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Abstract: This study investigates a critical hazard identification method for railway accident preven-
tion. A new accident causation network is proposed to model the interaction between hazards and
accidents. To realize consistency between the most likely and shortest causation paths in terms of
hazards to accidents, a method for measuring the length between adjacent nodes is proposed, and
the most-likely causation path problem is first transformed to the shortest causation path problem.
To identify critical hazard factors that should be alleviated for accident prevention, a novel critical
hazard identification model is proposed based on a controllability analysis of hazards. Five critical
hazard identification methods are proposed to select critical hazard nodes in an accident causality
network. A comparison of results shows that the combination of an integer programming-based
critical hazard identification method and the proposed weighted direction accident causality network
considering length has the best performance in terms of accident prevention.

Keywords: railway accident prevention; critical hazard identification; accident causality network;
integer programming

1. Introduction
1.1. Background

Railway transportation has become the main transportation mode, with the advan-
tages of high speed and low cost. However, railway accidents often interrupt railway
transportation processes. Therefore, railway companies emphasize hazard control and
emergency management to improve the safety and efficiency of railway transportation.
Hazard control is used to alleviate critical or frequent hazard factors and can be considered
an accident prevention measure. Emergency management addresses accidents and reduces
the negative effects of railway accidents after their occurrence.

This study focuses on identifying critical hazards, which is the core aspect of hazard
control. Using accident analysis methods, railway safety managers can investigate the
causes of accidents from the aspects of humans, organizations, the environment, and
technology. With the increasing number of accident investigation reports, more railway
accident causes or hazards can be determined. Typically, some hazards more significantly
contribute to accidents than others. These hazards or critical hazards should be identified
to support the risk management of railway systems. In the following section, we review
the related literature and discuss the contributions of this study.

1.2. Related Studies

Experience or data-based risk analysis methods are often used to determine the causes
of accidents. The data are typically obtained from accident reports or railway experts. Based
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on accident data or experience, many accident causation models have been developed to
determine hazards that should be controlled or alleviated. Some researchers have classified
accident causation models into various groups based on their attention preference toward
accidents [1–3]. The first group is the domino theory-based accident causation model. The
domino model, which was developed by Heintich, considers an accident as a result of
several sequential hazard events [4]. Because the domino model simplifies the control of
human behavior in accident causation, researchers improved the model by focusing more
on management failures, and the modified domino models are defined as management-
based accident causation models [5,6]. The third group is human error models, where the
occurrence of accidents is attributed to human hazards or errors such as unsafe incorrect
responses and improper activities [7]. For example, the human performance railway index
operational index has been proposed to predict the probability of human failure in railway
operations. Human error analysis, human error reduction, and human factor analysis and
classification system (HFACS) methods have been developed to analyze human errors
in railway operations [8–11]. A Poisson regression method was used to determine the
relationship between driver personality and driving safety [12]. Many factors affect the safe
operation of railway systems in addition to operators, including train drivers, signalers, and
controllers. Therefore, the systemic accident models proposed by Hollnagel may be more
suitable for railway accident causation analysis [13,14]. An accident causation model for
the railway industry has been proposed to investigate the contributions of human failure,
technical failure, and external intrusion to final accidents [15]. A system theoretic accident
model and process-based model has been proposed to investigate the various causes
of railway accidents, including human and management failures [16,17]. Furthermore,
the HFACS-RA (Human Factors Analysis and Classification System-railway Accidents)
method was proposed to identify and analyze human and organizational factors that affect
railway accidents [18]. An integrated evolutionary model called the scenario-risk-accident
chain ontology (SRAC) is proposed to determine the risk relevance of railway systems from
accident reports [19]. To support the safety management of railway systems, a quantitative
causal analysis was proposed to identify the most important factors that contribute to the
risk of passenger train accidents [20]. The associated rules have been derived by mining
train accident data [21].

Various equipment, machines, and human resources are interrelated in railway sys-
tems, which increase the complexity of railway accidents [22,23]. Therefore, network-based
accident causation models have been developed to analyze the causes of accidents and
model interdependent hazards in recent years [24]. The nodes in the network represent
hazard events or accidents, and the links indicate the relationship between hazards and
accidents. A directed network has been formulated to analyze the causes of accidents
or railway operational accidents [25,26]. The increasing number of accident reports has
enabled the weight between hazards to be measured; hence, a directed weighted accident
causation network has been proposed to investigate the accident causation complexity [27].
Three hazard control strategies have been compared using the tailored accident causal-
ity network (ACN) [28]; however, the hazard control model has not been formulated to
identify the optimal hazards to be removed. Some entropy-based methods have been
proposed to determine the critical nodes in real-world complex networks [29–31] such
as power networks [32], biological networks [33], and transportation networks [34,35];
however, there is no method to identify critical hazard nodes in ACNs from the perspective
of both global optimization and accident prevention. Therefore, a hazard identification
model was developed in this study to select optimal hazards to be removed for railway
accident prevention.

The selected critical hazards should block the path from hazards to accidents or
lengthen the distance from hazards to accidents to prevent accidents. However, the length
of the edges cannot be appropriately obtained; hence, the distance from hazards to accidents
cannot be measured, although the proposed ACN model can facilitate the understanding of
railway accidents. Herein, we propose a novel accident causation network model inspired
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by a Bayesian network model [36]; the model enables us to easily measure the weights
and lengths of the links. Consequently, the shortest path from hazards to accidents can be
obtained, and a critical hazard identification (CHI) model can be formulated. The best CHI
model was selected by comparing the performances of different models. The proposed
integer programming method performs the best because it can solve the CHI problem from
a global perspective.

1.3. Contributions and Organization

The proposed model contributes to research pertaining to complex network-based
accident analysis methods in three aspects:

(1) We propose an improved ACN model (WLDACN) to model the relationship between
hazards and accidents. The shortest distances from hazards to accidents can be
obtained based on the proposed new length metrics of edges in WLDACN, which is
proven to be superior to other previous methods.

(2) Given the proposed length metrics of WLDACN, the network efficiency is used
to represent the difficulty of hazards causing accidents. Therefore, the accident
prevention problem is transferred to successfully minimize the WLDACN efficiency.

(3) To support the hazard management of railway systems, we propose a high centrality
adaptive and integer programming method to identify critical hazards that greatly
contribute to railway accidents. A heuristic algorithm is proposed to solve the integer
programming model. The comparison results show that the integer programming
method can help prevent accidents better than other models.

The remainder of this paper is organized as follows. Section 2 introduces the ACN
construction method and analyzes the objective of hazard control and the formulation of
five CHI models. Section 3 presents a real-world case study to verify the effectiveness of
the proposed ACN and CHI models. Finally, the conclusions and directions for future
research are presented in Section 4.

2. Problem Description and Formulation
2.1. ACN Model

The first step in our study was to construct a causality network from accident investi-
gation reports, which contain reports of many events. We focus on the description of the
accident process because it contains the immediate cause and causal factors of accidents.
The causal factors of accidents are typically defined as hazards. Several hazards can be
extracted, and the causal relationship between hazards can be described using various
causality connectors [37]. For example, we can identify two textual causality connectors
such as “because” and “due to” in the sentence “the incident occurred because the driver
of the first tram did not stop at the platform or stop signal due to a temporary loss of
awareness.” Therefore, the hazard event “loss of awareness” causes the hazard event “tram
did not stop at the platform.” We can obtain one hazard pair 〈i, j〉 if hazard event i causes
hazard event j. If hazards i and j are denoted by two nodes, then an arrow from hazard
node i to j can be added to represent their causal relationship. After manually extracting all
hazard events and accidents from the set of accident investigation reports, we can construct
an ACN for railway systems. Each node in a network corresponds to a hazard event or
accident. Each edge is associated with a cause–effect pair and directed from the cause
(hazard event) to the effect (hazard or accident). Table 1 defines the notations in this paper
to formulate the proposed model.

2.1.1. Edge Weight Metrics

We can obtain the same hazard pairs in different accident reports. Therefore, the ACN
is a weighted direct accident causality network (WDACN), as shown in Figure 1a. Let
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S denote the set of nodes in the WDACN. In the WDACN, the weight w(i, j) of the edge
from node i to node j is equal to the number of hazard pairs 〈i, j〉 in the reports nij, i.e., :

w(i, j) = nij (1)

Table 1. Notations and abbreviations.

Variable Description

Abbreviations
CHI critical hazard indentification
ACN accident causality network

WDACN weighted direct accident causality network
DACN direct accident causality network

SCP shortest causation path
MPCP most probable causation path

WLDACN directed ACN with weights and length metrics
HDA high degree adaptive
HBA high betweenness adaptive
HCA high closeness adaptive
HPA high pagerank adaptive
ASCP average SCP
IPM Integer Programming method

Notations
h hazard node
a accident node

w(i, j) the weight of the edge from node i to j
Fk(h, a) The frequencies of the causation route k from hazard node h to accident node a

Sh,a
k the set of points on causation route k

p(i, j) the normalized weight of the edge from node i to j
Pk(h, a) the active probability of causation route k
l(i, j) the length of the edge from node i to j

E the ACN efficiency
Dh degree centrality of hazard node h
Bh betweenness centrality of hazard node h
Ch closeness centrality of hazard node h
Rh PageRank of hazard node h

Figure 1. Accident causation network. (a) WDACN, (b) DACN (c) ACN after reversing the weight of
the edge, (d) Normalized WDACN, (e) WLDACN.
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The causation routes are defined as the set of links from the source hazard node
to the accident node. There may be more than one route from source hazard node h
to accident node a, and the same route may appear several times. The frequencies of
the causation route k from hazard node h to accident node a Fk(h, a) can be defined as
Fk(h, a) = min(w(i, j)), i, j ∈ Sh,a

k , where Sh,a
k is the set of points on causation route k.

As shown in Figure 1a, the causation route (1→ 2→ 5) has a lower frequency than
the causation route (1→ 2→ 4→ 5) . Therefore, the causation path (1→ 2→ 5) has
a lower active probability than the causation path (1→ 2→ 4→ 5) . In this study, the
causation route with the highest active probability is defined as the most likely causation
path (MPCP).

The shortest causation path (SCP) is often used to represent the MPCP from one
node to another in a complex network. To analyze the interaction between hazards from
the perspective of complex networks, the WDACN was simplified as a direct accident
causation network (DACN) [28], as shown in Figure 1b. However, the frequency difference
of the hazards cannot be observed in the DACN. As shown in Figure 1c, the MPCP from
a to e is (1→ 2→ 5), which is contrary to the evidence from the WDACN; hence, this
method cannot be used to model the interaction between hazard factors and accidents.

Another method is to preserve the frequency information by reversing the weight of
the edge [27], as shown in Figure 1c. However, the SCP still cannot indicate the MPCP
precisely because paths (1→ 2→ 5) and (1→ 2→ 4→ 5) have the same distance (i.e.,
1/3), as shown in Figure 1c. Therefore, the SCP resulting from these two methods is not
consistent with the MPCP observed from the WDACN.

2.1.2. Edge Length Metrics

To realize the consistency between SCP and MPCP, we propose a new method to
measure the length of the edges. First, the weight of the edge (i, j) in the WDACN can be
normalized as follows:

p(i, j) =
w(i, j)
Dout

i
, (2)

where Dout
i is the out-degree of node i. As shown in Figure 1d, the normalized weight

p(i, j) can be interpreted as the active probability of hazard node j for active node i. Let
H and A denote the sets of hazard accident nodes. Let Sh,a

k denote the set of points on
causation route k from hazard node h to accident node a. Therefore, the active probability
of causation route k can be expressed as:

Pk(h, a) = ∏
i,j∈Sh,a

k

p(i, j) (3)

Pk(h, a) reflects the conditional probability of causation path k given the occurrence
of source hazard h. The MPCP from hazard node h to accident node a can be obtained by
solving the following equation:

MPCP(h, a) = argmax(Pk(h, a)), k = 1, 2, 3 . . . K (4)

In order to transform the MPCP problem into an SCP problem, the transformation
function should satisfy two conditions: (1) it is a monotone decreasing function of proba-
bility p(i, j); (2) the uncertainty of route k can be represented as the sum of uncertainties of
each edge. Therefore, logarithmic function is selected as our transformation function. The
natural logarithm of Equation (3) can be used as follows:

− ln Pk(h, a) = − ∑
i,j∈Sh,a

k

ln(p(i, j)) (5)
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Equation (5) can denote the distance of route k which is the sum of length of edges.
Therefore, the length l(i, j) of edge (i, j) can be described as follows:

l(i, j) = − ln(p(i, j)) (6)

Figure 1e shows the length of edges. The MPCP problem can be transformed into an
SCP problem. The length of causation path r from hazard node h to accident node a can be
expressed as:

Lk(h, a) = − ln Pk(h, a) = lk(h, a), (7)

where lk(h, a) = ∑i,j∈Sh,a
k

l(i, j). Therefore, the SCP can be obtained by solving the follow-

ing problem:
SCP(h, a) = argmin(lk(h, a)), k = 1, 2, 3 . . . K (8)

The SCP can be obtained using Dijkstra algorithm and used to measure the difficulty
of a hazard factor in causing an accident. The probability of hazard node h causing accident
a is greater if SCP(h, a) is shorter. Finally, edges (i, j) in the ACN exhibit three attributes:
weight w(i, j), active probability p(i, j), and length l(i, j). Because the proposed ACN
contains weights and length metrics and is a directed network, the proposed network
model can be named the WLDACN.

2.2. CHI Method Development
2.2.1. Objective of CHI

The objective of CHI is to prevent accidents by reducing or eliminating hazards. The
ACN efficiency is used as an indicator to reflect the difficulty of hazards causing accidents.

E = ∑
h∈H,a∈A

1
SCP(h, a)

(9)

A lower network efficiency corresponds to a longer SCP from hazards to accidents.
Therefore, we should eliminate hazard–accident interactions by removing the nodes in the
ACN. We assume that all hazards can be controlled or removed via technological develop-
ment and management improvement. For example, equipment failures can be eliminated
by improving the maintenance strategy, human factors can be controlled via safety training,
and environmental hazards can be prevented by monitoring the operation surroundings.
Additionally, the cost increases with the number of removed hazard nodes. Therefore, the
maximum number of removed hazard nodes in the network should be defined.

Some hazard factors such as wind, snow, and rain cannot be controlled because they
originate from the natural environment instead of the railway system. Therefore, we should
discuss the controllability of hazard nodes. Hazard factors can be controlled if their causes
can be determined, so only hazard nodes with parent nodes can be alleviated.

2.2.2. High Centrality Adaptive Methods

The high centrality adaptive method is typically used to reduce the network efficiency
by removing hazard nodes that have the highest centrality. Four methods can be used to
measure the centrality of nodes in a complex network: based on the node degree, node
betweenness, node closeness, and PageRank [38]. Therefore, high degree adaptive (HDA),
high betweenness adaptive (HBA), high closeness adaptive (HCA), and high pagerank
adaptive (HPA) methods are used to remove critical hazard nodes in a WLDACN.

The HDA method removes the node with the highest degree centrality (DC) in each
iteration. The HDA method recomputes the DCs of the remaining nodes after node removal.
The DC of hazard node h can be expressed as:

Dh = Din
h + Dout

h = ∑
i 6=h

w(i, h) + ∑
j 6=h

w(h, j) (10)
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Based on Equation (10), a greater DC of hazard node h results in more causal relation-
ships between hazard node h and other nodes. If a node with a higher DC is eliminated,
then more causal relationships can be eliminated.

HBA sequentially removes the node with the highest betweenness centrality (BC) and
recomputes the BC for the remaining nodes in each iteration. The BC of hazard node h can
be expressed as:

Bh = ∑
i ∈ H, j ∈ A
i 6= h, j 6= h

ρij(h)
ρij

, (11)

where ρij is the number of shortest paths from hazard node i to accident node j, and ρij(h)
is the number of shortest paths from hazard node i to accident node j that pass through
hazard node h.

Based on the definition of BC, a greater value of the BC of hazard node h results in
more SCPs from hazards to accidents to pass hazard h. If a node with a higher BC is
eliminated, then more SCPs from hazards to accidents can be removed.

The HCA method removes the node with the highest closeness centrality (CC) and
updates the CC for the remaining nodes in each iteration. CC describes the proximity of a
hazard node to all other nodes in the ACN. It is calculated as the reciprocal of the average
distances from one hazard node to all accident nodes as follows:

Ch =
NA

∑a∈A SCP(h, a)
, (12)

where NA is the number of accident nodes. Based on Equation (12), a greater Ch results in
fewer steps from hazard node h to accidents. If the node with the higher CC is eliminated,
then the average SCP increases from hazards to accidents.

The HPA method deletes the node with the highest PageRank centrality and subse-
quently recomputes PageRank for the remaining nodes in each iteration. The PageRank of
hazard node h can be expressed as:

Rh = ∑
j 6=h

p(j, h)p(j) (13)

Based on Equation (13), a greater value of Rh results in a greater possibility of hazard
node h being activated by other hazards. If the nodes with higher PageRank values are
eliminated, then the propagation probability from hazards to accidents decreases.

In fact, the hazard link, including hazard h in the source dataset, should be changed if
hazard h is deleted. Assuming that we extract one hazard link 〈i, j, h, a〉 from one accident
report, if hazard h has been removed by our CHI methods, then accident a cannot occur;
hence, the hazard link should be deleted.

2.2.3. Integer Programming Method

High centrality adaptive methods delete the node with the highest centrality at each
iteration, which is a local optimal solution. Therefore, a model should be developed to
solve the global optimal solution. From an economical and safety perspective, the CHI
problem can be described as follows: To identify the nodes to be removed to reduce the
network efficiency, an integer programming model for the CHI problem is formulated, i.e.,:

Min E{
∑
i

xi ≤ M, ∀i (a)

xi ∈ {0, 1}, ∀i (b),

(14)

where xi is a decision variable for removing hazard node i. xi = 1 indicates that hazard
node i is removed. Equation (14a) states that a maximum of M nodes can be removed.
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Because the objective function of the CHI model cannot be transformed into a linear form,
a heuristic algorithm is proposed to solve the integer programming model. The procedures
of the algorithm can be described as follows:

Step 1: Based on the controllability of hazards, randomly select M controllable hazard
nodes to be deleted from the accident causation network.

Step 2: For each hazard node in a circular order, maintain the other M− 1 hazard
nodes and identify the optimal solution for the selected hazard node. The solution for
the selected hazard node is updated before determining the optimal hazard node in the
WLDACN to minimize the network efficiency.

Step 3: Terminate the algorithm when M consecutive solutions for a hazard node do
not reduce the network efficiency; otherwise, return to Step 2.

2.3. Model Performance Comparison

The objective of the CHI is to increase the overall average degree of difficulty in
causing accidents. To compare the performances of CHI methods from a local perspective,
the average SCP (ASCP) from all hazards to each accident type and the ASCP from each
hazard type to accidents (ASCP(Ht)) were used as indicators to evaluate the proposed
CHI methods. The ASCP from all hazards to accident type a, ASCP(a), can be formulated
as follows:

ASCP(a) = ∑h∈H SCP(h, a)
NH

, (15)

where NH is the number of hazard nodes. If ASCP(a) decreases, then the overall probability
of all hazards causing accident a increases; otherwise, the overall probability of all hazards
causing accident a will decrease.

Hazards can be classified into different types. Each hazard type is composed of various
hazard factors. The ASCP from hazard type Ht to accident a can be formulated as follows:

ASCP(Ht, a) =
∑h∈Ht SCP(h, a)

NHt

, (16)

where NHt is the number of hazard nodes that belong to hazard type Ht. Similarly, the
ASCP from hazard type Ht to all accidents ASCP(Ht) can be formulated as:

ASCP(Ht) =
∑a∈A ASCP(Ht, a)

NA
(17)

If ASCP(Ht) decreases, then the overall probability of hazard type Ht causing accidents
increases; otherwise, the overall probability of hazard type Ht causing accidents decreases.

3. Case Studies

The proposed model was applied to the hazard management of railway systems. All
computational experiments were conducted on a PC with a 2.8-GHz CPU operating the
Windows 10 operating system.

3.1. Data Description

The data in this study were obtained from RAIB (https://www.gov.uk/government/
publications/raib-investigation-reports-and-bulletins (accessed on 1 September 2020)).
We obtained 240 accident investigation reports from 2012 to 2020. The hazards were
classified into four types: human (H), equipment and machine (EM), environment (E),
and management (M). We extracted 20 H-type hazards (H01-H2O), 53 EM-type hazards
(EM01–EM53), 12 E-type hazards (E01–E12), and six M-type hazards (M01–M06). Eighteen
types of accidents were obtained, as graphically illustrated in Figure 2.

https://www.gov.uk/government/publications/raib-investigation-reports-and-bulletins
https://www.gov.uk/government/publications/raib-investigation-reports-and-bulletins
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Figure 2. Collection of accidents from RAIB.

3.2. ACN Construction and Analysis

Figures 3 and 4 show the WLDACN based on the interaction between hazard factors
and accidents. The weight was computed using Equation (1) and depicted near the edges
in the network, as shown in Figure 3. The length of each edge was computed using
Equation (6) and depicted near the edges of the network, as shown in Figure 4.

Figure 3. ACN with edge weight metrics.
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Figure 4. ACN with edge length metrics.

The SCP is an important feature of the WLDACN because it reflects the overall
probability of hazards that cause accidents. Table 2 shows the distance from four types of
hazards to 18 types of accidents. As shown in Table 2, the derailment accident (A04) had the
shortest ASCP (4.44), which indicates that the most likely accident that results from hazards
is derailment. Among the four types of hazards causing derailment, the H-type hazard
had the shortest path length, which indicates that human failure can much more easily
cause derailment. The H-type hazard can much more easily cause 15 types of accidents
than the other types of hazards. The EM- and E-type hazards can cause derailment (A04),
as indicated by the distance values of 3.54 and 5.62, respectively. M-type hazards were
more likely to cause accidents “struck-by (A06),” due to their distance value of 4.78.

Table 2. Distances from 4 types of hazards to 18 types of accidents.

Accident Type A01 A02 A03 A04 A05 A06 A07 A08 A09

H-type hazard 4.19 4.35 – 3.42 5.73 3.50 4.89 3.71 5.98
EM-type hazard 4.54 5.16 598 3.54 5.98 5.47 5.07 3.83 7.04
E-type hazard 5.80 5.98 5.98 5.62 9.03 6.90 5.98 5.91 7.37
M-type hazard 5.88 6.09 – 5.19 8.34 4.78 5.58 5.47 8.47

All types 5.10 5.39 5.98 4.44 7.27 5.16 5.38 4.73 7.22
Accident type A10 A11 A12 A13 A14 A15 A16 A17 A18

H-type hazard 3.71 3.71 5.73 5.04 5.73 5.73 5.04 – 5.76
EM-type hazard 3.83 3.82 7.58 6.89 7.58 5.29 5.92 5.98 5.98
E-type hazard 5.91 5.91 9.03 8.34 9.03 5.98 8.34 5.98 8.06
M-type hazard 5.47 5.47 8.34 7.64 8.34 8.29 7.37 – 9.21

All types 4.73 4.73 7.67 6.98 7.67 6.32 6.67 5.98 7.25

Figure 5 shows the ASCP for each hazard type for accidents. As shown in Figure 5,
EM-type hazards had the shortest distance to accidents (5.69) among the four types of
hazards, which indicates that the most likely cause of accidents is equipment or machine
failure. The second most likely cause of accidents is human-type hazards.



Entropy 2021, 23, 864 11 of 16

Figure 5. ASCP from each hazard type to accidents.

Figure 6 shows the ASCP from each H-type hazard node and E-type hazard node to
accidents. As shown in Figure 6, the distances from different hazard nodes to accidents
were different. H06 (rail line inspector did not identify problems in a timely manner)
and H08 (track worker negligence) had shorter ASCPs to accidents than the other H-type
hazard nodes. Therefore, hazards H06 and H08 can more easily cause railway accidents
than the other H-type hazard nodes. E02 (water hazard) had a shorter ASCP to accidents
than other E-type hazard nodes. Therefore, hazard E02 can more easily cause railway
accidents than the other E-type hazard nodes.

Figure 6. ASCP from each H-type hazard node and E-type hazard node to accidents.

Railway safety managers should delete as many hazard nodes as possible through
hazard control efforts. However, different ASCPs from each hazard node to accidents
indicate different contributions of various hazards to railway accidents. Therefore, the CHI
model should be used to obtain the critical hazard nodes.

3.3. CHI Model Application and Comparison

Based on the obtained WLDACN and hazard controllability analyses, we obtained
64 controllable hazard nodes. Herein, five CHI methods have been proposed to find the
critical hazard nodes. Ten nodes were applied to compare these CHI methods, including the
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HBA, HCA, HDA, HPA, and IPM. The comparison results are shown in Figure 7. Among
the four high centrality adaptive strategies, the HBA strategy is much more effective in
preventing accidents than the other three methods because it enables more SCPs from
hazards to accidents to be removed. It is difficult to distinguish the effectiveness of the HDA
and HPA methods because the network efficiency depends on the number of removed
nodes. The HCA strategy performed the worst among the four strategies. Therefore, we
suggest using the HBA method to identify critical hazards in railway systems among high
centrality adaptive strategies. However, the proposed IPM performed better than all high
centrality adaptive strategies, as shown in Figure 7. The high centrality adaptive method
iteratively removes the nodes with the highest centrality; therefore, it only solves one
critical hazard node at each step. However, the IPM obtains the critical hazard nodes from
a global perspective. Consequently, the proposed IPM more effectively performed hazard
management and accident prevention.

Figure 7. Comparison of different CHI methods.

Additionally, the ASCP was used to compare the performances of five CHI methods.
Figure 8 shows the ASCP from all hazards for each accident type after removing 10 hazard
nodes. We assume that the ASCP is 20 if accidents cannot be caused by hazards. As shown
in Figure 8, some accidents cannot be caused by hazards after we remove 10 hazard nodes.
Nine types of accidents, including A05, A12, A13, and A14, cannot be caused by hazards
when the HBA method is adopted; eight types cannot be caused by hazards when the HCA
method is used; nine types cannot be caused by hazards when the HDA method is used;
eight types of accidents, including A05, A08, and A14, cannot be caused by hazards when
the HPA method is adopted; nine types of accidents, including A05, A08-A14, A16, and
A18, cannot be caused by hazards when the IPM method is adopted. Therefore, HBA and
IPM better prevent accidents than the other three methods.

Figure 8. ASCP from all hazards to each accident type.
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Based on Equation (17), Figure 9 shows the ASCP from each hazard type to accidents
after we removed 10 hazard nodes. As shown in Figure 9, the IPM and HBA methods
performed better than the other three methods because IPM and HBA increased the ASCP
of EM-, E-, and M-type more than the HPA, HCA, and HDA methods. The ASCP of H-type
hazards can be lengthened by the HDA method to a higher level. However, HAD has
a worse overall performance than the IPM and HBA methods, which implies that the
proposed IPM and HBA methods significantly reduce the accident-causing probability of
each hazard type. Therefore, the IPM and HBA methods can be selected as CHI models
to identify the critical hazard nodes. The IPM can reduce the probability of H-, EM-, and
E-type hazard-related accidents to a lower level than the HBA. The HBA method can
reduce the probability of M-type hazard-related accidents to a lower level than the IPM
method. However, the overall length of the ASCP resulting from the IPM was longer than
that from the HBA method. Therefore, the proposed IPM is suggested as the CHI method
for accident prevention in railway systems.

Figure 9. ASCP from each hazard type to accidents.

The hazard nodes to be alleviated were H02 (driver emergency brake failure), H04
(driver’s operation mistake), H06 (rail line inspector did not identify problems in a timely
manner), H12 (level crossing watchman’s mistake), H13 (train maintainer’s inadequate
maintenance), EM02 (damaged track), EM04 (false signal displayed), EM24 (equipment
failure signal), EM29 (train braking system failure), and M01 (poor safety education for
workers). The hazard types included 1 M-, 5 H-, and 4 EM-type hazards. Although we
obtained 20 H-type hazards from the accident reports, which only constituted 22% of all
hazard nodes, the critical H-type hazards still constituted 50% of the total critical hazard
nodes, which implies that human failure was the main cause of accidents. Based on the
obtained critical hazard nodes and their parent nodes, hazard control measures can be
implemented. For example, the top two causes of hazard event H02 were the conductor’s
mistake (H03) and false signal displayed (EM04). For hazard node H03, we could not
identify the causes from the accident reports. Therefore, railway safety managers should
employ professional or experienced conductors to reduce these mistakes. Additionally,
hazard node EM04 is a critical hazard node, which is mainly caused by EM03 (power
supply failure). Therefore, the power supply departments of railway companies should
strive to maintain a stable power supply.

The top 10 critical hazard nodes did not include E-type hazard nodes because the rail-
way system is more robust to environmental changes than other transportation modes [39].
If the controllability of hazards is not analyzed, then E03 (wind) will constitute one of the
top 10 critical hazard nodes. However, the wind cannot be alleviated because it is a natural
hazard; as such, railway companies strive to protect railway systems from wind damage
by technology improvement. In summary, the controllability of hazard factors must be
analyzed to obtain feasible hazard control measures.
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3.4. ACN Model Comparison

The proposed WLDACN model uses a different length metric method from other
network-based accident causation models such as DACN and WDACN. To validate the
efficiency of the WLDACN, we compared the performances of the five CHI methods under
three accident causation models. The comparison results are listed in Table 3.

Table 3. Difficulty of hazards causing accidents under different ACN models and CHI methods.
(Bold represent the optimal values).

Models HBA HCA HDA HPA IPM

DACN 27.3342 72.3560 32.4598 31.8879 27.1856
WDACN 25.8917 70.3325 31.8904 30.0392 25.3462

WLDACN 22.9560 67.7097 31.8904 30.0392 21.6170

All three accident causation models performed the best when they were implemented
using the HBA and IPM methods. However, the proposed IPM performed slightly better
than the HBA method, although different accident causation models were used. Because
WDACN and DACN obtain the edge length by reversing or disregarding the weights of
edges, as described in Section 2, the proposed WLDACN performed the best among the
three accident causation models. The WDACN and WLDACN demonstrated identical
performance when implemented using the HDA and HPA methods because they used the
same method to compute the weights of the edges. In general, combining the IPM and
WLDACN yielded the best accident prevention results.

3.5. Limitation of the Method

The railway company may use facilities with various levels of reliability or employ
staff with different professional abilities, which may lead to uncertain accidents. Therefore,
the causality network obtained from different railway companies may be different. The
obtained results only represent the dataset in this paper. Although the causality network
based critical hazard identification method can help safety managers understand the causes
of railway accidents to avoid similar occurrences in the future, the number of accident
reports determines the efficiency of the method. In fact, the railway industry has developed
for a long time, and we believe that the accumulated accident data are so large that the
method can be used to suggest critical hazards.

4. Conclusions

Accident causation models enable us to effectively understand the causes of railway
accidents. In previous ACN models, the effects of the frequency of hazard events or
accidents are typically simplified; hence, the MPCP from hazards to accidents is inconsistent
with the obtained SCP. Therefore, we proposed a new ACN model, where the MPCP
problem is transformed into an SCP problem. The nodes in the network can be classified as
hazard or accident nodes. As such, we can use the distance from hazards to accidents to
measure the difficulty of various hazards causing accidents; consequently, critical hazards
can be identified.

The causes of railway accidents should be understood to prevent accidents through
hazard control. Therefore, we proposed CHI models to select critical hazards. The control-
lability of hazards, which is often disregarded, was discussed to determine the variables in
CHI models. In this study, five CHI models were proposed to identify the critical hazard
nodes in the ACN. To compare the performances of the models, three indices that can
measure the efficiency of accident prevention were proposed. Comparison results from the
case study indicated that the proposed IPM and WLDACN models performed better than
the other models.

Because the results from the proposed model were based on real-world data, they
offer useful insights into the hazard management of railway systems. The proposed model
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can suggest critical hazard factors that should be controlled. Safety managers can select
hazard control options based on the critical causes of accidents.

In future studies, more accident data will be used to validate the proposed CHI model.
In our model, the results of each type of accident, such as damage, injury, or death, were
not considered due to inadequate data. Therefore, more data regarding accident damage
should be obtained to measure the severity of accidents, and the weight of distance from
hazards to each type of accident can be measured. Furthermore, the management cost of
each hazard can be differentiated in future models.
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