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Abstract

The Steroid Receptor RNA Activator (SRA) enhances adipogenesis and increases both glucose uptake and phosphorylation
of Akt and FOXO1 in response to insulin. To assess the mechanism, we differentiated ST2 mesenchymal precursor cells that
did or did not overexpress SRA into adipocytes using combinations of methylisobutylxanthine, dexamethasone and insulin.
These studies showed that SRA overexpression promotes full adipogenesis in part by stimulation of insulin/insulin-like
growth factor-1 (IGF-1) signaling. SRA overexpression inhibited phosphorylation of p38 mitogen activated protein kinase
(MAPK) and c-Jun NH2-terminal kinase (JNK) in the early differentiation of ST2 cells. Conversely, knockdown of endogenous
SRA in 3T3-L1 cells increased phosphorylation of JNK. Knockdown of SRA in mature 3T3-L1 adipocytes reduced insulin
receptor (IR) mRNA and protein levels, which led to decreased autophosphorylation of IRb and decreased phosphorylation
of insulin receptor substrate-1 (IRS-1) and Akt. This likely reflects a stimulatory role of SRA on IR transcription, as transfection
studies showed that SRA increased expression of an IR promoter-luciferase reporter construct.
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Introduction

Obesity is closely associated with a number of diseases including

type 2 diabetes, cardiovascular disease, hypertension, cancer and

gallstones. Adipocytes function both as reservoirs of fuel and as

endocrine cells, secreting adipokines such as leptin, adiponectin,

interleukin-6 and tumor necrosis factor-a to regulate whole-body

energy metabolism and glucose homeostasis [1,2]. Adipogenesis is

a complex process that is highly regulated by coordinated effects of

numerous transcription factors and signaling molecules, including

peroxisome proliferator-activated receptor gamma (PPARc) [3,4],

the CCAAT/enhancer-binding proteins (C/EBPs) [5,6], Kruppel-

like factors (KLFs) [7], Wingless proteins (Wnts) [8], and E2Fs [9].

Both 3T3-L1 preadipocytes and bone marrow-derived ST2

adipocyte precursors can be differentiated in cell culture into

mature adipocytes by standard hormone cocktails that include

fetal bovine serum (FBS), 3-isobutyl-1-methylxanthine (IBMX),

dexamethasone (Dex) and insulin [10,11]. IBMX and Dex are

important for preadipocyte differentiation, whereas insulin plays

unique and important roles in both adipocyte differentiation and

mature adipocyte function. Insulin is postulated to regulate

adipogenesis by activating extracellular signal-regulated kinase

(ERK) and p38 kinase [5,12], and/or critical signaling compo-

nents such as insulin receptor substrate-1 (IRS-1) [13,14], Akt

[15,16] and mTOR [17]. However, the molecular mechanisms

through which insulin promotes adipogenesis are not fully

understood.

After terminal differentiation, adipocytes in culture increase

lipogenesis and gain sensitivity to insulin through expression of

proteins such as PPARc, C/EBPa, adiponectin, Glut4, insulin

receptor (IR) and IRS-1. Insulin stimulates glucose uptake,

utilization and storage through binding to the IR, which triggers

autophosphorylation of the IR b-subunit [18], activation of IRS-1

by tyrosine phosphorylation, and activation of downstream

signaling through the phosphatidylinositol 3-kinase (PI3K)-Akt/

protein kinase B, Ras-mitogen-activated protein kinase (MAPK),

and Cbl-CAP pathways [18,19,20]. Given the central role of the

IR, it is important to note that the hyperinsulinemia accompany-

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e95416

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095416&domain=pdf


ing insulin-resistant states such as obesity and type 2 diabetes can

be associated with lowered IR levels [21,22,23].

The Sra1 gene expresses a steroid receptor RNA activator (SRA)

that was initially found to be a transcriptional coactivator for

steroid receptors [24]. It has subsequently been found to serve as a

coactivator for numerous transcription factors [25,26,27,28], but

the biological functions of SRA are largely unknown. We have

recently shown that SRA functions as a coactivator of PPARc and

promotes adipocyte differentiation [29]. Our gene profiling

experiments revealed hundreds of SRA-responsive genes in

adipocytes, but the molecular mechanisms by which SRA

enhances adipogenesis and insulin-stimulated glucose uptake

remain to be elucidated. By alternative splicing, Sra1 also encodes

an SRA protein (SRAP) [30,31], although the function of SRAP is

largely unknown. In this study, we report that SRA regulates

signaling events early in preadipocyte differentiation. In mature

adipocytes SRA increases insulin receptor (IR) transcription and

IR protein content, which results in increased insulin-responsive

phosphorylation of the IR and downstream targets such as IRS-1

and Akt.

Materials and Methods

Cell Culture, Staining and Reagents
Mouse 3T3-L1 preadipocytes and human embryonic kidney

293T cells were obtained from the American Type Culture

Collection (ATCC) and maintained in Dulbecco’s modified

Eagle’s medium supplemented with 10% calf serum and

penicillin-streptomycin at 37uC in 10% CO2. Mouse marrow-

derived ST2 cells were obtained from the Riken Bioresource

Center-Cell Bank and incubated at 37uC in 5% CO2 in a-minimal

essential medium supplemented with 10% FBS and penicillin-

streptomycin. Induction of 3T3-L1 or ST2 cell differentiation was

performed as described [29]. Briefly, 2 day post-confluent cells

(day 0) were fed with media supplemented with 10% FBS and a

hormone cocktail containing IBMX (0.5 mM), dexamethasone

(1 mM) and insulin (0.167 mM), denoted MDI. On day 2, the cells

were treated again with 0.167 mM insulin, and subsequently were

refed with growth media containing 10% FBS every 2 days. In

some studies, troglitazone (50 mM in dimethylsulfoxide) was

added to the hormone cocktail to achieve a final media

concentration of 5 mM (MDIT). Lipid accumulation in adipocytes

was visualized by micrographs or staining with Oil Red O as

described previously [29].

Antibodies against the following proteins were obtained as

indicated: SRAP (Cat# A310-226A, Bethyl Laboratories, Mon-

tgomery, TX); Phospho-p38 MAPK (Thr180/Tyr182) (3D7)

(Cat# 9215), Phospho-p44/42 MAPK (thr202/Tyr204)

(D13.14.4E) (Cat# 4370), p38 MAPK (Cat# 9212), p44/42

MAPK (137F5) (Cat# 4695), Insulin Receptor b (4B8) (Cat#
3025), IRS-1 (Cat# 2382), phospho-SAPK/JNK (Thr183/

Tyr185) (81E11) (Cat# #4668), SAPK/JNK (56G8) (Cat#
9258), JNK1 (2C6) (Cat# 3708), JNK2 (Cat# 4672), JNK3

(55A8) (Cat# 2305), b-actin (Cat# 4967), Phospho-Insulin

Receptor b (PY1345) (Cat# 3026), Phospho-Insulin Receptor b
(PY1361) (Cat# 3023), Phospho-Akt (Thr308) (Cat# 9275) and

Akt (Cat# 9272) from Cell Signaling Technology (Danvers, MA);

Phospho-Insulin Receptor b (pY972), Phospho-IRS-1 (pY941) and

Phospho-IRS-1 (pY612) from Invitrogen (Carlsbad, CA); Phos-

pho-Insulin Receptor b (pY1328) from BioSource (Camarillo,

CA); and phosphotyrosine (pY4G10) from Millipore (Cat# 05-

321) (Billerica, MA).

Gene Silencing by Short Hairpin RNA (shRNA)
A 21-nucleotide shRNA construct targeting mouse SRA1

mRNA was cloned into the retroviral pSUPERIOR.retro.puro

vector (OligoEngine (Seattle, WA)) or the pLentiLox3.7-GFP

vector with a sense-loop-antisense design, using the loop sequence

CTTCCTGTCA as described [29].

Plasmids, Transfection and Retroviral Infection
The human SRA isoform 2 expression vector pSCT-SRA (non-

protein coding) was kindly provided by Dr. Rainer Lanz (Baylor

College of Medicine, Houston, TX) [24]. The pMSCV retroviral

expression vector and pMSCV-SRA were described previously

[29,32]. Retroviral transduction of ST2 or 3T3-L1 cells for stable

overexpression of pMSCV/pMSCV-SRA or knockdown of

endogenous SRA by either retroviral or lentiviral transduction of

shRNA against SRA and shControl was performed as described

previously [29]. The plasmid pSCT-SRA (denoted SRA Only),

contains the human SRA RNA core sequence and hence expresses

SRA but not SRAP. By alternative splicing the SRA1 gene also can

encode a protein, SRAP [31,33]. Human full-length SRAP cDNA

(hSRAP) was amplified by PCR using cDNA template that was

reverse transcribed from total RNA of HepG2 cells. The amplified

hSRAP cDNA with Sal1 and Kpn1 overhangs was ligated into the

pSCT vector to derive pSCT-hSRAP (denoted SRA-WT). pSCT-

hSRAP expresses both the full length SRA RNA and SRAP.

SRAP mutations including a point mutation and a series of silent

mutations in SRA RNA stem loops 1 and 7 were constructed by

inverse PCR and are described later. The introduction of silent

nucleotide mutations in the SRA stem loops 1 and 7 which

disrupted the RNA stem loop structure and impaired its

coactivation was described previously [34]. pGluc-Basic contain-

ing a reporter gene but lacking promoter elements was obtained

from the New England BioLabs. pIRP-GLuc, in which the insulin

receptor promoter (21718 to +106 bp relative to the most 59

transcription start site) drives expression of Gaussia Luciferase, was

a gift from Drs. R. Singh and A. Mani (Yale University School of

Medicine, New Haven, CT) [35]. Transient transfections were

performed as described previously [27].

Cell Lysis and Immunoblotting
Cells were lysed in buffer containing 40 mM HEPES, 120 mM

sodium chloride, 10 mM sodium pyrophosphate, 10 mM sodium

glycerophosphate, 1 mM EDTA, 50 mM sodium fluoride,

0.5 mM sodium orthovanadate and 1% Triton X-100. Cell lysates

were gently resuspended and incubated at 4uC with gentle rocking

for 40 min to 1 h, followed by microcentrifugation for 10 min at

4uC. The supernatants were transferred to new tubes and protein

concentrations were determined. Proteins were separated by SDS-

PAGE and transferred onto polyvinylidene difluoride membranes,

and immunoblotting was performed using the antibodies described

above. Detection by enhanced chemiluminescence was with a

SuperSignal West Dura kit (Thermo Fisher Scientific, Rockford,

IL) and a Bio-Rad Fluor-S Max Multi-Imager.

Gene Expression Analysis
For reverse transcription-real time quantitative PCR (RT-

qPCR) analysis of mRNA expression, total RNA was first isolated

from cells using Trizol reagent. Reverse transcription of RNA to

cDNA and analysis of relative mRNA levels by RT-qPCR were

done as described [27,29]. Sequences of the qPCR primers are

available upon request or have been previously described [29].

SRA Role in Adipocytes
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Luciferase Reporter Gene Assay
3T3-L1 preadipocytes were cotransfected with pIRP-GLuc or

pGluc-Basic (100 ng) and either pSCT or pSCT-SRA, pSCT-

SRAP or pSCT-SRAP silent mutant plasmids for 48 hr using

Lipofectamine Plus Reagent (Invitrogen) in 24 well plates, and

luciferase activity was measured using a BioLux Gaussia Lucifer-

ase Assay Kit (New England Biolabs, Inc.).

Statistical Analysis
Results are presented as the mean6SD. When comparing two

groups, significance was determined using Student’s t test. When

more than two groups were compared, an analysis of variance

(ANOVA) was followed by Scheffe’s test, and the significance is

indicated as *p,0.05; **p,0.01, and ***p,0.001.

Results

SRA Overexpression Enhances Adipogenesis in ST2
Adipocyte Precursors in an Insulin-dependent Manner

Our previous studies showed that overexpression of SRA

enhances adipogenesis in ST2 precursors induced with full

hormonal cocktail (MDI) but has little effect on spontaneous

adipogenesis in the absence of MDI [29]. Therefore, we

hypothesized that SRA influences adipogenesis by regulating

pathways targeted by MDI. To address this hypothesis, ST2

adipocyte precursors stably containing either an empty control

vector pMSCV (Control) or pMSCV-SRA (SRA) were estab-

lished, in which SRA RNA was overexpressed ,140 fold

(Figure 1A) but without SRAP overexpression (Figure 1B). ST2

Control or ST2 SRA overexpressing adipocyte precursors were

induced to differentiate with full MDI or with single- or double-

combinations of each component. Effects on adipogenesis were

Figure 1. SRA overexpression enhances adipogenesis in ST2 adipocyte precursors in an insulin-dependent manner. ST2 cells were
retrovirally transduced with an SRA expression vector (pMSCV-SRA, denoted as SRA) or empty vector control (pMSCV, denoted as Control). A, Stable
overexpression of SRA were confirmed by RT-qPCR using human SRA primers. Transcript expression was normalized to Ppia (cyclophilin A) and is
presented as mean 6 S.D. relative to the SRA expression determined in control cells set at 1. B, Immunoblot using an SRAP specific antibody
indicated similar endogenous SRA protein (SRAP) expression in Control and SRA overexpressing ST2 cells. The same membrane was re-probed with
anti-b-actin as a loading control. C, Cells were induced to differentiate into adipocytes by treatment with fetal calf serum (FCS), insulin (Ins),
dexamethasone (Dex), methylisobutylxanthine (IBMX), or the indicated combinations. Micrographs of cells at day 4 post-induction indicate lipid
accumulation. D, Expression of Fabp4, Pparg, Cebpa, or Adipoq (adiponectin) was determined by RT-qPCR at the end of differentiation at day 4.
Transcript expression was normalized to Ppia (cyclophilin A) and is presented as mean 6 S.D. relative to expression in FCS-induced control cells set at
1. Statistical significance was evaluated with Student’s t test: *p,0.05, **p,0.01 and ***p,0.001. Results are representative of three independent
experiments.
doi:10.1371/journal.pone.0095416.g001
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then evaluated at day 4 post-induction by assessing lipid droplet

accumulation and expression of adipocyte marker genes. In

agreement with a previous study [10], we found that lipid droplet

formation was strongly induced with cocktails containing insulin

(Figure 1C), although some lipid droplets also were apparent in

SRA-expressing cells induced with Dex plus IBMX. Expression of

the adipocyte marker Fabp4 (also known as aP2) also was most

prominent in SRA over-expressing cells with cocktails containing

insulin (Figure 1D), although the expression of other adipocyte

markers (Pparg, Cebpa, Adipoq) was not as strictly dependent on

insulin. These observations suggest that SRA enhances ST2

adipogenesis at least in part by sensitizing ST2 precursors to the

pro-adipogenic effects of insulin.

Thiazolidinediones (TZDs) are adipogenic ligands for PPARc,

and as such TZDs induce many adipocyte PPARc target genes

[36,37]. Given that SRA can function as an RNA coactivator for

PPARc [29], we asked whether insulin also is required for the pro-

adipogenic effect of SRA even in the presence of a TZD (MDT vs.

MDIT). Indeed, MDT without insulin produces very little lipid

droplet accumulation, even with SRA overexpression (Figure 2A).

At the gene expression level, MDIT induces the adipocyte markers

Fabp4, Pparg, Cebpa and Adipoq more strongly than does MDT.

However, the ability of SRA to induce these genes is similar with

or without insulin, with the possible exception of Pparg (Figure 2B).

SRA Regulates p38/JNK Activity during Early
Preadipocyte Differentiation

We next investigated how SRA expression affects signals

downstream of insulin. Insulin influences adipocyte differentiation

through regulation of MAPKs, including ERK1/2 (p44/p42), p38

and c-Jun amino-terminal kinase (JNK), each of which can

regulate adipogenesis [12,38,39,40,41]. We previously showed that

SRA is expressed at low levels in ST2 precursors and high levels in

3T3-L1 preadipocytes, and therefore we have used SRA

overexpression in ST2 precursors and knockdown in 3T3-L1

preadipocytes to assess the potential roles of SRA in adipocyte

biology [29]. We continued to use these two model systems in the

present investigations. SRA overexpression in ST2 precursors

(Figure 3A) or knockdown in 3T3-L1 preadipocytes (knockdown of

both SRA and SRAP are confirmed in Figure 3B) did not affect

phosphorylation of p44/42 (Figure 3A; data not shown). In

contrast, stable SRA overexpression in ST2 precursors was

associated with marked inhibition of p38 phosphorylation

(Figure 3A). This suggests that SRA may enhance ST2 adipogen-

esis by suppressing p38 activation, because p38 activity likely

inhibits adipogenesis [38]. However, stable knockdown of SRA did

not affect p38 activation in 3T3-L1 preadipocytes (Figure 3C),

even though adipogenesis is impaired in these cells [29].

In general, over-expression of SRA in ST2 cells inhibited, and

knockdown of SRA in 3T3-L1 cells stimulated, JNK phosphor-

ylation, although the specific details differed in the two cell lines

(Figure 3). In ST2 cells, MDI increased the quantity of two low

molecular weight (,46 kDa) phosphoJNK (P-JNK) isoforms and

SRA over-expression inhibited this phosphorylation (Figure 3A). A

larger (,54 kDa) P-JNK isoform was essentially unaffected by

MDI and SRA over-expression. 3T3-L1 cells differed in that SRA

knockdown did not affect phosphorylation of the smaller JNK

isoforms, but it did induce phosphorylation of the larger JNK

isoform (Figure 3C).

There are three genes, each with alternative transcripts, that

encode JNK proteins, the end result of which is 10 JNK protein

isoforms whose molecular weights are approximately 46 kDa

(JNK1a1, JNK1b1, JNK2a1, JNK2b1 and JNK3a1) or 54 kDa

(JNK1a2, JNK1b2, JNK2a2, JNK2b2 and JNK3a2) [42,43].

Using antibodies specific for JNK1, JNK2 or JNK3, we found that

all 3 are expressed in both ST2 and 3T3-L1 cells, although JNK3

has the weakest signal (Figures 3A and 3C). JNK1 shows bands

representing both its p46 and p54 isoforms (a1/b1 and a2/b2,

Figure 2. Differentiation of ST2 cells into adipocytes in the
presence of a PPARc agonist is insulin- and SRA-dependent.
ST2 cells were transduced with either SRA expression vector (pMSCV-
SRA) or empty control vector (pMSCV) and induced to differentiate by
treatment with methylisobutylxanthine (M), dexamethasone (D) and
troglitazone (T), without or with insulin (I). A, Oil Red O staining to
identify triglyceride droplets. B, Expression of Fabp4, Pparg, Cebpa, and
Adipoq (adiponectin) determined by RT-qPCR and normalized to Ppia
(cyclophilin A). Results are mean 6 S.D. relative to MDT-induced
controls. Statistical significance was evaluated with Student’s t test, or
ANOVA followed by Scheffe’s test: *p,0.05, **p,0.01 and ***p,0.001.
Results are representative of three independent experiments.
doi:10.1371/journal.pone.0095416.g002
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respectively), whereas only the larger isoform is detected for JNKs

2 and 3.

To facilitate direct comparisons of these isoforms, we loaded

one sample from ST2 cells into multiple lanes of one gel, and

similarly for 3T3-L1 cells. After Western transfer, the membrane

was cut and each lane was probed with an antibody to either P-

JNK, JNK (total JNK), JNK1, JNK2 or JNK3. The results are

shown in Figure 3D, which confirms that only the larger isoforms

of JNKs 2 and 3 are present, as noted above. The JNK antibody

also detects a low molecular weight band not detected by the

Figure 3. SRA regulates p38/JNK activity during early preadipocyte differentiation. A, Control or SRA-overexpressing ST2 cells were grown
to confluence and induced to differentiate with MDI. Cell lysates were obtained at the indicated times post-MDI induction. Phosphorylation and total
protein expression of p38, p44/42 and JNK was assessed by immunoblotting using specific antibodies, as indicated. B, 3T3-L1 preadipocytes with
stable knockdown of SRA were generated by retroviral infection with an shRNA against SRA (shSRA); a scrambled shRNA was used to generate
control preadipocytes (shControl). Left panel, stable knockdown of endogenous SRA RNA in 3T3-L1 preadipocytes was determined by RT-qPCR using
mouse SRA primers. Transcript expression was normalized to Ppia (cyclophilin A) and is presented as mean 6 S.D. relative to expression in shControl
cells set at 1. Right panel, immunoblot using an SRAP specific antibody confirmed the effective knockdown of endogenous SRA protein (SRAP) in
shSRA 3T3-L1 preadipocytes. Reprobing with anti-b-actin served as a loading control. Bands were quantified from immunoblot digital images using
Bio-Rad Quantity One software, and the relative results are presented below each immunoblot image. C, shSRA and shControl 3T3-L1 preadipocytes
were induced with MDI and protein phosphorylation assessed as described for cells in Figure 3A. Bands labeled a and b in the P-JNK immunoblot, and
a1 and b1 in the total JNK immunoblot, correspond to the p54 and p46 kDa species and were quantified as stated above. Results in A, B and C are
representative of three independent experiments. D, For ST2 cells, the sample +10 minutes MDI minus SRA was loaded into multiple lanes of one gel
and immunoblotted. The membrane was cut so that each lane could be probed individually with an antibody to either phosphoJNK (P-JNK), total JNK
(JNK), JNK1, JNK2 or JNK3. The lanes were reassembled to capture the digital image shown. A similar procedure was used for 3T3-L1 cells +10 minutes
MDI +shSRA.
doi:10.1371/journal.pone.0095416.g003
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JNK1, 2 or 3-specific antibodies. This band is unaffected by any

experimental manipulations, and whether it represents a JNK or a

cross-reacting protein is not known. The largest P-JNK band

corresponds to the larger JNK isoform and hence could be due to

phosphorylation of the larger isoforms of JNKs 1, 2 and/or 3. At

the position of the smaller JNK1 isoform, the P-JNK lane shows a

doublet, which has been previously described [44,45].

Thus, although there are JNK isoform differences in the

response to SRA over-expression in ST2 cells and SRA

knockdown in 3T3-L1 cells, the overall pattern is one in which

SRA inhibits JNK phosphorylation. Given that JNK activation

(phosphorylation) inhibits insulin action in cultured cells [46],

these observations support the possibility that SRA promotes

adipogenesis and insulin sensitivity in part via regulation of JNK.

Knockdown of SRA in 3T3-L1 Adipocytes is Associated
with Downregulation of IR Protein and mRNA, and
Decreased Downstream Insulin Signaling Pathway
Phosphorylation

We have previously shown that the impaired insulin-stimulated

glucose uptake in SRA knockdown 3T3-L1 adipocytes is

associated with decreased insulin-stimulated Akt phosphorylation

[29]. Here we further examine how SRA knockdown modulates

insulin signaling. ShControl or shSRA knockdown 3T3-L1

preadipocytes were differentiated with MDIT and then serum-

starved and treated with or without insulin. SRA/SRAP

knockdown to ,20% of control was confirmed in Figure 3B and

previously [29]. The phosphorylation state of downstream targets

was assessed by immunoblotting (Figure 4). We found that SRA

knockdown decreased autophosphorylation of key tyrosine sites

(pY972, 1328, 1345 and 1361) of IRb, as well as downstream

tyrosine phosphorylation of IRS-1 at pY612 and 941 and

phosphorylation of Akt. In addition, compared to shControl

adipocytes, IRb protein content and mRNA expression in shSRA

adipocytes was decreased by up to 50%, and protein expression of

the IR precursor was similarly decreased (Figure 4, A & B).

We next investigated if lentiviral SRA knockdown in mature

3T3-L1 adipocytes also affects IRb protein levels and downstream

phosphorylation events. 3T3-L1 adipocytes already differentiated

to day 6 post-induction were infected with lentiviruses expressing

shRNA against SRA or a GFP control. SRA and SRAP effective

knockdown was confirmed in Figure 5A. As found above for SRA

knockdown prior to adipocyte differentiation, SRA knockdown of

already-differentiated 3T3-L1 adipocytes was associated with

decreased content of IRb protein and RNA under both basal

and insulin-stimulated conditions (Figure 5B, lanes 2 vs 1, and 4 vs

3). In addition, knockdown of SRA decreased insulin-stimulated

tyrosine autophosphorylation of IRb at pY972 and pY1328

(Figure 5B). Insulin-stimulated IRS-1 tyrosine phosphorylation

also was reduced in SRA knockdown adipocytes, as was

phosphorylation of Akt (Figure 5C and 5D).

SRA but not SRAP Transient Expression Upregulates the
IR Gene Promoter

The negative effect of SRA knockdown on IR protein content

likely occurs at a transcriptional level, since SRA knockdown also

decreased IR mRNA expression to a similar extent (Figure 4B &

5B). To test this hypothesis, we compared the effects of SRA RNA,

SRAP and SRA/SRAP with various mutations on transcription

driven by the IR gene promoter in a reporter assay. As shown in

Figure 6A, these plasmids include pSCT-SRA (denoted as SRA

Only), which expresses the human SRA RNA core sequence but

not SRAP [24]; pSCT-hSRAP (denoted as SRA-WT), which

Figure 4. Depletion of SRA decreases autophosphorylation of
insulin receptor b, tyrosine phosphorylation of IRS-1 and
expression of IRb. 3T3-L1 preadipocytes with stable knockdown of
SRA (shSRA) or with shControl infection were induced to differentiate
with MDIT. At day 11 post-induction, adipocytes were serum-starved for
12 h followed by treatment with or without insulin (10 nM) for the
indicated durations. A, Total cell lysates were subjected to immuno-
blotting (IB) with antibodies against the indicated phospho-proteins or
total IRb, IRS-1, or Akt; b-actin was used as a loading control. Expression
of pY612 and pY941-IRS-1, IRS-1, P-Akt, Akt, IRb and b-actin was
quantified from immunoblot digital images using Bio-Rad Quantity One
software. As indicated below the IRb blotting, expression of P-Akt and
IRb protein was normalized to expression of either Akt or b-actin and
the signal of each band was compared to that for control cells as
indicated (for which the level of expression was set at 1). B, Gene
expression of IR mRNA at each condition was analyzed by RT-qPCR and
was normalized to the expression of b-actin.
doi:10.1371/journal.pone.0095416.g004
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expresses both full length SRA mRNA and SRAP; pSCT-hSRAP-

RNA (denoted SRA-RNA), in which pSCT-hSRAP was mutated

at codon 13 (ATG to TGA) thus preventing expression of SRAP

while causing only this 3 nucleotide change in the sequence of

expressed SRA RNA; and pSCT-SRAP-SDM1/7 and pSCT-

SRA-RNA-SDM1/7 that contain silent mutations in SRA stem

loops 1 and 7 as described previously [34]. These mutations

disrupt the structures of stem loops 1 and 7, which are critical for

SRA function, without altering the protein sequence of the

encoded SRAP. Cotransfection of the IR promoter – luciferase

reporter (pIRP-Gluc) or pGluc-Basic lacking the IR promoter

sequence with SRA RNA, SRAP or the mutated constructs

described above indicated that SRA Only demonstrates enhance-

ment of pIRP-Gluc reporter activity (Figure 6B, bar 2 vs. 1), but

SRA-WT that expresses both SRA mRNA and SRAP does not

(bar 3). As expected, SRA-RNA (bar 4) that expresses SRA mRNA

but has its 13th codon mutated to a stop signal has comparable

coactivation to SRA Only. SRAP-SDM1/7 that expresses a stem

loop-disrupted SRA but wild type SRAP shows further decreasing

activity compared to SRA only and SRA-WT (bar 5 vs. 2 and 3).

In addition, SRA-RNA-SDM1/7 no longer activates transcription

(bar 6 vs. 4). In addition, neither SRA Only nor SRA-RNA

coactivates the reporter lacking the IR promoter sequence (bars 10

& 11 vs. 9), indicating SRA’s activity is specific for the IR

promoter. In agreement with previous findings that SRAP may

inhibit its own RNA function [47], our data support that SRAP

may inhibit its own mRNA’s coactivation (bar 3 vs. 4). This

conclusion was further substantiated in that SRA-WT (expressing

both full-length SRAP and SRA mRNA) and SRAP-SDM1/7

(expressing SRAP with impaired RNA function) inhibit the

coactivation of SRA Only (bars 7 & 8 vs. 2 & 4). Appropriate

expression of the various SRA RNA and SRAP constructs was

confirmed in Figures 6 C and D.

Discussion

SRA has been characterized as a long non-coding RNA that

enhances the transcriptional activity of steroid receptors [24], non-

steroid nuclear receptors and other transcription factors

[25,26,27,28]. By alternative splicing, the SRA1 gene also encodes

Figure 5. Knockdown of SRA in 3T3-L1 mature adipocytes is
associated with downregulation of IR protein content and
downstream insulin signaling pathway phosphorylation
events. 3T3-L1 adipocytes at day 6 post-induction with MDI were
infected with lentivirus expressing control (pLentiLox3.7-GFP) or SRA
knockdown shRNA (pLentiLox3.7-shRNA). At day 11 post-MDI, adipo-
cytes were starved for 12 h and treated without or with 10 nM insulin
for 20 min. A, To confirm effective knockdown of endogenous SRA, an
immunoblot was probed with an anti-SRAP specific antibody, and RT-
qPCR was performed for SRA expression that was normalized to b-actin.
B, Gene expression of IR at each condition analyzed by RT-qPCR and
was normalized to the expression of b-actin. Immunoblots were
subsequently performed on cell lysates from control or SRA -depleted
adipocytes using antibodies as indicated. C, Similar to Figure 5A, serum-
starved day 11 adipocytes were treated with or without insulin, cell
lysates were first applied to immunoprecipitation for anti-IRS-1,
followed by immunoblotting for anti-tyrosine (4G10). D, Immunoblots
were performed for cell lysates indicated in A using Akt phospho- or
total- antibodies. A–D, Quantification of each band was performed
using a Bio-Rad Fluor-S MAX MultiImager. For IRb, b-actin, IRS-1 and Akt,
the signal of each band was compared to that for control cells without
insulin treatment (for which the level of expression was set at 1). For
tyrosine phosphorylation of IRb and IRS-1 (pY-) and phospho-Akt, band
intensity was set at 1 for insulin-treated control cells. These results are
representative of three independent experiments.
doi:10.1371/journal.pone.0095416.g005
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an SRAP protein [31,33]. SRA RNA appears to have diverse

biological functions, such as in mammary gland development [48]

and muscle differentiation [25], although the lack of a knockout

mouse has impeded analysis of the function of SRA in vivo. The

function of SRAP has been even more difficult to discern, in part

because SRAP expression requires expression of the RNA, and in

part because SRA and SRAP have been shown to exist together in

a ribonucleoprotein complex [47].

We previously showed that SRA promotes adipogenesis and

stimulates insulin-stimulated glucose uptake and Akt activation in

adipocytes [29]. However, the mechanisms underlying these

effects of SRA are not well understood. In the present study we

found that SRA overexpression in ST2 adipocyte precursors

significantly promotes adipogenesis, especially upon induction

with hormonal cocktails that include insulin (Figure 1). This led us

to investigate potential effects of SRA on insulin signaling. A

combination of overexpression and knockdown studies indicate

that SRA but not SRAP induces gene expression driven by the IR

promoter. This results in elevated IR mRNA and protein

expression, with consequent increases in insulin-stimulated phos-

phorylation of IRS-1 and Akt (Figure 4–5). Expression of the IR

gene is regulated by numerous transcription factors, including C/

EBPa/b, glucocorticoid receptor, Sp1, NF-1 and others. We

speculate that SRA coactivates one or more of these factors to

induce IR expression. In fact, SRA is known to coactivate the

glucocorticoid receptor [24], although it has been reported not to

coactivate Sp1 [24] or C/EBPa [29].

Recent studies suggest that active p38 MAPK inhibits

adipogenesis [38]. Therefore, our observation of decreased p38

MAPK activation (Figure 3A) could explain the enhanced

adipogenesis in SRA-overexpressing ST2 precursors. However,

stable knockdown of SRA did not affect p38 activation in 3T3-L1

adipocytes (Figure 3C), even though adipogenesis is impaired in

these cells [29]. Therefore, the contribution of altered p38 activity

to the adipogenic effects of SRA may depend on the cell type or

other factors.

In addition, we demonstrate that SRA overexpression markedly

inhibits, while depletion increases, phosphorylation of certain JNK

species (Figure 3). Since the absence of JNK1 enhances insulin

receptor signaling [40], the inhibition of JNK activity by SRA may

Figure 6. SRA not SRAP transient expression upregulates IR
transcription. A, Schematic presentation of the SRA1 gene and
expression constructs used in the reporter assay. The human SRA1 gene
contains five exons as indicated by the grey boxes. ‘‘SRA Only’’ contains
the human SRA core sequences from exons 2–5 that only express SRA
RNA. SRA-WT is the full-length human Sra1 cDNA that expresses both
SRAP and SRA mRNA. SRA-RNA is the SRA-WT cDNA in which codon 13

was mutated from ATG to TGA, so that SRAP is not expressed. SRAP-
SDM1/7 and SRA-RNA-SDM1/7 are plasmids that are based on the SRA-
WT and SRA-RNA constructs with introduction of silent nucleotide
mutations in the stem loops 1 and 7, which disrupt the RNA stem loop
structures (and hence impair coactivation by SRA [34]) without
changing the amino acid sequence of the encoded SRAP. B, SRA
upregulates IR transcription in 3T3-L1 cells. 3T3-L1 preadipocytes were
cotransfected with either empty vector (pSCT, 500 ng), pSCT-SRA Only
(500 ng), or other SRA/SRAP constructs (500 ng) as indicated and IR
promoter (pIRP-Gluc, 100 ng in lanes 1–8) or pGluc-Basic (lanes 9–11)
driven luciferase expressing plasmids. Forty-eight hours post-transfec-
tion, luciferase activity was measured. Data were expressed as fold
change after normalization with the total cell protein content of each
well. These results are representative of five independent experiments.
Error bars indicate the standard deviation. The results of statistical
analyses by ANOVA followed Scheffe’s test, comparing bar 1 with bars
2–8, and bar 9 with bars 10–11 and with bars 2 and 4, are shown in the
figure (*, p,0.05). C, Confirmation of SRA overexpresion in the transient
transfection in B by RT-qPCR, using human SRA primers and normalized
to Ppia (cyclophilin A). The data are presented as the mean 6 S.D.
relative to the SRA expression in pSCT cells set at 1. D, Immunoblot
using anti-SRAP indicating SRAP expression in the transient transfection
in B (endogenous SRAP expression in lanes 1, 2, 4, 6, and 9–11 was
visible only with a longer exposure). Immunoblotting with anti-b-actin
served as a loading control.
doi:10.1371/journal.pone.0095416.g006
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further activate insulin signaling and promote adipocyte differen-

tiation. By alternative processing of RNA transcripts, the genes

encoding JNK1, JNK2 and JNK3 produce 10 protein isoforms of

approximately 46 and 54 kDa [42]. We noted that SRA

overexpression in ST2 cells only inhibits the phosphorylation of

p46 JNK (which represents JNK1), while SRA knockdown in 3T3-

L1 preadipocytes primarily upregulates phosphorylation of p54

JNK (which may represent JNKs 1, 2 and/or 3) (Figure 3A, C).

There are several potential explanations for these differences. The

shSRA depletes both SRA (RNA) and SRAP (protein), whereas

the SRA over-expression vector does not produce SRAP. The

function of SRAP is unknown, but it could potentially play a role

in the regulation of JNK phosphorylation. Another possibility is

that p46 JNK phosphorylation may already be maximally induced

by MDI in 3T3-L1 cells, so that loss of SRA cannot induce it

further. Similarly, ST2 cells may contain enough endogenous SRA

to maximally inhibit p54 JNK phosphorylation such that over-

expression has no further effect, whereas the inhibition of p46 JNK

phosphorylation may require a higher level of SRA. Alternatively,

there may be cell-specific differences in the expression or

availability of upstream MAPK kinases and associated proteins

that are recruited to the SRA ribonucleoprotein complex.

SRA is highly expressed in breast and prostate cancer cells

[31,49]. Thus, the ability of SRA to induce IR protein expression

and increase downstream phosphorylations of IRS-1 and Akt in

response to insulin may occur in these and possibly other cancers.

In these settings SRA/SRAP could contribute to Akt-stimulated

cancer cell growth.

In summary, the present study reveals that SRA plays an

intrinsic role in the regulation of adipocyte differentiation and

insulin signaling, at least in part by inhibiting phosphorylation of

JNK and p38 MAPK, increasing IR transcription, maintaining

IRb protein levels and enhancing downstream signaling pathways

through IRS-1 and Akt.
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