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ABSTRACT

Structure-based drug design (SBDD) targeting nu-
cleic acid macromolecules, particularly RNA, is a
gaining momentum research direction that already
resulted in several FDA-approved compounds. Sim-
ilar to proteins, one of the critical components in
SBDD for RNA is the correct identification of the
binding sites for putative drug candidates. RNAs
share a common structural organization that, to-
gether with the dynamic nature of these molecules,
makes it challenging to recognize binding sites
for small molecules. Moreover, there is a need for
structure-based approaches, as sequence informa-
tion only does not consider conformation plastic-
ity of nucleic acid macromolecules. Deep learning
holds a great promise to resolve binding site detec-
tion problem, but requires a large amount of struc-
tural data, which is very limited for nucleic acids,
compared to proteins. In this study we composed a
set of ∼2000 nucleic acid-small molecule structures
comprising ∼2500 binding sites, which is ∼40-times
larger than previously used one, and demonstrated
the first structure-based deep learning approach,
BiteNetN, to detect binding sites in nucleic acid struc-
tures. BiteNetN operates with arbitrary nucleic acid
complexes, shows the state-of-the-art performance,
and can be helpful in the analysis of different con-
formations and mutant variants, as we demonstrated
for HIV-1 TAR RNA and ATP-aptamer case studies.

INTRODUCTION

RNA molecules are vital in many cellular processes, such
as gene regulation and cell information transfer, thus, rep-
resenting a promising class of pharmacological targets (1).
RNA-targeting drug discovery campaigns explore various
perspectives, including design of stabilizers of DNA G-
quadruplex (2), riboswitch-targeting antibiotics (3), anti-
sense RNA (4) and RNA-targeting antivirals, to name a
few. RNA targets that expand druggable genome, includ-

ing those linked to ‘undruggable’ protein targets or non-
coding microRNAs, are of particular interest (5). However,
RNA drug development is dotted with numerous obsta-
cles (6), among others, related to the low chemical diversity
and the dynamic nature of RNA structures. Similar to pro-
teins, RNA molecules are highly structured to form bind-
ing sites, through which small molecules can modulate them
(7). Therefore, there is a need for efficient, structure-specific
RNA-small molecule ligand binding site detectors to ad-
vance RNA-targeting drug discovery.

Despite the abundance of protein-specific approaches,
there is a very limited number of methods developed to pre-
dict RNA-small molecule interaction sites, and they can be
roughly divided into knowledge-based, empirical, and ma-
chine learning approaches. Knowledge-based approaches,
such as InfoRNA, mine RNA motifs in a database of
known RNA–small molecule binding sites (8). Empirical
approaches, such as Rsite (9), Rsite2 (10) or RBind (11),
rely on simple geometric characteristics of RNA structures
and look for the extremes of these characteristics as the in-
dicators of a binding site. Most recently, a machine learning
approach, RNAsite, was developed; it comprises a Random
Forest model that operates with calculated RNA’s structure-
based and sequence-based features (12). Using deep learn-
ing is expected to improve the RNA binding site detectors;
however, it is hampered due to the relatively small num-
ber of available RNA structures. Indeed, while the most re-
cent deep learning approaches for a protein-small molecule
or protein-peptide binding site detection rely on datasets
of thousands of examples (13,14), the RNAsite model was
trained on just 60 RNA-small molecule complexes (12).

In this study, we demonstrated the first structure-based
deep learning approach for nucleic acid-small molecule lig-
and binding site prediction. To overcome the small dataset
problem, we considered both RNA and DNA complexes,
interaction interfaces formed with the crystallographic sym-
metry mates, NMR models, and data augmentation. We
composed a dataset of ∼2000 nucleic acid-small molecule
structures, comprising ∼2500 binding site interfaces re-
trieved from Protein Data Bank (PDB) (15). Next, we de-
veloped the voxel-based view of nucleic chain structures,
such that each voxel represents a 1Å3 cube in the physical
space and stores eight channels corresponding to the atomic
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densities of a particular type. The voxelized representations
are then fed to the 3D convolutional neural network that
scores segments in nucleic acid structures concerning the
binding sites. The obtained structure-based deep learning
model, dubbed BiteNetN, predicts the coordinates of bind-
ing site interface centers, the probability scores for each
center, and scores for each nucleotide in a binding site.
We observed the superior performance of BiteNetN com-
pared to the other methods on the constructed test sets. To
demonstrate the applicability of BiteNetN for relevant nu-
cleic acids, we considered two pharmacologically-oriented
case studies, including i) different structures of the HIV-1’s
transactivating response region bound to small molecules
and ii) molecular dynamics trajectories of ATP-aptamers;
we showed that BiteNetN is capable of correct identification
of the conformation-specific binding sites.

MATERIALS AND METHODS

Training and test sets

Despite constant growth in deposited molecular structures
to PDB, the number of nucleic-ligand molecular complexes
is very limited. For example, RNAsite was trained and
tested on datasets of just 60 (TR60) and 18 (TE18) sin-
gle RNA chain structures in complex with small molecules
or ions (12). Apparently, TR60 and TE18 datasets are not
sufficient to derive robust deep learning models; therefore,
we composed a larger dataset of 1933 nucleic acid-small
molecule complexes, as it follows. Firstly, we retrieved from
PDB (15) structures containing RNA or DNA but not
protein chains with resolution ≤3 Å or solved by NMR.
We filtered out structures exceeding 200 Å along the first
principal axes (e.g. ribosomal complexes with the mini-
mal low ratio of binding nucleotides in the given struc-
ture) and considered only complexes with small molecules
of at least 10 heavy atoms surrounded by at least 15 nu-
cleotides’ heavy atoms within 4Å, resulting in total of 780
structures. In many cases, we observed intermolecular in-
terfaces formed by the asymmetric unit and the symmetry
mates (see Supplementary Figure S1). More precisely, 20%
(235 out of 1010) small molecules observed in 634 X-ray
structures form strong interactions with ≥15 heavy atoms
of a symmetry mate, and Supplementary Figure S2 shows
the distribution of the binding site interface sizes formed
by the asymmetric unit and symmetry mates. In contrast,
the corresponding ratio in the protein-small molecule bind-
ing site dataset (13) is only ∼ 2%, emphasizing the differ-
ences between interfaces formed with the symmetry mates.
To take such interfaces into account, we built symmetry
mates within 64 Å of the asymmetric unit and calculated
the size of each nucleic-ligand and nucleic-nucleic interface.
The latter is done to avoid potentially false negative ex-
amples from the dataset corresponding to the interaction
interfaces between complementary or consecutive nucleic
acid chains, which can be also observed in the asymmet-
ric units. Indeed, 130 and 184 nucleic acid chains (out of
1162) in 634 asymmetric units have at least one chain from
a symmetry mate with number of interacting nucleotides
≥40 or with ratio of interacting nucleotides ≥0.5, respec-
tively. Supplementary Figure S3 shows the distributions of

the interface sizes between nucleic acid chains from asym-
metric unit and symmetry mates, and Supplementary Fig-
ure S4 demonstrates examples of such interacting nucleic
acid chains. Then, for each structure, we form ‘parts’ in the
following way: starting from the asymmetric unit, a ‘part’
corresponds to a single nucleic acid chain. Next, we ex-
tend each ‘part’ by adding small molecules and nucleic acids
chains interacting with it. Finally, we merge ‘parts’ that
share small molecules or nucleic acids chains. We considered
interacting small molecules with the corresponding single
chain binding interface of at least 5 heavy atoms, and inter-
acting nucleic acid chains with the binding interface of ≥40
heavy atoms in any chain (consecutive chains), or the ratio
of interacting nucleotides with respect to the chain’s size of
≥0.5 (complementary chains). We continued the extension
procedure until convergence, that is (i) ‘part”s composition
does not change in the next iteration, (ii) a ‘part’ contains
at most five nucleic acid chains and (iii) a ‘part’ does not
exceed 200 Å along the first principal axis. Consequently,
we filtered out complexes, for which the extension proce-
dure did not converge. In several cases, the obtained X-
ray complexes consist of non-interacting parts, that we split
into 471 different structures; as for the NMR structures, we
considered each model as a separate complex, resulting in
1462 structures. Supplementary Figure S5 shows the distri-
butions of the binding interfaces per single chain as well
as per complex, and Supplementary Figure S6 shows the
size of the resulting training set with respect to the thresh-
old for the nucleic chain-chain interfaces. Finally, we refined
the obtained structures by adding missing atoms and restor-
ing hydrogens using ICM-Pro (www.molsoft.com). In total,
we constructed the BNN1933 dataset of 471 + 1462 = 1933
nucleic chain-small molecule structures. It is important to
emphasize that some structures were constructed from the
same experimental complexes (for example, multiple non-
interacting complexes from a single crystallographic struc-
ture or multiple models in NMR structures). Therefore, a
careful train-validation-test split is required, as a random
split would likely result in over-estimated performance.

To split BNN1933 into training, validation, and test sub-
sets, we computed the sequence identity and structural sim-
ilarity for each pair of 1933 complexes. The sequence iden-
tity was calculated as the number of identical nucleotides
divided by the average length of two sequences aligned with
Biopython (16), that scores identical nucleotides with +1,
different nucleotides with 0, gap opening with −1, and gap
extending with 0. The structural similarity was calculated as
the averaged similarity score obtained with RNAalign (17).
We considered the maximum sequence identity and struc-
ture similarity when several chains present in a structure.
Then, we clustered the complexes using 0.7 and 0.8 thresh-
old values for the sequence identity and structure similar-
ity, respectively, resulting in 116 clusters, such that all pairs
of complexes with sequence identity or structure similarity
exceeding the thresholds are in the same cluster. For rig-
orous comparison, we constructed 10 cluster-based train-
validation-test splits as it follows. For each split, we assigned
40 clusters to the test partition, comprising all 7 clusters that
share at least one structure similar to RB19 (11) or TE18
(12); and 33 clusters randomly chosen from 78 clusters that
do not share similar structures with TR60 and are not be-
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long to the top-5 largest clusters. Next, we identified a subset
of complexes containing a single RNA chain for each clus-
ter in the test partition. To construct the BNTE

N 40i test set,
from each cluster, we chose random complex from the single
RNA chain subset, if it is not empty, or random complex,
otherwise. As existing tools operate with single RNA chains
only, in addition, we composed BNTE

N 40SUB
i solely from the

single RNA chain-ligand complexes from BNTE
N 40i . The

remaining 116 − 40 = 76 clusters were assigned into the
train-validation partition. Therefore, train-validation sets
do not contain any complexes similar to TE18 or RB19,
as all 7 clusters sharing similar structures with these test
sets are belong to BNTE

N 40i test sets, i = 1. . . 10. We used
five-fold cross-validation to check model robustness as well
as to tune parameters for the nucleotide-based scoring (see
Section ‘Model’). Top-4 largest clusters were assigned to
the train partition, and the remaining 72 clusters were split
into five folds using grouped splitting. Therefore, for each
of 10 training-validation-test splits one has the training-
validation set BNTR

N i , the test set BNTE
N 40i , and the test set

BNTE
N 40SUB

i corresponding to the single RNA chain-ligand
complexes. Supplementary Figure S7 schematically illus-
trates the construction of train-validation-test splits. Sup-
plementary Table S1 provides detailed information about
the number of clusters and structures in each split, Supple-
mentary Table S2 lists the clusters in the test set for each
split, and Supplementary Table S3 lists numbers of all and
single chain RNA complexes in each cluster. For compar-
ison with the other methods, we also considered the RB19
(11) and TE18 (12) test sets; from TE18, we discarded six
complexes with only non-relevant ligands (ions or cova-
lently bound modified nucleotide residues), resulting in the
TE12 test set.

Model

We represented nucleic-ligand structures as the 4D tensors,
where the first three dimensions correspond to x, y, z with
discretization of 1.0 Å, and the fourth dimension corre-
sponds to the eight channels that store atomic densities for
different atom types (see Equation 1).

ρ(r ) =
{

e−r2/2, if r ≤ rcutof f
0, otherwise

(1)

Here we used the hybridization types of C, O, N, and P for
the different channels as well as non-standard atoms ob-
served in the modified nucleotides (e.g. B, Br, Cl, F, I, Pt,
Te, V, S and Se), as a separate channel. The atom types for
the non-standard and modified nucleotides were taken from
the SYBYL atom typing in the MOL2 files (see Table 1).
As the resulting voxel grids vary in size with respect to the
input structure, we split the obtained 4D tensors into the
4D sub-tensors of a fixed size (64 × 64 × 64 × 8), which
are fed into the 3D convolutional neural network. We used
the BiteNet’s 3D convolutional neural network architecture
(13), that consists of ten 3D convolutional layers with kernel
size of 3 and filter sizes of 32, 32, 32, 32, 32, 64, 64, 64, 128
and 4, respectively; all convolutions except the last one are
followed by the Batch Normalization layer and ReLU acti-
vation function, and the sigmoid function is applied to on
the last layer. The model outputs probability scores and co-
ordinates of the predicted binding sites for each of 512 cells

Table 1. Nucleic acid atom types and corresponding tensor channels

Channel Description SYBYL atom type

1 carbon sp, sp2, aromatic C.1, C.2, C.ar, C.cat
2 carbon sp3 C.3
3 nitrogen sp, sp2, amide, N.1, N.2, N.ar, N.am, N.pl3

aromatic, trigonal
4 nitrogen sp3, quaternary N.3, N.4
5 oxygen sp2 O.2
6 oxygen sp3 O.3
7 phosphorus sp3 P.3
8 other S.2, S.3, S.o2, Se, B, Br, Cl,

F, I, Pt, Te, V

of size 8 × 8 × 8 × 8 constituting a single sub-tensor. The
non-max-suppression with the distance threshold of 8 Å is
applied to get the final predictions of the binding sites’ cen-
ters: on the i-th step one chooses the top-i scored predic-
tion and filters out all the predictions within the distance
threshold of 8Å from it. Therefore, after the non-max sup-
pression, all the predictions are at least 8 Å apart from each
other. During training, we used an implicit data augmen-
tation by a random rotation of structures in each epoch.
The loss function to minimize consists of three terms: (i) the
cross-entropy term for the probability score, (ii) the mean
squared error for cells with the true binding site’s center and
(iii) the L2 regularization term:

Loss =
Ncells∑
i=1

(−si · log(ŝi ) − (1 − si ) · log(1 − ŝi ))

+λcoord ·
Ncells∑
i=1

si · ((xi − x̂i )2 + (yi − ŷi )2 + (zi − ẑi )2)

+γ L2, (2)

where Ncells is the number of cells in a single sub-tensor, si
and ŝi are the true (0 or 1 for true binding site center absent
or present in the cell, respectively) and predicted probabil-
ity scores for the cell, xi, yi, $z$i and x̂i , ŷi , ẑi are the true
and predicted coordinates for i-th cell, respectively, L2 is the
Euclidean norm of model’s weights, �coord = 5.0 is the co-
efficient for the coordinate loss term, and � = 1e−5 is the
coefficient for regularization term. We trained models for
40 000 steps with the Adam optimizer (18) using batch size
of 16 and the learning rate decay from 1e−3 to 1e−5. In the
inference mode, we averaged results obtained for 50 replicas
of the input structure obtained by rotation about ten differ-
ent axes corresponding to the centroids of the icosahedron
facets (19) by �/3, 2�/3, �, 4�/3 and 5�/3 angles.

To convert the BiteNetN predictions to the nucleotide-
based probability scores, we firstly scored each atom a
within the distance threshold d from a prediction p:

sa = max
p,||rp−ra ||≤d

sp × e− ||rp−ra ||2
2rnorm (3)

where sp is the probability score of the prediction p, rp and
ra are the coordinates of p and a, rnorm is the normaliza-
tion coefficient, respectively. In case there are several pre-
dictions within d from a, the highest sa was taken. Then,
the nucleotide’s score was calculated as the maximum of
its heavy atom scores. Finally, we defined nucleotides with
scores higher than the score threshold sr as belonging to the
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Figure 1. Illustration of BiteNetN’s workflow. Multiple orientations of the input nucleic acid structure are voxelized into fixed-size 4D tensors. The tensors
are split into the set of cubic voxel grids of fixed size (64 × 64 × 64), which are fed to 3D CNN that outputs probability scores and coordinates of putative
binding site centers. Finally, each nucleotide is scored according with the mapping function. Nucleic acid structure is represented with yellow cartoon,
voxels with non-zero values are colored with respect to the channel type, predictions are shown with red spheres, and the nucleotides in the final output
are colored with magenta with respect to the predicted probability score.

binding site. A single complex from each cluster was sam-
pled during a training epoch to avoid over-fitting towards
the most populated cluster. We determined the best parame-
ters d, rnorm and sr based on the highest averaged nucleotide-
based AP and MCC (see section ‘Metrics’) on the five-fold
cross-validation (see Section ‘Training and test sets’).

Overall, we obtained 50 models for the cross-validation
stage, 10 models for the test stage, single models for the HIV-
1 TAR RNA and ATP-aptamer DNA case studies, and the
final model trained on the full BNN1933 dataset incorpo-
rated into the web-server https://sites.skoltech.ru/imolecule/
tools/bitenet/. We used the Zhores supercomputer (20) to
train the models.

Metrics

We calculated AP (average precision; area under the
precision-recall curve) as the area under the precision-recall
curve, ROC AUC (area under the receiver operating curve)
as the area under the true positive rate versus the false pos-
itive rate curve and the MCC (Matthews correlation coeffi-
cient) metric defined as:

MCC = T P × TN − F P × F N√
(T P + F P)(T P + F N)(TN + F P)(TN + F N)

, (4)

for nucleotides classified as either belonging to the nucleic-
ligand binding site or not, where TP and FP are the num-
bers of binding and non-binding nucleotides classified as
binding, respectively; TN and FN are the numbers of non-
binding and binding nucleotide classified as non-binding,
respectively; precision = T P

T P+F P , and recall = T P
T P+F N . The

nucleotide is defined as binding if it contains at least one
heavy atom within 4 Å from any heavy atom of the lig-
and. To take into account different binding site sizes across
the complexes, we also weighted each nucleotide with the
inverse number of nucleotides in the structure, thus, cal-
culating the weighted performance metrics. During cross-
validation, we optimized the weighted AP additionally bal-
anced to the cluster size to consider both the number of sim-

ilar structures in the training set and the size of the com-
plexes: the weight of a nucleotide is the inverse of product
of the number of nucleotides in a structure and the size of
the corresponding cluster.

RESULTS AND DISCUSSION

BiteNetN

Dataset. To train the BiteNetN deep learning models, we
constructed a large dataset of 1933 nucleic acid-ligand com-
plexes, including 1065 DNA and 886 RNA structures (18
structures contain both DNA and RNA) of different types.
Namely, there are 865, 575, 51, 217, 358 and 20 com-
plexes corresponding to the A-form double, B-form dou-
ble, Z-form double, triple, quadruple helixes and undefined
structural types, respectively, as retrieved from the NDB
database (21). The dataset contains DNA and RNA com-
plexes with the average number of nucleotides and chains
per complex equal 34 and 1.5, respectively, 2469 binding
sites occupied with small molecules with the average num-
ber of heavy atoms equals 35.5, the average interaction in-
terface size of 45.8 heavy atoms, and the average binding
site solvent accessible surface area (SASA) of 245.7Å2 (cal-
culated with FreeSasa (22)). It is worth noting that there are
938 complexes formed by several nucleic acid chains, and
the average interaction interface size per single nucleic acid
chain is 29.8, emphasizing the difference between mono-
and oligo- nucleic-ligand complexes (see Supplementary
Figure S5). The BNN1933 dataset is imbalanced in terms of
the number of binding (∼ 30%, 19182 nucleotides) and non-
binding (∼ 70%, 46 459 nucleotides) nucleotides. Interest-
ingly, distributions of the number of heavy atoms in nucleic-
small molecule interfaces resemble those for protein-small
molecule complexes (31.5 and 46.1 for small molecule and
interaction interface sizes, respectively) (13).

Model. We trained BiteNetN on the curated nucleic
acid structures using 3D CNN architecture, proven to
be top-performing for protein-small molecule molecule

https://sites.skoltech.ru/imolecule/tools/bitenet/
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Figure 2. Demonstration of the BiteNetN’s applicability to the different
types of DNA or RNA structures. (A) A-form double helix RNA com-
plex (PDB ID: 2KXM); (B) B-form double helix DNA complex (PDB ID:
302D); (C) Z-form double helix DNA complex (PDB ID: 6SX3); (D) triple
helix RNA complex (PDB ID: 4LVX); (E) quadruple helix DNA complex
(PDB ID: 1L1H); and (F) unspecified RNA (PDB ID: 6N5L). Nucleic
acid chains are represented as yellow ribbon and white transparent sur-
face, small molecules are shown with sticks and spheres, and nucleic acid
surface is colored with magenta according to the predicted binding scores
for nucleotides.

and protein-peptide binding site detection (13,14) (see the
‘Methods’ section), and Figure 1 illustrates the BiteNetN
workflow. In the first step, the input nucleic acid structure
is voxelized and splitted into the cubic voxel grids, result-
ing in the set of fixed-size 3D images (64 × 64 × 64) repre-
senting 64 Å3 spatial cube, and each voxel (1 Å3) contains
eight channels corresponding to the atomic densities of a
specific type. In the second step, the 3D images are fed into
3D CNN to output tensors of size 8 × 8 × 8 × 4, where
the first three dimensions correspond to the cell coordinates
relatively to the 3D images (regions of 8 × 8 × 8 voxels),
and the four scalars of the last dimension correspond to
the probability score of a binding site center being in the
cell and its 3D coordinates. Next, the obtained tensors are
processed to output the most relevant ligand binding site
predictions. Finally, each nucleotide is scored with respect
to the obtained predictions according to Equation (3). We
used 5-fold cross-validation to determine the best parame-

Figure 3. Weighted AP, ROC AUC and MCC performance metrics on the
BNTE

N 40SUB
i test sets, i = 1. . . 10. Bars correspond to the performance

metrics averaged over the ten test sets, and black dots correspond to the
individual performance metrics for each test set.

ters for function mapping model predictions into nucleotide
scores and found d = 12Å, rnorm = 4 and sr = 0.1 to be op-
timal for nucleotide-based performance metrics (averaged
AP and MCC). Overall, the input to BiteNetN is the spa-
tial structure of nucleic acid, and the output is the scored
centers of the predicted binding sites along with the scored
nucleotides associated with each center. Figure 2 shows ap-
plication of BiteNetN to the nucleic acid structures of dif-
ferent types.

Comparison with other methods. To compare BiteNetN’s
performance with other methods, we obtained the bind-
ing site predictions of four different approaches: Rsite (9),
Rsite2 (10), RBind (11), RNAsite (15) for the ten test sets
BNTE

N 40SUB
i , i = 1...10. We calculated the weighted AP, ROC

AUC, and MCC performance metrics for the existing meth-
ods and ten BiteNetN’s models trained on the BNTR

N i sets,
i = 1...10. Figure 3 demonstrate the obtained results, and
Supplementary Tables S4–S5 and Supplementary Figure S8
show more detailed BiteNetN’s performance on the cross-
validation and test sets for each of the splits, as well as on
the RB19 and TE12 benchmarks. Overall, BiteNetN models
outperform the other methods on the constructed test sets,
achieving the average weighted AP, ROC AUC and MCC
scores of 0.75, 0.89 and 0.59, respectively. It is interesting
to note that empirical methods (Rsite, Rsite2 and RBind)
demonstrated poor performance on all the test sets, em-
phasizing the complexity of the binding site detection prob-
lem and the anticipated improvements that machine learn-
ing methods bring. When applied BiteNetN to the modelled
structures of RB19 retrieved from (12), we observed nega-
tive correlation between the performance metrics and the
RMSD with respect to the experimental structures, empha-
sizing importance of the quality of the input structure for
the binding site detection (see Supplementary Figure S9).
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Case studies

A binding site is the structural and dynamic property of a
macromolecule; therefore, a method to predict binding sites
should distinguish conformations with open and collapsed
binding sites and be applicable for the analysis of confor-
mational ensembles. To demonstrate the use of BiteNetN for
relevant nucleic-ligand binding site detection problems, we
considered i) the transactivating response region of HIV-1
and ii) the ATP-aptamer.

HIV-1 TAR RNA. The transactivating response region
(TAR) is a part of HIV-1’s RNA, that promotes transcrip-
tion of viral genome via binding with the transactivator
Tat protein and the host cofactor cyclin T1. TAR is con-
sidered as a relevant pharmacological target, and there
are numerous structural studies of TAR in complex with
small molecules, peptides, or cations (23,24). To demon-
strate the conformation sensitivity of BiteNetN, we retrieved
seven different structures of the TAR RNA bound to small
molecules (PDB IDs: 1ARJ (25), 1LVJ (26), 1QD3 (27),
1UTS (28), 1UUD (29), 1UUI (29), 2L8H (30)). Although
the nucleotide sequence is the same, these structures are dif-
ferent: the pair-wise root-mean-squared-deviation (RMSD)
varies from 1.9Å to 10.7Å with the median value of 6.5Å,
and the binding site sizes vary from 4 to 12 nucleotides.
Moreover, the binding sites span almost the entire sequence
of the TAR RNA (23 of 29 nucleotides correspond to at
least one binding site) with only two binding nucleotides
(A22 and U23) shared between all the structures (see Sup-
plementary Figure S10). To exclude possible bias, we re-
trained BiteNetN model on a training subset without similar
to TAR RNA complexes: from BNN1933 we filtered out all
clusters containing at least one structure similar to any of
seven TAR-ligand structures, resulting in 115 clusters with
1831 complexes (a single cluster of 102 complexes was fil-
tered out), followed by training of the BiteNetN model. We
used the same procedures as described in Sections ‘Training
and test sets’ for filtering and ‘Model’ for training. We then
applied the BiteNetN model for each structure and mea-
sured the weighted AP, ROC AUC, and MCC performance
metrics; for the NMR structures we considered all the mod-
els and averaged the results. BiteNetN achieves weighted AP,
ROC AUC and MCC metrics of 0.727, 0.872 and 0.510,
respectively, on the seven TAR-ligand structures (see Fig-
ure 4), demonstrating the ability to correctly identify bind-
ing nucleotides in the sequence with respect to the differ-
ent conformations (see Figure 5 and Supplementary Fig-
ure S10). We want to emphasize that sequence-based meth-
ods alone inevitably fail on such case studies as their predic-
tions do not depend on spatial information. It is also im-
portant to note, that there are six TAR structures bound
to peptides (PDB ID: 2KDQ (31), 2KX5 (32), 5J0M (33),
5J1O (33), 5J2W (33), 6D2U (34)). We observed much lower
performance metrics when applied BiteNetN on these com-
plexes (AP, ROC AUC and MCC scores of 0.727, 0.872,
0.510 compared to 0.619, 0.679, 0.239 for small molecule-
bound and peptide-bound complexes, respectively), sug-
gesting the need for specific models for the peptide-based
ligands (14).

ATP-aptamer. Aptamers are oligonucleotides designed
for selective binding to specific small molecule targets

Figure 4. The AP (blue), ROC AUC (orange), and MCC (green) perfor-
mance metrics for seven structures of TAR RNA bound to small molecules.
Bars in pale colors correspond to the top-scored NMR conformation in
terms of AP.

Figure 5. Predictions for seven structures of HIV-1 TAR RNA complexes
with small molecule ligands. RNA and small molecules are shown with sur-
face and sticks, respectively. The predicted binding site centers are shown
with magenta spheres and the true binding site residues are highlighted
with colors. For each PDB ID, NMR conformation with the highest AP
score is shown.

(35,36), and they can be used in biosensors and drug discov-
ery (37,38). To demonstrate the applicability of BiteNetN for
the large-scale analysis, we considered molecular dynam-
ics trajectories of ATP-aptamers. ATP-aptamer is a nucleic
acid of 27 nucleotides (39,40); the NMR structure of ATP-
aptamer has two binding sites with AMP molecules bound
to it (PDB ID: 1AW4 (41)), corresponding to G6–G22–A23
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Figure 6. Binding site scores calculated over the ATP-bound and ATP-unbound MD trajectories of the wild-type ATP aptamer (WT, blue) and its G6A
mutant (MT, orange). Bold solid (dashed) lines correspond to the moving average over 2 ns of the binding site scores for the ATP-bound (-unbound)
trajectories. Molecular dynamics snapshots corresponding to the highest (lowest) scores for the ATP-bound (-unbound) trajectories and for both WT and
MT simulations are shown in boxes A and B (C and D), respectively. RNA and its binding site are represented with surface and sticks, respectively; the
surface is colored with magenta with respect to the nucleotide scores. ATP molecule is not shown for clarity.

and G9–A10–G19 nucleotides, respectively. It is also known
that mutations of G6 and G22 reduce or abolish the binding
efficiency to ATP, as measured with elution chromatogra-
phy (39), and a recent molecular dynamics study attempted
to characterize such effect on the structural level (42). We
retrieved molecular dynamics trajectories for apo, and ATP-
bound complexes of the wild-type ATP-aptamer (WT) and
its G6A mutant (MT) from (42). As in the TAR RNA case
study, we trained the BiteNetN’s model on the dataset with
no complexes similar to ATP-aptamer, comprising 115 clus-
ters of 1926 complexes. Then we obtained the BiteNetN’s
model predictions for each frame of the trajectories. For
each frame, we calculated the binding site score as the av-
erage score of the true ATP-binding site, defined as a set of
five nucleotides: G5, G(A)6, G21, G22 and A23 (42). Fig-
ure 6 demonstrates the obtained binding site scores over the
molecular dynamics trajectories. As expected, we observed
that the trajectory of the wild-type ATP-bound aptamer
demonstrates the highest binding site prediction score. The
average scores of the binding site in the ATP-bound molec-
ular dynamics trajectories are higher than the unbound
ones: 0.30 versus 0.14 and 0.26 versus 0.07 for the wild-type
and mutant-type, respectively. Interestingly, the binding site
score dropped almost to zero in the ATP-unbound molec-
ular dynamics trajectory of the G6A mutant while reach-
ing 0.4 in the ATP-bound molecular dynamics trajectory. A
closer look into the high- and low-scored RNA conforma-
tions revealed a pattern of stacking interactions formed by
the binding site nucleotides suitable for the ATP binding,
which is present in the high-scored conformations but not
in the low-scored conformations. These observations sug-
gest that the mutant-type binding site, though suitable for
ATP binding, is likely collapsed for a larger amount of time
than the wild-type binding site. This, in turn, correlates with
the experimental data, showing 20 − 80% binding efficiency
for the mutant-type with respect to the wild-type aptamer
(39).

CONCLUSION

To conclude we would like to emphasize, that nucleic acid
structures differs from protein ones both in the atomic
composition and structural folds, making difficult a di-
rect application of protein binding site detection meth-
ods. Here we designed a specific typization for nucleic-
acid structures that covers various nucleotides and suit-
able for both DNA and RNA, as well as their multiple
chain complexes. We developed a 3D convolutional neu-
ral network, BiteNetN, to identify small molecule bind-
ing sites in nucleic acid structures. To train BiteNetN,
we constructed a large dataset of ∼2000 nucleic acid–
small molecule complexes and performed rigorous cross-
validation using sequence- and structure-based splits to cir-
cumvent over-fitting. BiteNetN consistently outperformed
the other methods on the constructed test sets. BiteNetN
is conformation-specific, as we demonstrated by analyz-
ing seven different HIV-1 TAR RNA structures bound
small molecules. It is helpful for large-scale analysis, such
as conformational ensemble or mutant variant analysis,
as demonstrated in the ATP-aptamer case study. Finally,
BiteNetN can operate with both RNA and DNA complexes,
including multiple chains, and we made it publicly available
at https://sites.skoltech.ru/imolecule/tools/bitenet/.
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