, our capacity deficiency in accessing patients’ brain tissue from a
specific region (such as the substantia nigra) is a major obstacle to the detection of miRNAs
in PD. Therefore, the discovery of minimally invasive biomarkers is of great interest. Cir-
culating cell-free miRNAs exist in the extracellular circulation, including plasma, serum,
cerebrospinal fluid, saliva, urine, breast milk, and seminal plasma [205]. They are stable in
severe environmental conditions and resistant to cellular RNase in circular systems owing
to their existence in extracellular spaces [206,207]. Previous studies have proposed five
different ways of miRNA transportation into extracellular fluid: bound with high-density
lipoprotein complex particles in non-vesicle form, formed into complexes with multiple
proteins (Ago2 and NPM1), packaged within exosomes, encapsulated within microvesicles
(MVs), and accumulated in apoptotic bodies [208]. Exosomes have the potential to cross the
blood–brain barrier via the membrane fusion process; therefore, miRNAs packaged within
exosomes could also be considered as potential treatment targets [209–212]. Changing
the expression profiles of miRNAs under pathogenetic and physiological states and their
transportability through the brain–blood barrier have promoted the study of their potential
application as biomarkers of Parkinson’s disease to diagnose at an early stage and identify
new therapeutic targets (Table 5).

Emerging evidence has revealed that miR-34a-5p plays important roles in mammalian
neurogenesis, synaptogenesis, and neural differentiation, and it has recently been regarded
as a common dysregulated miRNA in different disorders of the CNS [213]. Grossi et al.
reported that miR-34a-5p was significantly overexpressed in pure SEVs from the plasma of
patients with PD compared to that in healthy controls. Additionally, pure SEVs miR-34a-5p
levels were higher in patients with PD even at the initial stage of PD when the disease
duration was less than 5 years. Its expression in pure SEVs revealed a good ability of this
miRNA to distinguish patients with PD from control subjects, suggesting its potential use
as a diagnostic marker at the molecular level [79].

Chen et al. developed a miRNA profiling strategy for circulating miRNAs isolated
from the blood serum of 78 patients with PD and 78 normal controls, and seven of the
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most differentially expressed miRNAs were selected and further assessed by qRT-PCR.
The results showed that elevated miR-133b and miR-221-3p levels differentiated early-
stage PD from controls [214]. An interesting study demonstrated that the expressions of
miR-106a-5p, miR-103a-3p, and miR-29a-3p in the experimental group were upregulated
after physical exercise and were associated with cognitive improvement in patients with
PD, suggesting evidence for the efficacy of physical exercise in maintaining or alleviating
PD development [215]. Using a similar approach, Oliveira et al. identified and validated
the low expression of serum miR-146a, miR-335-3p, and miR-335-5p in iPD (n = 45) and
LRRK2-PD (n = 20) compared to the control group (n = 20) [216]. Doxakis integrated
the studies and conducted bioinformative analysis, and the results showed 81 differen-
tially expressed miRNAs from patients with PD and healthy controls. Gene function and
pathway analysis of the deregulated mRNAs revealed biological pathways related to PD
pathogenesis, including the FoxO signaling pathway, TNF signaling pathway, and ErbB
signaling pathway, and indicated that autophagy participated in PD pathogenesis [217].

Table 5. Circulating miRNA in the pathogenesis neuroinflammation of PD.

Sample
Source Species miRNAs Status in PD Method Pilot Study References

serum human

↑/hsa-miR-7-5p,
has-miR-22-3p,
hsa-miR-136-3p,
hsa-miR-139-5p,
hsa-miR-330-5p,
hsa-miR-433-3p,
hsa-miR-495-3p

qRT-PCR 99 iPD vs. 101 HC [218]

human ↓/miR-96-5p qRT-PCR 51 PD vs. 52 HC [219]

human ↓//hsa-miR-144-3p NGS qRT-PCR 61 PD vs. 58 HC [220]

human ↓//hsa-miR-24-3p and
hsa-miR-30c-5p qRT-PCR 38 PD vs. 20 HC [221]

human
↑/miR-151a-5p, miR-24,

mir-485-5p, mir-331-5p, and
mir-214

qRT-PCR 209 PD vs. 60 HC [222]

human ↓//miR-214, miR-221, and
miR-141 qRT-PCR 20 PD vs. 15 HC [223]

human ↓//miR-23b-3p NGS qRT-PCR 22 PD vs. 9 HC [224]

human ↓//hsa-mir-4745-5p qRT-PCR 12 PD vs. 12 HC [225]

human ↓//miR-374a-5p qRT-PCR 68 PD vs. 50 HC [226]

human ↓//miR-21-3p, miR-22-3p and
miR-223-5p qRT-PCR 40 PD vs. 33 HC [227]

human ↑/miR-34a-5p qRT-PCR 15 PD vs. 14 HC [79]

human ↑/miR-133b and miR-221-3p qRT-PCR 151 PD vs. 138 HC [214]

human ↓//miR-124 qRT-PCR 25pPD vs. 21 HC [228]

human ↑/hsa-miR-374a-5p,
hsa-miR-374b-5p qRT-PCR 72 PD vs. 31 HC [229]

human ↑/miR-106a-5p, miR-103a-3p,
miR-29a-3p qRT-PCR

8PD (after exercise)
vs. 8PD (before

exercise)
[215]
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Table 5. Cont.

Sample
Source Species miRNAs Status in PD Method Pilot Study References

human ↓//miR-132-3p, miR-146-5p qRT-PCR 82 PD vs. 44 HC [73]

human ↑/miR-27a-3p, miR-584-5p NGS 7 PD vs. 24 HC [230]

human ↓//miR-146a, miR-335-3p,
miR-335-5p qRT-PCR 20 iPD vs. 20 HC [220]

human ↓//miR-150 qRT-PCR 80 PD vs. 80 HC [134]

human ↑/miR-330-5p, miR-433-3p,
miR-495-3p qRT-PCR 108 PD vs. 92 HC [231]

human ↓//miR-29 qRT-PCR 37 PD vs. 40 HC [74]

human ↓//miR-218, miR-124,
miR-144 qRT-PCR 15 PD vs. 10 HC [126]

human ↑/miR-132 qRT-PCR 269 PD vs. 222 HC [75]

human ↑/miR-105-5p qRT-PCR 319 PD vs. 273 HC [77]

CSF human
↑/miR-151a-5p, miR-24,

mir-485-5p, mir-331-5p, and
mir-214

qRT-PCR 209 PD vs. 60 HC [222]

human ↑/miR-7-5p, miR-331-5p,
miR-145-5p qRT-PCR 10 PD vs. 10 HC [103]

human ↓//hsa-miR-626 qRT-PCR 15 PD vs. 16 HC 20
PD vs. 27 PD HC [100,232]

saliva human ↓//miR-29a-3p, miR-29c-3p qRT-PCR 5 PD vs. 5 HC [233]

human ↓//miR-153, miR-223 qRT-PCR 83 PD vs. 77 HC [72]

5. circRNA
5.1. Introduction

circRNA was first discovered in viroids by Sanger in 1976 [234]. It is a type of ncRNA
molecule with a closed-loop structure. There is no 5′-cap arrangement and a 3′-poly tail;
therefore, it is not easily degraded by RNase [235]. It primarily exists in the cytoplasm
and in exosomes [236]. circRNA is formed by reverse splicing of pre-mRNA, and its
circularization process is regulated by RNA polymerase II (Pol II), cis-acting elements, trans-
acting factors, and RNA-binding proteins [235]. According to their formation mechanism,
circRNAs can be divided into three categories: single or multiple exons (circRNA), formed
by the failure of debranching of the intron lasso (circRNAs), and both introns and exons
(EIciRNAs) [237]. The degradation mechanism of circRNAs is still poorly understood, and
it has been suggested that they may be degraded by small RNAs [238].

5.2. circRNA in the Pathogenesis of PD

As previously mentioned, mitochondrial dysfunction, oxidative stress, altered protein
handling, and neuroinflammation are involved in the pathogenesis of PD. Some studies
have shown that circRNAs participate in at least one of these pathological processes. Kong
et al. used RNA sequencing and found that hsa_circ_0001451, hsa_circ_0001772, and
hsa_circ_0036353 were downregulated in the peripheral blood RNAs of patients with PD,
encoded for FBXW7, RBM33, and SIN3A [239]. Ravanidis et al. performed qRT-PCR of
total RNA in patients with PD and healthy controls and found that Hsa_circ_0000497 was
downregulated in the peripheral blood of patients with PD, which is encoded by the SLAIN
motif family member-1 (SLAIN1) gene, microtubule-associated proteins, and is essential for
axon elongation in neuronal development. Therefore, the deregulation of hsa_circ_0000497
deregulates offline cytoskeletal dynamics, which is expected to diminish intracellular
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signaling pathways and has been regarded as a critical factor in the pathogenesis of multiple
neurodegenerative diseases, including PD [240].

5.3. circRNA in Neuroinflammation of PD

The relationship between circRNAs and inflammation is now gaining recognition, and
some studies have revealed that circRNAs participate in diabetes mellitus [241], atheroscle-
rosis [242], osteoarthritis [243], and spinal cord injury [244], all of which are associated with
immunoinflammatory effects. However, circRNA profiling and the regulatory mechanisms
of neuroinflammation in PD remain unclear.

5.4. ceRNA in the Pathogenesis and Neuroinflammation of PD

circRNAs can relieve the inhibitory effect of miRNA on mRNA because they are rich
in miRNA binding sites. In addition, circRNA does not contain 3′ and 5′ free ends, so it
is not easily degraded by exonucleases, enhancing its function as a miRNA sponge [245].
circRNAs are known to act as miRNA sponges, circSNCA was confirmed to be another
miR-7 repressor, and it was found to be downregulated in a pramipexole-worked PD cell
model as well as an inhibitor of α-syn deposition, while miR-7 was upregulated [199]. Be-
sides being associated with α-syn aggregation, circRNAs are also attributable to autophagy
in PD. CircDLGAP4 acts as a sponge for miR-134-5p and plays a role in suppressing its
functional activity of miR-134-5p. circDLGAP4 was reported to be downregulated in an
MPTP-induced PD animal model, which could promote autophagy, inhibit mitochondrial
dysfunction, and suppress apoptosis by modulating the activation of CREB by regulat-
ing miR-134-5p [200]. Similarly, miR-29c-3p, which targets and inhibits the expression of
circSAMD4A, is involved in apoptosis and autophagy of dopaminergic neurons by regulat-
ing the AMPK/mTOR cascade [201]. Additionally, in the worm PD model, cirzip-2 was
found to target miR-60-3p, which contains M60.4, igeg-2, got-2.2, K07H8.2, asns-2, pkg-2,
ZK470.2, and idhg-1 genes, which were found to be downregulated in the PD model [202].
Additionally, circSLC8A1 was verified to correlate with oxidative stress in Parkinsonism
via binding to miR-128, regulating the microRNA effector protein Ago2 in the PD cell
model [203]. Simultaneously, circ_0070441 can directly bind to miR-626, thereby indirectly
regulating IRS2 expression, and its upregulation was verified to aggregate MPP(+)-induced
neurotoxicity in a PD cell model [204]. However, there is still a controversial issue about
whether circRNAs can serve as miRNA sponges because some studies have revealed that
most circRNAs do not have the function of sponging miRNAs [210] (Figure 6).

6. ncRNAs in Treatment of Parkinson’s Disease

ncRNA therapeutics comprise various groups of oligonucleotide-based drugs such as
antisense oligonucleotides, small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs)
and clustered regularly interspaced short palindromic repeats (CRISPR/Cas) that can be
designed to selectively interact with drug targets. However, as a result of the blood–brain
barrier hindering medication delivery to the CNS, the drug delivery system is key to the
envisioned drug role for ncRNAs. The drug delivery system consists of exogenous vectors
(lentiviral vectors, adenoviral vectors, nanomedicines, liposomes, and lipid NPs) and en-
dogenous vectors (exosomes). Owing to the disadvantages of toxicity and immunogenicity
associated with viral vectors, major attention has been focused on the development of
non-viral vectors, such as polymeric NPs, which may result in a safer and less toxic gene
delivery method [245–251].

As drug carriers, exosomes have the advantages of optimized biocompatibility, blood–
brain barrier penetrability, metabolic stability, and target specificity. Exosomes have been
successfully loaded with catalase, dopamine, and small interfering RNA for PD treatment
and have shown significant therapeutic effects. In 2014, Cooper et al. found that siRNA-
loaded exosomes could significantly decrease the expression levels of α-syn mRNA and
protein compared with that seen in healthy controls [251]. In 2015, Haney et al. delivered
exosomes via nasal injection into a PD mouse model and demonstrated specific neuro-
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protective effects. Recently, Kojima et al. reported that catalase mRNA-loaded exosomes
effectively attenuated neurotoxicity and neuroinflammation in PD mice [252,253]. There-
fore, it is worthwhile to develop a drug delivery system for exosomes for the treatment
of PD.

Nanomedicine has also been studied for controlled delivery of genes to the brain.
One particularly interesting example of the development of nanomedicines for microRNA
delivery involves the use of polymeric nanoparticles for miR-124. It has been demon-
strated that stereotactic injection into the right lateral ventricle of miR-124-loaded NPs
attenuates neurogenesis in the subventricular zone, promoting migration and integration of
mature neurons into the lesioned striatum of 6-OHDA–treated mice and improving motor
symptoms [254].

7. Conclusions

In conclusion, this manuscript identifies and describes the multiform ncRNAs, includ-
ing miRNAs, lncRNAs, and circRNAs, and their regulatory mechanisms participating in
the pathogenesis of PD. Increasing evidence indicates that ncRNAs play a pivotal role in
neuroinflammation and neurodegeneration in the CNS. However, more extensive ncRNA
profiling data and experiments are required to ultimately invert transcriptional analysis
into clinical treatment and diagnosis. Moreover, further research is needed to fully under-
stand the intricate and unsuspected correlation between ncRNAs, proteins, and cellular
physiology and pathology in PD. Recent studies have paid more attention to miRNAs
and lncRNAs; the understanding of circRNAs is supposed to be deeply studied, espe-
cially neuroinflammation in PD, given the new technologies, such as second-generation
sequencing. At the same time, it is essential to further clarify the spatial and temporal
distribution of ncRNAs in PD. Silico and systematic analyzes must be performed to recog-
nize the complicated network between ncRNAs and proteins in the pathogenesis of PD.
Since pharmacotherapy, such as L-dopa and peripheral dopa decarboxylase inhibitors,
can relieve motor symptoms but cannot restrain the development of PD, ncRNA-related
treatment may become a potential and novel therapy in the development of PD on account
of this evidence, such as cell replacement therapy and molecular targeting treatment. The
ncRNA miR-204-5p increases during the differentiation of NSCs into both neurons and as-
trocytes. Another study showed that astrocytes can be induced to form dopamine neurons
via NEUROD1, ASCL1, and LMX1A [143]. In sum, identifying ncRNAs involved in PD
progression may lead to more effective diagnosis and treatment.
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