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A B S T R A C T

Tracheal stents can be used to quickly reconstruct the airway and relieve symptoms of dyspnea in patients with 
tracheal stenosis. However, existing tracheal stents lead to complications such as granulation tissue formation, 
difficulty in removal, persistent growth of malignant tumors, stent migration, and mucus plugging. In this article, 
we reviewed the main methods used to reduce complications associated with tracheal stent design. Drug-eluting 
stents can inhibit granulation tissue formation and prevent infection and local chemotherapy. The biodegradable 
stent can support the trachea for some time, maintain tracheal patency, and degrade gradually, which avoids 
removing or replacing the stent. Radioactive stents loaded with I125 have good potential for inhibiting the 
persistent growth of malignant tumors. Three-dimensional printing technology enables the manufacturing of 
patient-specific stents, which increases the degree of matching between the complex tracheal anatomy and the 
stent, thus providing a new solution for stent migration caused by structural mismatch. Minimizing the barrier of 
the stent to mucociliary clearance, providing an anti-fouling coating, and culturing respiratory epithelial cells on 
the surface of the stent are the main methods used to reduce mucus plugging. We also proposed future research 
directions for tracheal stents to guide the design and manufacture of ideal tracheal stents.

1. Introduction

The trachea plays a crucial role in the respiratory system. Various 
causes, such as infections, tumors, trauma, long-term intubation, tra
cheobronchomalacia, and tuberculosis, can result in tracheal stenosis, 
leading to symptoms such as dyspnea, post-obstructive infection, and 
coughing [1–5]. Surgical intervention, such as wedge resection [6], 
balloon bronchoplasty [7], bronchoscopic holmium laser ablation 
continuous cryoablation [8], stereotactic body radiation therapy [9], 
and photodynamic therapy [10], is the preferred form of treatment for 
tracheal stenosis. With the development of materials and the improve
ment in endoscopic intervention technology, tracheal stents have 
become an important method of treating tracheal stenosis and can be 
used to quickly reconstruct the airway and relieve symptoms of dyspnea. 
Following the introduction of tracheal stents, various types of tracheal 
stents have been developed [11–19] (Fig. 1).

Although the therapeutic effect of tracheal stents is remarkable, 
many complications are associated with their application, and the 
incidence and severity of the complications directly affect the 

therapeutic effect of stents. The complications associated with tracheal 
stents include stent migration, granulation tissue formation, mucus 
plugging, incoercible cough, stent fracture, and infection [20–24]. These 
complications may be caused by materials, continuous movement, 
infection, inhibition of mucociliary clearance, and the biomechanical 
properties of the stent [25]. Tracheal stents mainly include silicone 
stents, metal stents, and hybrid stents, based on the materials used. 
Commercially available silicone stents include Dumon silicone Y stents 
(Novatech SA, La Ciotat, France) and Dumon silicone stents (Novatech 
SA, La Ciotat, France); Metal stents include Microtech uncovered stents 
(Micro-Tech Co., Ltd., Nanjing, China), and Ultraflex uncovered stents 
(Boston Scientific Corporation, Natick, MA); Hybrid stents include 
Microtech covered stents (Micro-Tech Co., Ltd., Nanjing, China), 
Microtech covered Y stents (Micro-Tech Co., Ltd., Nanjing, China), 
Polyflex stents (Boston Scientific, Natick, MA, USA), Ultraflex partially 
covered metallic stents (Boston Scientific Corporation, Natick, MA), 
Aero covered stents (Alveolus, Inc., Charlotte, NC), and Dynamic stents 
(Freitag; Rüsch, Kernen, Germany). According to the clinicaltrials.gov
website, the tracheal stents currently under evaluation in clinical trials 
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include patient-specific silicone airway stents (NCT05050591), metal 
bare stent with I125 (NCT03944408), and covered metallic segmented 
airway stent modified by 3D printing (NCT03890523).

The silicone stent is the first choice for treating benign tracheal 
stenosis [26,27]. Silicone stents are elastic and biocompatible, can 
effectively reduce the formation of granulation tissue, and are easily 
removed [28]. However, silicone stents also have certain limitations, 
such as the need for rigid bronchoscopy during implantation, and its 
radial force is weaker than that of a metal stent, which is prone to 
migration and mucus plugging [29]. Metal stents are easier to implant 
than silicone stents and can be performed with only flexible bronchos
copy [30]. They have a strong radial force, with a low incidence of 
migration and mucus plugging. However, the greater radial force of 
metal stents increases the risk of granulation tissue formation and 
perforation, and these stents are difficult to remove [31]. Hybrid stents, 
also known as covered stents, consist of a metal stent and a polymer film; 
although they combine the advantages of a silicone stent and a metal 
stent, they hinder mucociliary clearance [32,33]. Regardless of the 
material, complications associated with tracheal stents are common 
[34].

Biomechanically, the complications are related to the structural and 
mechanical mismatch between the tracheal stent and the native trachea 
(Fig. 2). The main manifestations are as follows: (1) the silicone stent is 
usually cylindrical, whereas the cross-section of the trachea can be C- 
shaped, D-shaped, or U-shaped [35–37]; (2) the load-deformation curve 
of the trachea is typically J-shaped, whereas, the load-deformation curve 
of the silicone stent is usually R-shaped [38,39]; (3) the mechanical 
properties of the trachea are anisotropic, whereas, the mechanical 
properties of the silicone stent are isotropic [40–42]. Structural and 
mechanical mismatch can lead to stent migration; they can also irritate 
the trachea, causing inflammation and granulation formation. The 
tracheal stent should match the structure of the stenotic airway and 
exert different forces in the axial direction to maintain airway patency 
without further damaging tissues [43]. Therefore, researchers investi
gating tracheal stents are exploring ways to match the structure and 
mechanical properties of the tracheal stent and the native trachea 
through structural design.

Due to these complications, new stents need to be designed to 
address the flaws of existing stents. The strategies used in tracheal stents 
mainly include functional establishment, structural design, material 
selection, and modification (Fig. 3). The ideal tracheal stent should have 
the following characteristics [26,44,45]: (1) easy to implant and 
remove; (2) have an appropriate size; (3) have sufficient radial rigidity 
and longitudinal flexibility; (4) can simulate normal tracheal anatomy 
and physiology; (5) not hinder the function of mucociliary clearance. 
However, no tracheal stents are available in the clinical setting that can 
achieve the expected treatment effect. To achieve an ideal tracheal stent, 
researchers have developed tracheal stents, including drug-eluting 
stents [46,47], biodegradable stents [48,49], radioactive stents [18,
50], 3D-printed stents [51–54], and stents with novel structural designs 
[55–58]. Each type of stent has several specific advantages, but they also 
have some complications.

To summarize, several complications are associated with tracheal 
stents that need to be addressed urgently, such as granulation tissue 
formation, difficulty in removal, persistent growth of malignant tumors, 
stent migration, and mucus plugging. Many studies have focused on a 
specific topic, while few comprehensive reviews have discussed the 
design of tracheal stents addressing related complications.

Therefore, in this article, we focused on how to reduce complications 
from the perspective of tracheal stent design and summarized the 
development and applications of various novel tracheal stents in recent 
years. We have also proposed future research directions for tracheal 
stents.

2. How can granulation tissue formation be reduced?

2.1. Causes of granulation tissue formation

Granulation tissue formation is a complication that often requires 
intervention. Granulation tissue consists of macrophages, fibroblasts, 
loose connective tissue, and newly developed capillaries. Mechanical 
stimulation and infection are the main causes of granulation tissue for
mation [59–63]. The factors associated with granulation tissue forma
tion include tracheal wall thickening [64], structural airway obstruction 
[65], and the stent-to-vocal fold distance [66].

Mechanical stimulation is closely related to stent expansion. Large- 
scale stent expansion exerts excessive force on the tracheal wall, 
whereas small-scale stent expansion increases stent motion and in
creases friction between the stent and the tracheal wall [67]. A 
follow-up study reported that when the ratio of stent diameter to 
tracheal diameter was >100 %, 90–100 %, and <90 %, the granulation 
tissue formation rates were 42.86 %, 26.32 %, and 0 %, respectively 
[68]. The diameter of the metal stent is close to the diameter of the 
normal airway, the degree of inflammatory reaction is relatively 
reduced, and they have fewer complications than large-diameter 
tracheal stents [69]. During the respiratory cycle, the pressure at the 
proximal and distal ends of the stent changes significantly, whereas the 
pressure in the middle of the stent changes slightly. These findings are 
consistent with the location of granulation tissue formation in vivo [70].

Bacterial infection and proliferation may induce an inflammatory 
response, leading to granulation tissue formation. The bacteria colo
nized after stent implantation include Staphylococcus aureus, Pseudo
monas aeruginosa, Klebsiella spp., Streptococcus pneumoniae, Streptococcus 
viridians, nonhemolytic Streptococcus, Haemophilus influenza, Neisseria 
species, Candida, and Rhizopus oryzae [71–75]. Staphylococcus aureus 
and P. aeruginosa play important roles in the pathogenesis of infection 
during the application of Montgomery T-tubes [76]. There is a highly 
significant correlation between S. aureus and P. aeruginosa and granu
lation tissue formation, and S. aureus has a longer effect on granulation 
tissue [60]. The biofilm type and stent material are significantly corre
lated: the covered stent is the Staphylococcus type, the silicone stent is 
the Corynebacterium-dominated type, and the uncovered metal stent is 
the polymicrobial type [77].

Fig. 1. A brief timeline for the development of tracheal stents.
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2.2. The mechanism of granulation tissue formation

Mechanical stimulation can damage local tissues to some extent. 
After injury, protein adsorption, acute inflammation, chronic inflam
mation, foreign body giant cell formation, and fibrotic encapsulation 
occur sequentially (Fig. 4) [78].

2.2.1. Protein adsorption
Within seconds after injury, blood plasma proteins adsorb onto the 

stent surface and form a blood-based provisional matrix on and around 
the stent surface (Fig. 4 B) [79]. The provisional matrix contains various 

chemoattractants, cytokines, and growth factors, which affect the in
flammatory response by regulating the activity of macrophages and 
other immune cells. The provisional matrix eventually develops into a 
fibrin-dominated thrombus. Acute and chronic inflammation occur 
sequentially. The strength of the inflammatory response depends on the 
degree of injury during implantation and the extent of the transient 
provisional matrix, and the factors mainly include surface topography, 
surface charge, surface wettability, stent size and shape, and stent 
stiffness [80,81].

Fig. 2. Comparison of structure and mechanical properties between silicone stent and native trachea.

Fig. 3. The strategies employed in tracheal stents research.

S. Chen et al.                                                                                                                                                                                                                                    Materials Today Bio 29 (2024) 101263 

3 



2.2.2. Acute inflammation
Neutrophil infiltration marks the beginning of an acute inflamma

tory response (Fig. 4C) [82,83]. Neutrophils and M1 macrophages 
disinfect wounds by phagocytosing bacteria and other microbes intro
duced by stents. However, extended neutrophil activity is harmful and 
may lead to prolonged inflammation or chronic injury. M1 macrophages 
secrete various proinflammatory cytokines and chemokines, further 
amplifying the inflammatory response. The acute inflammatory 
response usually resolves within a week, depending on the degree of 
injury.

2.2.3. Chronic inflammation and foreign body giant cell formation
Monocyte and lymphocyte infiltration and macrophage activation 

indicate the start of chronic inflammation (Fig. 4 D). M1 macrophage 
activation is characterized by the synthesis of interleukin-1 (IL-1), IL-6, 
and IL-8. Early use of an IL-1 receptor antagonist may decrease the ef
ficacy of IL-1 in the inflammatory cascade [84]. Stent-induced tracheal 
stenosis is closely related to the increase in IL-8 expression in the blood 
one day after tracheal stent implantation: an increase of 1.19-fold 
compared to that at baseline [85]. Macrophages adhere to the stent 
for multiple days and release ROS, to phagocytose the stent [86]. In this 
context, macrophages often fuse to form foreign body giant cells, which 
depends on the activation of mast cells and lymphocytes that secrete IL-4 
and IL-13. Macrophages are polarized into selectively activated or M2 
macrophages that reduce the inflammatory response and promote 
wound healing by producing profibrotic factors to recruit and stimulate 
fibroblasts [87]. The resolution of acute and chronic inflammatory re
sponses usually lasts for a maximum of two weeks, and infection is 
indicated if it lasts for more than three weeks.

2.2.4. Fibrotic encapsulation
Fibroblasts deposit collagen and other components of the extracel

lular matrix on the stent surface (Fig. 4 E) [88]. The deposited collagen 
contracts and forms a dense fibrous capsule, isolating the stent from the 
surrounding tracheal tissue [89]. The formation of fibrous capsules is 
influenced by various profibrotic and proangiogenic growth factors, 
such as VEGF and TGF-β1. After the expression of TGF-β1 increases in 
granulation tissue, TGF-β1 stimulates fibroblasts to produce VEGF at the 
mRNA and protein levels, after which the expression of VEGF increases. 
VEGF siRNA treatment, the selective Smad3 inhibitors SIS3 and UO126, 
low concentrations of erythromycin, and thalidomide can inhibit 
TGF-β1-induced VEGF production [90,91]. The granulation tissue con
sists of collagen fibers, proliferating capillary sprouts, collagen-secreting 
fibroblasts, and phagocytic macrophages [92].

The formation of granulation tissue can be inhibited by changing the 
physical properties of the stent, delivering drugs and biomolecules, and 

modifying bioactive elements on the surface of the stent [93]. The 
simplest way to change the physical properties of the stent is to add a 
film on the outer surface of the stent. The covered stent can block the 
granulation tissue from passing through the stent mesh [94–96]. Coating 
the tracheal stent with bioactive elements, such as hyaluronic acid, can 
reduce the degree of tracheal mucosal fibrosis and prevent tracheal 
stenosis [97]. Hydrophilic coatings and superhydrophobic coatings also 
effectively reduce protein adsorption [98,99], thus inhibiting the initial 
stage of granulation tissue formation. In most studies, the main 
approach used to inhibit granulation tissue formation is drug-eluting 
tracheal stents.

2.3. How to design a drug-eluting tracheal stent?

The design of drug-eluting tracheal stents often relies on the expe
rience of drug-eluting coronary artery stents. This procedure includes 
drug selection, drug carrier material selection, drug carrier preparation, 
the use of a stent platform, drug release evaluation, and biosafety 
evaluation.

2.3.1. What drugs can inhibit granulation tissue formation?
Various antimicrobial drugs and immunosuppressive and anticancer 

agents can inhibit granulation tissue formation (Table 1). Among them, 
sirolimus (also known as rapamycin) [100–102] and paclitaxel are 
widely used [103–106] (Fig. 5). Other drugs, such as ciprofloxacin 

Fig. 4. The process of granulation tissue formation after stent implantation (A), including protein adsorption (B), acute inflammation (C), chronic inflammation and 
foreign body giant cell formation (D), and fibrotic encapsulation (E).

Table 1 
Drugs that can inhibit granulation tissue formation.

Drugs used in tracheal stent to inhibit granulation tissue 
formation

Drugs with the 
potential to 
inhibit 
granulation 
tissue formation

Single use Mix use Single use

Sirolimus Gifitinib Ciprofloxacin and 
dexamethasone

β-elemene

Paclitaxel Kenalog Cisplatin and AgNPs Tenoxicam
Allicin Curcumin Poly(ciprofloxacin 

fumaric acid) and 
poly(gadodiamide 
ciprofloxacin 
fumaric acid)

Isoniazid

Doxycycline Mitomycin C ​ Erythromycin
Vancomycin Dexamethasone ​ Penicillin
Ciprofloxacin Methylprednisolone 

sodium succinate
​ Budesonide

Arsenic 
trioxide

Indomethacin ​ ​
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[107], doxycycline [108], and vancomycin [109], are also commonly 
used for drug-eluting tracheal stents.

2.3.1.1. Sirolimus(rapamycin). Sirolimus inhibits mTOR, which in turn 
decreases inflammation and associated downstream fibrosis. It has the 
weakest effect on human tracheal epithelial cells [110,111]. In vitro cell 
experiments revealed that sirolimus can significantly decrease the pro
liferation, metabolism, and collagen deposition of human laryngo
tracheal fibroblasts (Fig. 6 A) [112]. The mechanism underlying the 
inhibitory effects of sirolimus involves the reduction of oxidative 
phosphorylation in human laryngotracheal fibroblasts. The in vitro drug 
release pharmacokinetics of a sirolimus-coated stent revealed that it has 
good surface morphology and sustained effective drug release charac
teristics for 42 days [100]. The sirolimus-loaded poly-L-lactide and 
polycaprolactone blend (PLLA-PCL) stent can perform sustained drug 
release and has adequate mechanical stability in vitro and in vivo [101]. 
In vitro, it reduces scar and normal fibroblast proliferation, as well as, 
collagen gene expression. In vivo, it effectively decreases fibrosis and 
generates a mild inflammatory response (Fig. 6 B). The PLLA-PCL stent 
loaded with sirolimus exhibits reliable release of sirolimus, satisfactory 
mechanical stability under physiological conditions, biocompatibility, 
almost no inflammatory response in the trachea, and reduced scar for
mation [102].

2.3.1.2. Paclitaxel. Paclitaxel has significant anti-proliferative effects 
on fibroblasts, vascular smooth muscle cells, and endothelial cells. In 
vitro experiments on paclitaxel-loaded poly(lactic-coglycolic acid) 
(PLGA)-coated tracheal stents revealed favorable surface morphology 
and sustained effective drug release behavior for more than 40 days 
[103]. A tracheal stent containing paclitaxel was prepared by coating a 
bilayered film on the surface of the stent [104]. Paclitaxel was released 
mainly through a diffusion mechanism. This stent can cause a local in
flammatory response that is temporary and self-alleviated (Fig. 6C). The 
self-expanding C-shaped tracheal stent loaded with paclitaxel can 
release paclitaxel using a temperature-responsive mechanism under an 
alternating magnetic field [46]. It has satisfactory biosafety in the rabbit 
trachea and maintains airway patency without mucus plugging within 
one month after implantation (Fig. 6 D). The results of in vivo animal 
experiments revealed that the granulation tissue of the paclitaxel-loaded 
tracheal stent was significantly reduced compared to that of the bare 
metal stent (Fig. 6 E) [105]. No high concentrations of drugs were 
detected in the trachea or lung tissues, and no side effects were found in 
the blood. However, one study compared the response of stainless steel 
stents, nitinol alloy stents, and paclitaxel-loaded drug-eluting stents in 
the rabbit trachea [113]. The results showed that the stainless steel stent 

group presented granulation tissue and stenosis, whereas the 
drug-eluting stent group presented significant lesions, which were not 
superior to those of the nitinol alloy stent group, possibly because of the 
dose of paclitaxel used. Generally, paclitaxel-loaded stents show positive 
effects in basic and animal experiments, but in real-world applications, 
they cannot prevent tracheal restenosis due to granulation tissue for
mation [106]. This difference might occur because of the following 
reasons: the trachea is normal in animal experiments but stenosed in 
clinical experiments; the stent becomes longer when the patient coughs, 
which can cause friction between the end of the stent and the tracheal 
wall. Electric knife, cryotherapy, or balloon dilation is performed before 
stent implantation in clinical experiments. Paclitaxel can inhibit fibro
blasts and mucosal epithelial cells.

2.3.1.3. Other drugs. Ciprofloxacin: The shape memory tracheal stent 
prepared using digital light processing technology has a smaller inser
tion profile and greater flexibility [107]. The porous structure can pre
vent mucus plugging, and the loaded ciprofloxacin also imparts 
antibacterial activity to the stent (Fig. 7 A). Poly(ciprofloxacin fumaric 
acid) and poly(gadodiamide ciprofloxacin fumaric acid) can inhibit the 
growth of four common airway pathogens, including Escherichia coli, 
Klebsiella pneumoniae, Moraxella catarrhalis, and P. aeruginosa, and are 
expected to act as candidates for tracheal stent coating (Fig. 7 B) [114]. 
Combining ciprofloxacin and dexamethasone can achieve anti-infection 
and anti-inflammatory effects; ciprofloxacin can be released in a 
controlled manner for one week, and dexamethasone can be released for 
three months [115].

Doxycycline: Matrix metalloproteinase-2 and matrix 
metalloproteinase-9 are expressed mainly in inflammatory tissues and 
can be inhibited by doxycycline, a broad-spectrum antibiotic. 
Doxycycline-eluting core-shell nanofiber tracheal stents can prevent 
restenosis (Fig. 7C and D) [108,116].

Vancomycin: Vancomycin is a universal antimicrobial agent with no 
cross-resistance to other antibiotics [117]. It interferes with the syn
thesis of bacterial cell wall peptidoglycans and inhibits the production of 
cell wall phospholipids and peptides, thus inhibiting bacterial growth 
and reproduction, eventually leading to their death [118]. The tracheal 
stent loaded with vancomycin has good antibacterial activity against 
S. pneumoniae and methicillin-resistant S. aureus [109]. It not only re
duces the thickness of granulation tissue and collagen density (Fig. 7 E) 
but also downregulates the expression of α-SMA and CD68.

Allicin: A polydopamine-mediated coating method was used to 
prepare a silicone tracheal stent coated with allicin, which had no 
cytotoxic or significant anti-inflammatory or antibacterial effects in 
vitro. The rabbit model showed favorable mucosal healing, a significant 

Fig. 5. Antibacterial drugs (A) and anti-hyperplasia drugs (B) loaded on tracheal stent.
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reduction in proinflammatory cytokines, a significant reduction in the 
number of attached cocci-shaped bacteria, and faster regeneration of 
normal respiratory epithelial structures (Fig. 8A and B) [47].

Arsenic trioxide: Arsenic trioxide exhibits antitumor and anti- 
inflammatory effects, mainly by directly inducing cell apoptosis and 
inhibiting cell proliferation, cell differentiation, and angiogenesis [122]. 
Therefore, tracheal stents loaded with arsenic trioxide can effectively 
inhibit granulation tissue formation (Fig. 8C) [119].

Mitomycin C: Mitomycin C is a potent inhibitor of human fibroblasts 
[123]. When injected into granulation tissue, mitomycin C was found to 
inhibit the proliferation of granulation tissue and reduce the degree of 
tracheal stenosis [124–127]. The bioabsorbable tubular stent loaded 
with mitomycin C resulted in the least mucus plugging and airway 
obstruction caused by tracheal stenosis after implantation into the rabbit 
trachea [128]. After 12 weeks, the degree of tracheal stenosis was only 
half that of the silicone stent.

Gifitinib: Gifitinib can compete with ATP to bind to the intracellular 
tyrosine kinase domain of epidermal growth factor receptor, thus 

inhibiting receptor autophosphorylation and blocking downstream 
signal transduction. The sandwich structure of gifitinib-loaded poly 
(lactic-coglycolic acid) microspheres in polyurethane coatings is suit
able for tracheal stents that release anticancer drugs over a long period 
[129,130].

Additionally, tracheal stents loaded with cisplatin, Kenalog, meth
ylprednisolone sodium succinate, dexamethasone, curcumin, and indo
methacin can also achieve effective granulation tissue suppression 
[131–136]. Some in vitro cell experiments and drug experiments have 
shown that β-elemene, tenoxicam, isoniazid, erythromycin, penicillin, 
and budesonide can reduce the proliferation of tracheal fibroblasts, thus 
reducing granulation tissue and preventing recurrent stenosis 
[137–140]. However, they are currently not used in manufacturing 
drug-eluting tracheal stents.

2.3.1.4. Inorganic nanoparticles. Silver nanoparticles (AgNPs): AgNPs 
have antibacterial and anti-inflammatory activities. A novel tracheal 
stent coated with polylactic acid (PLA) and silver nanoparticles was 

Fig. 6. (A) Fibroblast morphology of normal (A1) and after treatment with DMSO (A2), lowdose rapamycin (A3) and highdose rapamycin (A4) [112].(B) CD4 (red), 
CD20 (green) of injured trachea (B1), F4/80 (red) and CD3 (green) of injured trachea (B4). CD4 (red), CD20 (green) of uninjured trachea (B2), F4/80 (red) and CD3 
(green) of uninjured trachea (B5). CD4 (red), CD20 (green) of injured trachea with stent (B3), F4/80 (red) and CD3 (green) of injured trachea with stent (B6) [101]. 
(C) General observation and H&E staining of the healthy trachea (control) and the trachea in contact with the PTX30/TSs at 10th and 30th day [104]. (D) Ap
pearances of the trachea and the C-shaped tracheal stent. H&E and Masson’s staining of the tracheal tissue [46].(E) 1 and 3 months after stent implantation in control 
group (E1, E2); 5 months after stent implantation in control group (E3, E4); 1 and 3 months after stent implantation in experimental group (E5, E6); 5 months after 
stent implantation in experimental group(E7, E8) [105].
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fabricated by electrospinning [120]. The in vivo experimental results 
indicated that the tracheal stent inhibited granulation tissue formation 
by reducing bacterial content, inflammation, and collagen deposition 
(Fig. 8D and E). The synergistic effect of cisplatin and AgNPs leads to 
bacterial death and reduces the content of inflammatory factors, α-SMA, 
and collagen deposition, thus inhibiting granulation tissue formation 
(Fig. 8F and G) [121,141,142]. Besides AgNPs, other antimicrobial 
inorganic nanomaterials, such as copper nanoparticles [143], Al2O3 
nanoparticles [144], TiO2 nanoparticles [145], ZnO nanoparticles 
[146], gold nanoparticles [147], and CuO nanoparticles [148], are also 
widely used in biomedical applications. These methods may help expand 
the stent design.

2.3.2. How to choose the appropriate drug carrier?
Drug carriers should have the following characteristics: (1) good 

biocompatibility and no serious immune response; (2) sufficient 
strength and flexibility to adapt to the deformation of the tracheal stent; 
(3) long-term, stable, and controlled drug release; (4) ability to maintain 
the physicochemical properties of the drug without affecting its phar
macological effects.

Few studies have investigated the use of nondegradable polymers as 
drug carriers, mainly because long-term implantation may cause an in
flammatory response, and these materials need to be removed after drug 
release. The nondegradable polymer used for studying drug-eluting 

tracheal stents is mainly the ethylene-vinyl acetate copolymer [46]. 
To avoid the inflammatory response caused by polymer persistence, 
many studies have used biodegradable polymers as drug carriers. These 
biodegradable polymers include PLGA [100,103,105,129], PCL [109,
121,132,142], PLA [120], PLLA-PCL [141], Poly-L-lactide-caprolactone 
[119,135], Poly (DL-lactide-co-glycolide) [101], polydopamine [47], 
and polyurethane [108,116]. Two main risk factors are associated with 
drug-loaded tracheal stents: rapid release of the drug at the implantation 
site and coating damage. Double-layer coatings [149,150], asymmetric 
coating [151], and micro-patterned diamond-like carbon coating [152] 
an effectively control the rapid release of drugs at the implantation site. 
For coating damage, polymer-free drug-eluting stents have been intro
duced for coronary artery stents [153–155]. However, this technology 
has not yet been applied to tracheal stents.

2.3.3. What is the preparation process for drug carriers?
Selecting the appropriate preparation process is the key to preparing 

drug-eluting stents. The common processes used to prepare drug-eluting 
tracheal stents include dip coating [100,103,105], spray coating [129,
131], electrospinning [108,109,116,120,121,135]. Dip coating is simple 
and inexpensive but has the disadvantages of drug waste, non-uniform 
thickness, and inability to accurately control drug loading [156]. 
Spraying does not waste drugs, and it is a convenient technique to 
prepare multilayer structures with uniform and controllable thicknesses. 

Fig. 7. (A) Confocal images of S. epidermidis and E. coli. The green and red regions represent live and dead bacteria, respectively [107].(B) Images of typical 
incubated standard plate of the four airway bacteria strains [114]. (C) Fibrosarcoma cells were incubated under different doxy concentration, and stained with DAPI 
[108].(D) H&E and Masson’s staining of tracheal mucosa [116].(E) General observation, H&E staining and Masson’s staining of blank control (BC), pellosil 
matrix-covered stent (PC), PVNF-0-covered metallic stent, and PVNF-5-covered metallic stent [109].
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However, special spraying equipment needs to be customized according 
to different types of stents. Although electrospinning can produce 
drug-loaded nanofibers with high specific surface areas and porosities, 
the types of polymers available for electrospinning are limited. Some 
researchers added drugs directly to the stent material [107,128,132]. 
Additionally, films with arrays of microchambers to accommodate drugs 
are also used for drug-eluting tracheal stents [133].

2.3.4. Stent platform and stent evaluation
For the stent platform, most drug-eluting stents are made of per

manent metals, mainly stainless steel, cobalt-chromium alloy, and 
nitinol alloy. The stent persists even after the drug is completely 
released, leading to complications. Therefore, in future studies on drug- 
eluting tracheal stents, the application of biodegradable stent platforms 
should be considered to further improve the therapeutic effect of these 
stents. No unified evaluation criteria are currently available for the in 
vitro drug release and biosafety of drug-eluting tracheal stents; thus, the 

Fig. 8. (A) In vitro antibacterial effect of allicin [47].(B) H&E staining of trachea 1 and 2 weeks after implantation [47]. (C) H&E and Masson’s staining of the 
trachea at 1 and 4 weeks in the NFCS, 0.4 % ATO-NFCS, and 1.2 % ATO-NFCS [119]. (D) H&E staining and Masson’s staining of the trachea in the PLA, PLA-4 % 
AgNPs and PLA-6 %AgNPs [120]. (E) Plaques in PLA, PLA-4 %AgNPs and PLA-6 %AgNPs [120]. (F) CLSM images after staining with the Live/Dead BacLight 
Bacterial Viability Kit [121].(G) H&E staining, Masson’s staining, Casepase-3, PCNA, α-SMA and CD68 of the trachea in the control, PCL-DDP, PCL-AgNPs and 
PCL-DDP-AgNPs fiber film-coated tracheal stent [121].
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corresponding criteria need to be established urgently.
The above-mentioned drug-eluting stents were validated by in vitro 

drug release and animal experiments, and all of them were found to 
decrease the inflammatory response and inhibit granulation tissue for
mation. However, most of these studies were animal experiments, and 
only a few were human trials.

3. How can the difficulty of stent removal be avoided?

Due to severe complications such as stent migration, granulation 
tissue formation, mucus plugging, incoercible cough, and stent fracture, 
secondary surgery is usually required to remove the stent. Secondary 
surgery may be difficult to perform, and patients are exposed to addi
tional risks. Therefore, a tracheal stent needs to be developed that is easy 
to remove or does not need to be removed. A tracheal stent that is easy to 
remove can be designed from the structure. Also, biodegradable mate
rials can be used to prepare tracheal stents so that the tracheal stent can 
support the trachea for a period, maintain tracheal patency, and grad
ually degrade, thus avoiding stent removal.

3.1. How can the difficulty of removing the stent through structural design 
be reduced?

Covered stents can reduce the difficulty of stent removal. Compared 
to those of bare metal stents, the incidence of granulation tissue and 
stent fracture of covered stents is lower, and the success rate of stent 
removal is higher [157,158]. The uncovered self-expanding metal stent 
made of nitinol alloy through the knitting process is removable because 
the stent can be disentangled into a single thread from which it was 
made [159]. Additionally, the use of spiral stents can reduce the diffi
culty of removal [160–162].

3.2. How can the difficulty of stent removal be reduced by selecting the 
proper materials?

Biodegradable tracheal stents can maintain airway patency and 
degrade completely after the objectives are achieved. An ideal biode
gradable tracheal stent must have good mechanical properties, an 
appropriate degradation rate, and high biocompatibility. The materials 
currently used for making biodegradable tracheal stents mainly include 
biodegradable polymers and biodegradable metals. The biodegradable 

polymers used for biodegradable tracheal stents include polydioxanone 
[163–165], silk fibroin-PCL [166], poly(lactic-co-glycolic acid) with 
polyisoprene [167], amino alcohol based poly(ester amide) [168], PCL 
[169,170], etc. The biodegradable metals used for making biodegrad
able tracheal stents are mainly magnesium alloys [48,49,171].

3.2.1. Mechanical properties
A stent needs favorable crimping properties, sufficient radial force, 

longitudinal flexibility, and a low recoil rate. A few studies have re
ported the data on mechanical properties provided by manufacturers; 
however, the stent sizes reported in such data do not match the stent 
sizes used in these studies [163,172]. Assessment of the mechanical 
properties of biodegradable tracheal stents and changes in the me
chanical properties during the degradation process is lacking.

3.2.2. Degradation behavior
An appropriate degradation rate is crucial for the biodegradable 

stents to perform their support function. Retrospective studies on 
tracheal stent removal have shown that the interval between stent im
plantation and removal is about three months [157,173–176]. There
fore, the complete degradation period of biodegradable tracheal stents 
should match this.

The degradation of polydioxanone stents in normal rabbits starts at 
10 weeks (Fig. 9 A), and the degradation rate increases in trache
omalacia model rabbits, starting at four weeks [177].In two other 
studies in a normal rabbit model, the stent completely degraded without 
remnants after 10 and 14 weeks of implantation [172,178]. In a rabbit 
model of tracheal stenosis, no degradation occurred within 30 days, 50 
% degradation occurred at 60 days, and 100 % degradation occurred at 
90 days [179].

The tracheal stents made of Mg-Nd-Zn-Zr alloy or Mg-Ca-Zn alloy 
remained intact two months after implantation into the trachea of New 
Zealand rabbits [49]. Compared to tracheal stents made of pure mag
nesium and AZ31 alloy, those made of the Mg-3Y alloy experienced the 
slowest corrosion loss after 24 weeks in the rat tracheal bypass model 
(Fig. 9 B) [171]. The biodegradable ultrahigh ductility Mg-Li-Zn alloy 
tracheal stent was found to fully degrade in vivo after eight weeks of 
implantation (Fig. 9C) [180].

Polydioxanone stents implanted in children were found to degrade 
4–6 weeks after surgery [181], whereas the periods of complete degra
dation were different (eight weeks, 10 weeks, 3–4 months, 17 weeks, 18 

Fig. 9. (A) Bronchoscopy images taken immediately after stenting (A1) and 1(A2), 2(A3), 4(A4), 6(A5), 8(A6), 10(A7), and 12 weeks(A8) after stenting [177]. (B) 
Images of 3D micro-CT volumes for pure Mg stent, AZ31 alloy stent, Mg-3Y alloy stent prior to implantation and at the 1, 8, 16, and 24 weeks after implantation 
[171]. (C) Endoscopic images of the stented airway right after implantation, and 4, 8, and 12 weeks after implantation [180].
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weeks, six months, and nine months) [182–184]. Six polydioxanone 
stents were implanted in four adult patients with benign stenosis; three 
months after implantation, small pieces of fiber were detected in their 
cough [164].

Few studies have investigated the effect of the airway environment 
on stent degradation. One study showed that the increase in bicarbonate 
ions in Gamble’s solution accelerated the degradation of AZ31 magne
sium alloy, whereas adding mucin retarded degradation [185]. In vitro 
immersion experiments of high-purity magnesium, high-purity zinc, and 
pure iron revealed that high-purity magnesium and zinc have appro
priate corrosion rates and good biocompatibility [186]. Therefore, 
high-purity magnesium and zinc may be good candidates for tracheal 
stent materials.

3.2.3. Biocompatibility
A rabbit model revealed that the use of a polydioxanone tracheal 

stent can prolong survival [163,177]. However, there are also inflam
matory responses [178]. The most pronounced inflammatory response 
was observed five weeks after implantation [172]. The inflammatory 
response decreased from week 5 to week 15. After 15 weeks of im
plantation, the trachea had completely healed. The implantation of 
polydioxanone stents does not increase the tracheal wall collagen area 
or change the cartilage structure [165,178].

Significant histological inflammatory damage was recorded after 
poly(lactic-co-glycolic acid) was implanted with a polyisoprene stent in 
the rabbit trachea; the damage was probably caused by excessive stent 
wall thickness (Fig. 10 A) [167]. The mechanical properties of tracheal 
stents printed based on blends of poly(DLLA-co-CL) methacrylate are 
comparable to those of state-of-the-art silicone stents; these stents have 
good biocompatibility in healthy rabbits and degrade after seven weeks 
in situ (Fig. 10 B) [187].

David et al. first demonstrated the feasibility of the use of biode
gradable polydioxanone tracheal stents for treating tracheal stenosis in 
children. Initially, all patients experienced relief from stenosis, and no 
bleeding or perforation occurred after stent implantation, but a size 
mismatch was detected [182]. No major stent-related complications 
occurred, and only mild or moderate granulation tissue was observed 
during follow-up [184]. Symptoms were relieved in all adult patients, 
but they still experienced cough, mild mucosal irritation, mucosal hy
perplasia, and mucus plugging (Fig. 10C) [164]. All patients experi
enced mild and easily treatable adverse events, and they were relieved 
from tracheal stent at the end of follow-up (Fig. 10 D) [188].

Tracheal stents made of Mg-Nd-Zn-Zr alloy and Mg-Ca-Zn alloy were 
implanted into the trachea of New Zealand rabbits [49]. No significant 
systemic inflammatory response was found, and no significant differ
ence was found in liver and/or kidney function before and after stent 
implantation, which indicated that biodegradable magnesium alloy 
tracheal stents are feasible for treating patients with tracheal stenosis 
(Fig. 10 E). The prototype tracheal stent was prepared using 
Mg-Al-Zn-Ca-Mn (AZXM) alloy and implanted into the rabbit trachea 
[48]. he results showed that the airway tissue could tolerate the AZXM 
alloy and its degradation products and did not interfere with the 
epithelium (Fig. 10 F). These findings indicated that the AZXM alloy is a 
suitable material for making biodegradable tracheal stents. Tracheal 
stents made of pure magnesium, AZ31, or Mg-3Y alloy were implanted 
into a rat tracheal bypass model [171]. The trachea had good tolerance 
and acceptance of magnesium within six months, the foreign body re
action was minimal, and airway functions were not negatively affected. 
The tracheal tissue was tolerated by the Mg-Li-Zn alloy and degradation 
products without any significant local or systemic toxicity (Fig. 10 G) 
[180].

Fig. 10. (A) Histological images of stent group and fragment group [167]. (B) Tissue morphology changes in the rabbit’s trachea 2, 6, and 10 weeks after the stent 
implantation [187].(C) Inflammation and hyperplasia of mucosa after stent implantation [164]. (D) Severe circular malacia of the left main bronchus (D1). 
Treatment with BDS (D2). Bronchoscopy images taken 7 weeks after implantation (D3) [188]. (E) H&E staining in the rabbit tracheal, liver, heart and kidney tissues 
of the control and experimental groups [49]. (F) H&E staining of stented tracheal 4 weeks after implantation (S: stent, E: epithelium and DL: degradation layer) [48]. 
(G) A LZ61-KBMS stent stented trachea at various magnifications 4 (G1, G2), 8 (G3, G4), 12 weeks (G5, G6) after implantation [180].
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4. How can the persistent growth of malignant tumors be 
reduced?

Stent restenosis often occurs in some patients with malignant tumors 
because malignant cells can enter the lumen through the stent mesh or 
grow at the end of the stent [189–191]. Brachytherapy inserts radiation 
sources within or close to the target lesion, which provides high radia
tion doses within or close to the lesion [192–194]. I125 is a radionuclide 
with a half-life of 60 days. I125 seeds provide sustained gamma rays at 
low doses, killing tumor cells by synchronizing cancer cells to the 
radiation-sensitive G2-M phase but allowing normal tissue to repair 
sublethal tissue damage [195,196]. Additionally, iridium-192, palla
dium-103, and cobalt-60 can also be used as radiation sources for 
brachytherapy [197,198]. To overcome this complication, tracheal 
stents loaded with radionuclides have been developed to prevent 
restenosis associated with tumor regrowth.

The tracheal stent loaded with I125 was implanted in the trachea of 
healthy beagle dogs, the tracheal mucosal epithelium showed inflam
matory reaction and mild injury [18]. The tracheal injury score 
increased with the increase of the dose of radioactive seeds. Even in the 
high-dose group, radioactive seeds did not increase complications. In 
vivo experiments on New Zealand white rabbits showed that the 
brachytherapy injury increased with the accumulation of radiation dose 
and I125 brachytherapy could inhibit the granulation formation within 8 
weeks [199].

A stent loaded with radioactive I125 seeds was used to treat adenoid 
cystic carcinoma of the central airway [200]. The patient tolerated the 
operation and showed no signs of relapse three years after the stent was 
removed. Lin et al. showed that treating patients with malignant 
tracheal stenosis by using an I125 stent is feasible. This technique can 
immediately relieve dyspnea and significantly improve quality of life 
[201]. However, it has several complications such as bleeding, cough
ing, loss of I125, and infection.

A comparison of the safety and efficacy of radioactive bare metal 
stents and traditional bare metal stents in patients with malignant 
tracheal stenosis showed that the stenosis grade of radioactive bare 
metal stents was significantly lower than that of traditional bare metal 
stents, and the median survival was significantly longer than that of 
traditional bare metal stents [50]. The incidence of complications was 
similar between these groups. The results of a meta-analysis indicated 
that implantation of radioactive stents can decrease the rate of restenosis 
and prolong overall survival in patients with malignant airway stenosis 
compared to implantation of normal stents [202].

Although radioactive tracheal stents can strongly inhibit the persis
tent growth of malignant tumors, the binding mode and quantity of 
radioactive seeds in the radioactive stent are different, and the dose 
distribution between multiple seeds on the surface of the stent has 
reciprocal effects. Therefore, injury persists in the dosimetry of radio
active stents. A standard dosimetry measurement model needs to be 
established for radioactive tracheal stents to determine the dose distri
bution characteristics, such as the prescription dose, tumor target areas, 
and dose to the surrounding normal tissue. The optimal timing of 
radioactive tracheal stent removal needs to be further investigated.

5. How can tracheal stent migration be reduced?

Stent migration occurs mainly due to inappropriate stent selection, 
inappropriate shape and size of the stent, and improper implantation. A 
tracheal stent requires good anchorage to reduce the risk of migration, 
but this should be achieved without exerting excessive stress on the 
surrounding tissue to reduce the risk of granulation formation.

5.1. How to improve structural matching?

Structural mismatch may lead to tracheal stent migration. Patient- 
specific tracheal stents can prevent migration by matching the size of 

the stent with the patient’s trachea, resulting in a better fit. Such stents 
can be made by using 3D printing technology, which can be used to 
construct the stent layer-by-layer through a computer-aided design 
system. Fused deposition molding technology is used to print the stent 
molds, which are filled with medical-grade silicone to obtain a silicone 
tracheal stent (Fig. 11 A,B) [19,203]. This method facilitates quick and 
affordable manufacture of patient-specific tracheal stents. The 
drug-loaded PLGA stent printed by fused deposition modeling has low 
stent porosity, high mechanical strength, and sustained drug release 
function [204]. A medical-grade polyurethane tracheal stent manufac
tured by fused deposition molding was used for the first time in humans 
（Fig. 11C） [205]. The stent matched the airway size of each patient 
and achieved excellent stent fit. The 3D-printed stent showed very 
precise consistency in the trachea (Fig. 11D) [206]. Seven days after 
surgery, the patient experienced significant improvements in dyspnea, 
quality of life, and functional parameters without complications asso
ciated with the procedure. Three-dimensional-printed tracheal stents 
were implanted into 10 patients with complex anatomical tracheal ste
nosis, nine of whom showed great congruence, and eight showed sig
nificant improvement in dyspnea, quality of life, and respiratory 
function [207]. However, the incidence of complications, including 
mucus plugging, severe cough, and stent migration, at three months was 
40 %.

Although 3D-printed tracheal stents allow excellent matching be
tween the tracheal stent and trachea, they have certain limitations. For 
example, 3D-printed tracheal stents rely on patient-specific tracheal 
stenosis, and traditional 3D reconstruction methods are inefficient and 
cannot meet clinical requirements. Although 3D printing technology can 
use various materials, many materials are not biocompatible and cannot 
be used to manufacture tracheal stents. Moreover, 3D-printed tracheal 
stents usually require postproduction surface treatments to ensure that 
their surface is smooth and defect-free. Postproduction surface treat
ments also include drug coating. A C-type tracheal stent coated with 
curcumin can effectively prevent tracheal stenosis by reducing collagen 
deposition and inflammation [208]. These postproduction surface 
treatments increase the complexity and cost.

The design of 3D-printed stents requires a balance between shape 
and mechanical properties [209]. The 3D-printed tracheal stents allow a 
wider range of shapes and fit well with the trachea. However, the me
chanical properties require more attention. The radial force and flexi
bility of the stent depend on the combination of the thickness, diameter, 
and hardness of the material.

5.2. Improving mechanical property matching

Mismatched mechanical properties promote tracheal stent migra
tion. The deformation caused by the force applied to the tracheal stent 
must be consistent with the deformation of the trachea [210]. The stent 
designed by the tetrachiral and anti-tetrachiral hybrid structure can 
match the nonlinear mechanical response of the native trachea, and the 
effect of its negative Poisson’s ratio plays a vital role in maintaining 
patency and reducing stent migration (Fig. 12 A) [211]. A ring-hollow 
alternating PCL stent was prepared using 3D printing technology, and 
then, the perfusion-lyophilization method was used to embed a collagen 
sponge into the hollow area of the stent and implant chondrocytes 
(Fig. 12 B) [212]. The biomimetic stent with a separated-ring structure 
has a similar anatomical structure, radial rigidity, and longitudinal 
flexibility to the native trachea. To mimic the natural rigidity and flex
ibility of the trachea, thermoplastic polyurethane tracheal stents with 
straight or wave patterns have been developed, and electrospun fibers 
have been used to improve the cell attachment performance (Fig. 12C) 
[213].

Along with mechanical matching, the radial force and fatigue of the 
tracheal stent also need attention. The addition of 1 wt% hydrophobic 
nanosilica was found to improve the radial force of the silicone stent and 
maintain the transparency and viscosity of the stent structure [215]. To 
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achieve the high flow rate required to drain secretions, dynamic 
compression is essential in the normal airway, and the stent can deform 
under these pressure swings [24]. However, repetitive deformation may 
lead to fatigue fracture. When the patient coughs, their tracheal smooth 
muscle contracts and relaxes violently, exerting great radial pressure on 
the tracheal stent. Additionally, the cough is not harmonious, and the 
intensity of the cough fluctuates randomly. A study reported that the 
nitinol alloy tracheal stent may experience stochastic resonance during 
cough, which may lead to stent fracture or loss [216].

5.3. Other methods for increasing stent anchorage

The additional structure on the outer surface of the tracheal stent can 
also improve the anchorage of the stent. The helical profile on the outer 
surface of the stent and the addition of domes on the outer surface of the 
stent can improve the anchorage of the stent (Fig. 12 D) [214]. The 
right-angled triangular shape of the outer ring and the raised three-line 
arrangement of the GINA stent allow it to possess antimigratory ability 
[217].

6. How can mucus plugging be reduced?

The normal tracheal defense mechanisms of the trachea include the 
mucociliary transport system, cough reflex, and immunological mech
anisms. Among these, the mucociliary transport system is the first line of 
defense of the trachea [218,219]. Foreign bodies and secretions entering 
the trachea can be expelled in the form of mucus due to the action of the 

cilia. However, the tracheal stent may hinder mucociliary clearance, 
leading to mucus plugging, which may lead to secondary infection. 
Therefore, tracheal stents that do not impair the function of mucociliary 
clearance are urgently needed in the clinical setting.

6.1. Minimizing the barrier to mucociliary clearance

To avoid mucus plugging, the barrier to mucociliary clearance of the 
tracheal stent should be minimized. The single-tube-braided tracheal 
stent has sufficient radial rigidity, can decrease the impediment to 
mucus flow, and is less likely to cause mucus plugging (Fig. 13 A) [220]. 
Porcine models can tolerate the helical Ni-Ti tracheal stent, allowing 
noninvasive implantation and removal and facilitating minimally 
impeding mucus clearance (Fig. 13 B) [161,162]. The low-profile airway 
stent is a thin, metal zig-zag wire that partially covers the cilia in the 
trachea, reducing mucus plugging [221].

6.2. Anti-fouling coating

Mucus plugging may be reduced by introducing an anti-fouling 
coating on the surface of the stent. Hydrophilic anti-fouling coatings 
effectively prevent mucin adhesion to silicone stents [224], Uncoated 
stents and hydrophilic polymer-coated stents have been implanted in the 
right and left mainstem bronchi of pigs. Compared to uncoated stents, 
coated stents are associated with reduced mucostasis, lower injury 
scores, lower airway injury scores, and lower goblet cell hyperplasia 
[225]. In another study, uncoated stents and hydrophilic 

Fig. 11. (A) Silicone mold [19]. (B) Silicone stent [19].(C) 3D Stent designing [205].(D) Conception of the virtual stent [206].

Fig. 12. (A) Geometric design parameters of the W-N-L chiral stent [211].(B) Biomimetic PCL stent as framework interspersed with collagen [212].(C) Flexible 
straight pattern or wave pattern tubular stent [213].(D) The helical profile and domes on the outer surface of the stent [214].
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polymer-coated stents were randomly implanted into the tracheas of 
three pigs [226]. Compared to the uncoated stents, the coated stents 
caused less injury, but the average total dry mucus weight of the coated 
stents was slightly greater. This occurred probably because the uncoated 
stents migrated out and were not included in the total dry mucus weight.

6.3. Artificial cilia and culture of respiratory epithelial cells

Integrating artificial cilia on tracheal stents may help address mucus 
plugging. The bioinspired nonreciprocal motion and metachronal waves 
control the movement of magnetic artificial cilia within the tracheal 
stent, facilitating excessive mucus transportation (Fig. 13C) [222]. A 
lubricating hydrogel coating was also applied on artificial cilia, which 
further enhanced excessive mucus transportation.

The hybrid structure of tetrachiral and anti-tetrachiral materials was 
used as the stent frame, the hollows were filled with a porous silicon 
sponge, and the ciliated epithelium was cultured on the inner surface of 
the stent (Fig. 13 D) [223]. The ciliated tracheal epithelium differenti
ated from the inner wall of the stent can reduce mucus plugging. In an 
animal study, respiratory epithelial cells were implanted on tracheal 
stents covered with a polycarbonate urethane nonwoven film by endo
scopic spraying in situ, and no severe mucus plugging was recorded 
[96].

7. Conclusions and prospects

For bronchial-related diseases, most medical practitioners recom
mend surgical treatment, but not all patients can undergo surgery. In 
such cases, tracheal stent is often the best alternative for symptomatic 
management. Different stents have unique advantages and limitations. 
Appropriate stents (including the type, shape, tension, etc.) and im
plantation time should be selected based on the patient’s location of 
stenosis, tolerance, disease progression, and economic conditions to 
alleviate the symptoms and improve outcomes. Complications 

associated with tracheal stents, such as granulation tissue formation, 
difficulty in removal, persistent growth of malignant tumors, stent 
migration, and mucus plugging, can be addressed by designing suitable 
tracheal stents. Drug-eluting stents can strongly inhibit granulation tis
sue formation and prevent infection, thus eliminating the need to 
administer local chemotherapy. The biodegradable stent can support the 
trachea for some time, maintain trachea patency, and degrade gradually; 
thus, removing or replacing the stent is not necessary. Radioactive stents 
loaded with I125 can strongly inhibit the persistent growth of malignant 
tumors. Three-dimensional printing technology can be used to manu
facture patient-specific stents, which increases the degree of matching 
between the complex tracheal anatomy and the stent, thus providing a 
new solution for stent migration caused by structural mismatch. Mini
mizing the stent’s hindrance to mucociliary clearance, providing an anti- 
fouling coating, and culturing respiratory epithelial cells on the surface 
of the stent are the main methods used to reduce mucus plugging.

However, further research is needed to achieve the ideal tracheal 
stent design. In future studies on tracheal stents, researchers need to do 
the following:

(1) Despite the promising prospects of drug-eluting stents, few clin
ical trials exist, and drug-eluting tracheal stents are still in the 
early stages. Thus, more clinical studies are needed to confirm the 
effectiveness of drug-eluting stents. The risks associated with 
damaging the coating or rapidly releasing the drug at the im
plantation site are not clear, and a comprehensive assessment is 
required.

(2) Although several studies have reported the application of 
biodegradable tracheal stents in humans, large-scale clinical 
studies are lacking. More research is needed to determine how to 
control the degradation time and strength of the stent. No study is 
available on tracheal stents made of biodegradable zinc alloys 
and iron alloys, which may be promising materials for 
manufacturing metal tracheal stents [186]. Additionally, 

Fig. 13. (A) A schematic diagram of Y-type single-tube-braided (STB) stent [220].(B) A schematic diagram of the delivery of the stent [162].(C) The wetting-based 
transportation for artificial cilia arrays with hydrogel coating in mucus [222].(D) Ciliated epithelium was cultured on the inner surface of the stent [223].
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biodegradable metals can be combined with emerging fabrication 
techniques, such as 3D printing, to produce tracheal stents with 
complex, customized geometries and tailored mechanical prop
erties. Using this strategy might allow researchers to better 
replicate the characteristics of the human trachea.

(3) Further research is needed on the radiation dose of radioactive 
tracheal stents to achieve satisfactory treatment effects and 
tolerance. Besides I125, various radiation sources are used for 
brachytherapy, and the treatment effect of tracheal stents loaded 
with these sources needs to be studied.

(4) Although 3D-printed stents can closely match the tracheal anat
omy, they are still foreign bodies, and complications might arise. 
Therefore, the mechanical properties of 3D-printed tracheal 
stents need to be given more attention to better match the 
structural and mechanical properties.

(5) Regarding mucus plugging, many studies have investigated anti- 
fouling coatings and anti-fouling structures in other fields, which 
may be applied to tracheal stents.
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[156] K.A. Kravanja, M. Finšgar, A review of techniques for the application of bioactive 
coatings on metal-based implants to achieve controlled release of active 
ingredients, Mater. Des. 217 (2022) 110653, https://doi.org/10.1016/j. 
matdes.2022.110653.

[157] Z. Li, D. Jiao, X. Han, H. Lu, K. Ren, H. Yang, Clinical evaluation the success rate 
and complications of fluoroscopically guided removal of tracheal tube metallic 
stents, J. Cardiothorac. Surg. 16 (1) (2021) 54, https://doi.org/10.1186/s13019- 
021-01444-8.

[158] W. Lunn, D. Feller-Kopman, M. Wahidi, S. Ashiku, R. Thurer, A. Ernst, Endoscopic 
removal of metallic airway stents, Chest 127 (6) (2005) 2106–2112, https://doi. 
org/10.1378/chest.127.6.2106.

[159] T. Amundsen, S. Sorhaug, H.O. Leira, S.S. Tyvold, T. Lango, T. Hammer, 
F. Manstad-Hulaas, E. Mattsson, A new removable airway stent, Eur. Clin. Respir. 
J. 3 (2016) 30010, https://doi.org/10.3402/ecrj.v3.30010.

[160] S. Lopez-Minguez, S. Rodriguez-Zapater, C. Bonastre, J. Rodriguez, M.A. De 
Gregorio, J.A. Guirola, C. Serrano-Casorran, A new removable helical metallic 
stent for the treatment of tracheomalacia in children: study in pathological animal 
model, J. Clin. Med. 11 (22) (2022) 6757, https://doi.org/10.3390/ 
jcm11226757.

[161] J. Ha, A. Mondal, Z. Zhao, A.K. Kaza, P.E. Dupont, Pediatric airway stent designed 
to facilitate mucus transport and atraumatic removal, IEEE Trans. Biomed. Eng. 
67 (1) (2020) 177–184, https://doi.org/10.1109/TBME.2019.2910551.

[162] A. Mondal, J. Ha, V.Y. Jo, F.Y. Wu, A.K. Kaza, P.E. Dupont, Preclinical evaluation 
of a pediatric airway stent for tracheobronchomalacia, J. Thorac. Cardiovasc. 
Surg. 161 (1) (2021) E51–E60, https://doi.org/10.1016/j.jtcvs.2020.03.007.

[163] I. Kawahara, S. Ono, K. Maeda, Biodegradable polydioxanone stent as a new 
treatment strategy for tracheal stenosis in a rabbit model, J. Pediatr. Surg. 51 (12) 
(2016) 1967–1971, https://doi.org/10.1016/j.jpedsurg.2016.09.020.

[164] L. Stehlik, V. Hytych, J. Letackova, P. Kubena, M. Vasakova, Biodegradable 
polydioxanone stents in the treatment of adult patients with tracheal narrowing, 
BMC Pulm. Med. 15 (2015) 164, https://doi.org/10.1186/s12890-015-0160-6.

[165] R. Morante-Valverde, A. Usategui, M. López-Díaz, M. Grau, M. Luna-Paredes, Á. 
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