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A B S T R A C T   

In tissues containing significant amounts of organised collagen, such as tendons, ligaments, menisci and articular 
cartilage, MR imaging exhibits a strong signal intensity variation caused by the angle between the collagen fibres 
and the magnetic field. By obtaining scans at different field orientations it is possible to determine the unknown 
fibre orientations and to deduce the underlying tissue microstructure. Our previous work demonstrated how this 
method can detect ligament injuries and maturity-related changes in collagen fibre structures. Practical appli
cation in human diagnostics will demand minimisation of scanning time and likely use of open low-field scanners 
that can allow re-orienting of the main field. This paper analyses the performance of collage fibre estimation for 
various image SNR values, and in relation to key parameters including number of scanning directions and pa
rameters of the reconstruction algorithm. The analysis involved Monte Carlo simulation studies which provided 
benchmark performance measures, and studies using MR images of caprine knee samples with increasing levels 
of synthetic added noise. Tractography plots in the form of streamlines were performed, and an Alignment Index 
(AI) was employed as a measure of the detected orientation distribution. The results are highly encouraging, 
showing high accuracy and robustness even for low image SNR values.   

1. Introduction 

Conventional MRI cannot accurately diagnose tissues containing 
collagen as its main component, such as ligaments, tendons and menisci. 
Consequently, invasive procedures such as arthroscopy remain as the 
diagnostic gold standard, even though they are normally undertaken 
only as therapy. Conditions such as partial ligament tears are particu
larly difficult to diagnose using traditional MR imaging, which provides 
no functional assessment of the remaining portion (Devitt et al., 2017; 
Temponi et al., 2015). The knee is the most affected joint in injuries, 
with annual incidence of 61 meniscal tears and 30 cruciate ligament 
injuries per 100,000 population (Kurtz et al., 2007). Knee osteoarthritis 
affects 4.7 Million people in the UK alone, with over 90,000 knee re
placements per year (Willis-Owen et al., 2009) and there is a trend for 
younger patients to require replacement due to wear after injury. In the 
case of knee replacement surgery, the choice between total knee 
replacement, and the less radical unicompartmental replacement, or 
cruciate sparing replacement, also critically depends on the accuracy of 
assessing the state of the ligaments (Mancuso et al., 2016). 

In ligaments and tendons, collagen forms a hierarchical structure of 

fibrils, fibres and fascicles, and fibre structures can also be identified in 
other tissues. At physiological hydration levels, 89 % of the water pre
sent in the tissue is bound to collagen (Fullerton and Rahal, 2007) in 
chain-like structures, while the remainder is the water in gaps. In 
collagen bound water the unaveraged dipolar interactions of proton 
nuclear spins are the dominant signal decay mechanism, causing a very 
short transverse relaxation times T2 and T∗

2, and a generally low MR 
image signal intensity. It is well known (Berendsen, 1962; Bydder et al., 
2007; Henkelman et al., 1994) that the dipolar interactions are modu
lated by the term (3cos2θ − 1), where θ is the angle between the 
proton-proton direction and the main magnetic field B0, and this will 
diminish for θ = 54.7◦, commonly known as the magic angle (MA). As a 
result, the measured T2 may be extended from about 1− 2 ms for θ = 0 to 
perhaps more than 20 ms when θ is the magic angle. For imaging se
quences with relatively short echo times, typically if TE < 37 ms, this 
will result in marked changes in the observed image intensity, from very 
dark (almost no signal) to very bright. In musculoskeletal MR imaging 
this phenomenon is usually considered to be a source of artefacts, 
because healthy ligaments would generally appear black, while regions 
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of high intensity may be a sign of a disease or injury, or an artefact due to 
MA. 

Previous work (Seidel et al., 2013; Szeverenyi and Bydder, 2011) has 
shown that by measuring the variation of signal intensity with θ it is 
possible to deduce information about the tissue microstructure, which 
cannot be easily obtained by other non-invasive means. The recorded 
image intensity of each voxel obtained at various angles θ can be used to 
estimate the dominant collagen fibre orientation. The resulting data may 
be used to generate 3D tractography plots, which are visually similar to 
the results obtained using Diffusion Tensor Imaging (DTI) but involve an 
entirely different contrast mechanism. In our recent work (Chappell 
et al., 2019) we proposed an improved method for selecting optimised 
scan directions leading to a reduced number of scans at different field 
angles θ, and an improved method to calculate collagen fibre orienta
tions leading to a significantly reduced number of computations and 
improved accuracy. This method was successfully employed to detect 
previously unknown ligament injury, and maturity-related changes in 
the collagen structure of knee specimens. 

The work presented in this paper was conducted to investigate the 
performance of this method, and particularly its dependence on the 
image signal-to-noise ratio (SNR). The main motivation is that the po
tential future applications in humans will depend on the use of open 
scanners, since in the confines of conventional closed bore scanners it is 
mostly impossible to change the angle of the main field to the body. Low- 
field open scanners based on permanent magnets have found wide 
adoption for musculoskeletal imaging, while novel permanent magnet 
configurations have also been proposed as a way to fully exploit field- 
related anisotropies (McGinley et al., 2018). Since the estimation of 
collagen fibre directions using directional imaging involves the analysis 
of image intensity variation in each voxel, a key question is how sensi
tive this approach is to image noise. In the attempt to provide adequate 
answers, we have conducted Monte Carlo simulation studies in combi
nation with experimental imaging using animal samples and various 
levels of artificially added noise. In Section II, our method for Magic 
Angle Directional Imaging (MADI) method is summarised, together with 
the definition of the Alignment Index as an adopted metric relating to 
the degree of fibre anisotropy. Subsequent sections present the details of 
our simulation studies, experimental imaging and results. 

2. Methods 

The overall imaging and image processing procedure for Magic 
Angle Directional Imaging (MADI) is summarized in the following steps, 
while further details are provided in subsequent subsections. 

1. MR Imaging 
Volume images of the subject are obtained at N equally distributed 

orientations of the main field B0 relative to the subject. 
2.Registration of volume images 
This is performed to establish voxel correspondences, such that 

image intensity variation can be analysed, and the rotation matrix ob
tained as part of the transformation is used for the subsequent calcula
tion of fibre directions. 

3 Segmentation 
The region of interest (ROI) is interactively selected by the user. 

Voxels within ROI exhibiting intensity variation above a predefined 
threshold are segmented for further processing. 

4 Estimation of fibre directions 
For each voxel in the set, the measured intensity values are corre

lated with those predicted using theoretical relationships, and the 
collagen fibre direction vector is estimated using cost function 
minimization. 

5 Visualization and metrics 
The results may be visualised using suitable 3D vector field plots or 

used to construct 3D tractography plots using streamlines. In addition, 
distribution of collagen fibre orientations and metrics such as the 
Alignment Index (AI) may be calculated and visualized. 

All software was developed in Matlab (Mathworks, Inc.), except for 
tractography visualization which was performed using ParaView (San
dia National Laboratory). 

2.1. Scanning orientations 

The number of required scans at different orientations of B0 to the 
subject is of great practical importance because it directly determines 
the overall scanning time. Prior work involved relatively large numbers 
of scans and the selected orientations were not optimised, as they were 
mainly chosen for experimental convenience. Szeverenyi et al. (Sze
verenyi and Bydder, 2011) performed scanning at 15 orientations, 
which were confined to 3 orthogonal planes. Seidel et al. (Seidel et al., 
2013) used 35 orientations, which were confined to 2 orthogonal planes. 
The approach that we adopted is as follows. 

It is apparent that if a number of scanning directions were confined 
in one plane, they would produce similar intensities for all collagen fibre 
direction being approximately normal to that plane, so the ability to 
detect the angular anisotropy of those fibres would be severely limited. 
We can conclude that for optimal results no three scanning directions 
should be chosen to lie in the same plane. Based on this we postulated 
that the selected orientations of B0 should be equidistant in 3D in order 
to provide a better sampling of the intensity variation function. Equi
distant orientations are those that would maximise the minimum angle 
between them, and they may be found by using a method to partition a 
unit sphere into regions of equal area. The directions belonging to one 
hemisphere can then be selected. We have used the method for parti
tioning the sphere proposed in (Leopardi, 2006) and Fig. 1 gives an 
example for the case of 9 equidistant directions. 

2.2. Fiducial localization and registration 

Registration of volume images was performed using three passive 
markers, consisting of 10 mm diameter water filled balls, which were 
fixed with the sample. Localization of the markers in the images was 
performed using the template matching technique, which relies on their 
spherical shape. Similarly to (de Oliveira et al., 2008) the Fourier 
Filtering Method (Parker, 2010) is employed, however, here it is applied 
to a volume instead of the 2D images. If M is the Fourier transforms of 
the acquired volume image and J is that of a template sphere of known 
radius, then: 

M = J × Δ + N (1) 

where N is the noise and Δ is the Fourier transform of the delta 
functions that identifies the position of the sphere. If a Wiener filter is 
used to reduce the noise produced by other objects, then N may be 
neglected in (1) and the sphere position (x, y, z) can be calculated using 
the inverse Fourier transform: 

δ(x, y, z) = FFT − 1(M
/

J ) (2) 

The division of the Fourier transformed images M and J is computed 
by dividing the magnitudes and subtracting the phase values. The voxels 
in the region with the highest intensity correspond to the template 
sphere. Sub-voxel accuracy may then be achieved by calculating that 
region’s centre of mass weighted by the intensity. Previous work (Franco 
et al., 2016) indicated that the typical accuracy of the localization 
method is better than 0.3 voxels. 

If the markers are arranged in a known pattern such that they are not 
equidistant from each other, then the correspondence between identi
fied marker positions in different volume images can be automatically 
established (Galassi et al., 2015). Registration is then performed as a 
rigid body transformation that minimizes the sum of the squared dis
tances between the corresponding marker points (Arun et al., 1987). In 
this way, with one of the N acquired image volumes taken as a reference, 
the other N − 1 volumes acquired at different orientations are registered 
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to it, and the corresponding rigid body transformation matrices are 
recorded. In the final step, nearest neighbour method is used to establish 
voxel-voxel correspondences between all acquired volumes. 

In the presence of any image distortions, which are often caused by 
the non-linearity of the gradients and non-uniformity of the main field, it 
was found that the results of the rigid body registration were improved 
by performing an additional fine alignment manually. This involved 
only translations of typically less than one voxel (approximate voxel size 
1mm3), but it can significantly improve the accuracy in the selected 
region of interest. Interactive graphical tools were developed for this 
purpose, where the first slice is overlapped with each of the other scans 
in turn. We browse through slices until we find ROI, then we manually 
translate the second slice left, right, up and down until we find the best 
overlap. 

2.3. Segmentation 

Having found corresponding voxels, a 3D map of standard deviation 
of intensity is computed and visualised. A region of interest (ROI) may 
be interactively selected as a rectangular block of voxels. Voxels within 
ROI with standard deviation of intensity above a prescribed threshold 
are assumed to contain oriented collagen and are segmented for subse
quent processing. 

2.4. Computation of fibre orientations 

The segmented voxels each have a vector of N intensities IM that 
correspond to N scanning directions. According to the analysis presented 
in (Szeverenyi and Bydder, 2011) the variation of the image intensity 
with the angle θ between the collagen fibres and the the field B0 may be 
adequately represented using the relationship 

I = A exp
(
− B

(
3cos2θ − 1

)2
)

(3) 

The constants A and B are chosen such that the range of values of I 
matches the observed range of intensities in the segmented voxels. The 
value of A corresponds to the maximum observed intensity value, while 
B corresponds to the difference between the observed the maximum and 
the minimum intensities. This equation can then be used to compute a 
set of N theoretical intensity values IC. 

In order to estimate the unknown orientation x of the fibres, we 
construct the following cost function for each voxel: 

f (x) =
∑N

k=1
(IMk − ICk(x))2 (4)  

where IMk represents the measured intensity of the voxel scanned in the 
k-th direction, ICk(x) represents the computed theoretical intensity for 
this voxel, scanned in the k-th direction, that would be obtained if the 
fibre direction is x. The direction x = (α, β) is defined in spherical co
ordinate system and the minimisation of f(x) involves 2 dimensions. The 
cost function (4) was minimised using the Nelder-Mead simplex algo
rithm (Lagarias et al., 1998), which does not require computation of 
derivatives. The algorithm starts by first making a simplex of 3 points 
around an initial guess x0. 

The cost function is highly non-linear and involves multiple minima, 
particularly in the presence of noise, so it is necessary to provide a 
sufficiently accurate initial guess to achieve convergence. In order to 
find the initial guess, we compute M test directions regularly distributed 
on a hemisphere (Leopardi, 2006). For each test direction we compute N 
theoretical intensities using Eq. (3), i.e. one for each actual scanning 
direction as determined in the registrations step. For each segmented 
voxel correlations between its set of intensities and those found for each 
test direction are calculated, and the direction giving the largest corre
lation value was assumed to be the initial guess x0 for that voxel. The 
search for initial guess is similar to the method suggested by (Szeverenyi 
and Bydder, 2011). The main difference is that the orientation that they 
take as a final result is only an initial guess for our minimisation (4), and 
we also compute the correlation coefficient by its formal definition. 

2.5. Alignment index (AI) 

We adopted the Alignment Index (AI) as a suitable metric describing 
the degree of anisotropy in the computed vector field, which may be 
calculated for any specific orientation. For a chosen orientation, we 
consider the fraction of the calculated orientations that are within a 20◦

solid angle of a cone centred at that orientation, and a fraction of the 
same number of random orientations that are within the same solid 
angle. The 20◦ solid angle was chosen somewhat arbitrarily, following 
some experimentation with different angle values applied to datasets 
collected in our experiments. 

AI may be calculated for any chosen orientation as follows. If nTotal is 
the total number of fibre orientations considered (i.e. the number of 
segmented voxels),and nM is the number of those within a 20◦ solid 
angle from the specified orientation, we generate a set of nTotal random 

Fig. 1. 9 equidistant orientations represented by points on a hemisphere. 
[0, 0, 1], [0.42, 0.42,0.8], [ − 0.42,0.42,0.8], [ − 0.42, − 0.42,0.8], [0.42, − 0.42,0.8], [0.92,0, 0.4], [0, 0.92,0.4], [− 0.92, 0,0.4], [0, − 0.92, 0.4]
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orientations and find the number nRnd of those within the same 2 0◦ solid 
angle. AI is then calculated using the following equations: 

if nM ≥ n
Rnd then AI= (nM − nRnd )

(nTotal − nRnd )

if nM < nRnd then AI = 0 (5) 

Note that AI is normalised in such a way that AI = 0 indicates a fully 
isotropic vector set, while increasing AI values indicate increasingly 
aligned vector sets. AI = 1 corresponds to all vectors being orientated 
within the 20◦ solid angle from the selected direction. 

In order to visualise the orientation distribution in a dataset we 
calculate AI for 1000 equidistant points on a hemisphere, from which 
the direction and the value of maximum AI can also be found. The 
equidistant points were calculated using the algorithm in (Semechko, 
2018), which performs for uniform sampling of a sphere. 3D plots of the 
alignment index can be seen for the results presented in Fig. 7, where the 
magnitude of AI is coded in colour. 

2.6. Simulation studies 

Monte Carlo simulations were conducted in order to characterise the 
adopted methods in relation to imaging noise and to provide a bench
mark performance against which experimental results can be compared. 
In particular we investigated the following:  

• Robustness in terms of the number of scans and signal to noise ratio  
• Accuracy of estimating fibre orientations 
• Computational efficiency in relation to the number of template di

rections M. 

Cases involving sets of between 7 and 11 scanning orientations were 
considered. Simulations in each case involved 105 trials in which a single 
voxel was considered, and fibre orientation was randomly defined. 
Angle dependent signal intensity was determined using Eq. (3) with 
constants A = 250 and B = 0.4 providing the best fit to the range of 
intensities observed in our MR imaging experiments. Randomly gener
ated Gaussian noise corresponding to various SNR values was added to 
these theoretical values. SNR was calculated as mean signal intensity 
divided by StDev of noise. In this context the mean is the average in
tensity obtained for the N scanning directions. 

2.7. MR image data 

Caprine legs were purchased from a local meat supplier who could 
ensure that the goat had been slaughtered and then refrigerated at 4 ◦C 
for no more than five days. The caprine leg was shortened by the butcher 
using a saw and blade to 175 mm with the joint line centralised at 
around 87 mm. The ends of the leg that had been cut were cleaned 
thoroughly in running water to remove any metal debris from the blade 
and saw which could cause susceptibility artefacts on the MRI images. 
The knee was wrapped in polythene to prevent leakages and to maintain 

tissue hydration. To prevent the knee flexing and returning to its neutral 
position during the scan clear parcel tape was used to immobilise the leg 
in an extended position (clear polypropylene tape, 41 μm x48 mm x66 
m). Tape was applied to the proximal end pulled tight along the anterior 
aspect and fixed at the distal portion. Additional clear tape was applied 
to stabilise the quadriceps, hamstring muscles and other soft tissues. 

The sample (Fig. 2) was mounted inside a plastic test sphere, by 
embedding the distal and proximal ends in plasticine, which was in 
previous tests verified to have no MRI signal. This ensured that there was 
no movement of the sample within the sphere, which was set at different 
orientations relative to B0 with the aid of suitable markings. Three water 
filled balls with a diameter of 10 mm (.43 Caliber Clear Paintballs 8000, 
Rap4 UK) were fixed to the surface of the sample at unequal distances to 
each other. 

Imaging was performed with a 3 T scanner (Magnetom Verio, 
Siemens, Erlangen, Germany) with a 12-channel head coil as the signal 
receiver. Scans employed a 3D T1 FLASH (Fast Low Angle Shot) 
sequence with 1 mm isotropic voxels (TR 13 ms, TE 4.9 ms, FOV 256 
mm). 

The obtained MR images served as the image quality gold standard. 
Different levels of synthetic noise were subsequently added to these 
images in order to produce images with reduced SNR values, which were 
analysed using the DICODE method and compared. 

3. Results 

3.1. Number of field orientations 

We conducted Monte Carlo simulations in order to establish the 

Fig. 7. Representative results obtained for different SNR values, showing the images, tractography plots for the patella tendon and plots of Alignment Index dis
tribution for SNR = 80, 20 and 5. The dashed box in the images indicates the selected region of interest and the arrows indicate the patella tendon. 

Fig. 2. Goat knee sample mounted in the test sphere and placed within the 12 
channel head coil in specially designed holder. 
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required number of scanning orientations in the presence of image noise 
(105 simulation runs per configuration) involving simulated image 
noise SNR = 5, 10, 20, 30, 80 and N = 7, 9, 11 scanning orientations. In 
each case we recorded the number of simulations that failed to converge 
correctly, which was again judged by the error in calculating the 
orientation being > 10◦. The results are summarised in Fig.3, showing 
the percentage of failed calculations as a function of SNR, for different 
values of N. 

The simulations show that even for SNR = 10, using 7 scanning di
rections achieves 95.46 % of correct results, while using 9 scanning 
directions we achieve 98.75 % correct results. Using only 7 scanning 
directions we achieve 99.88 % success rate if SNR > 20. Based on the 
above we have decided to use 9 scans in all our subsequent experiments. 

3.2. Initial guess and robustness 

Monte Carlo simulations were used to find the required number of 
test directions to be examined in order to provide a sufficiently accurate 
initial guess for minimization of Eq. (5). It was assumed that the mini
misation did not reach the global minimum if the error in estimating 
fibre direction was greater than 10◦. As the directions are computed 
from the intensities contaminated by noise, the observed error is mainly 
a result of the noise and to a much lesser extent due to an inherent in
accuracy of the iterative method. For different test sizes we employed 
10,000 simulation runs for 7 scanning directions with SNR = 30, and for 
9 scan directions with SNR = 10, 30. The results are summarised in Fig. 4 
showing the percentage of runs that failed to convergence to global 
minimum. It can be seen that with 200 template directions in case of 9 
scanning directions there will be less than 1% of erroneous results even 
for SNR = 10. Consequently, we adopted 250 test directions when 9 or 
more scanning directions were used, and 500 test directions when only 
7scans were used. 

3.3. Accuracy of estimation of fibre directions 

Monte Carlo simulation involving 105 tests was performed and Mean 
error and Standard deviation were examined as a function of SNR. Fig. 5 
shows the results for 7, 9 and 11 equidistant scanning orientations, 
together with those obtained using the method in (Szeverenyi and 
Bydder, 2011), for comparison, showing that the improved method for 
fibre directions computations achieves much higher accuracy. Based on 
this, the number of scanning orientations in the imaging experiments 
was set to N = 9, considering the anticipated range of SNR values and 

the desired robustness of calculation. 

3.4. Computational efficiency 

It was found that on average 65 iterations of the simplex mini
misation were required for a tolerance of 0.01◦. The overall computa
tional time was found to increase roughly linearly with the number of 
test directions used to determine the initial guess. The computing times 
per voxel for the calculation of fibre direction is presented in Table 1, 
where the computing times for the method in (Szeverenyi and Bydder, 
2011) are included for comparison, though its accuracy is considerably 
lower, of the order of 2− 3◦. 

Fig. 3. Monte Carlo simulation results showing percentage of failed calcula
tions (error >10◦) as a function of SNR, for different numbers of scan orien
tations equispaced in 3D. 

Fig. 4. Percentage of 105 Monte Carlo simulation runs that failed to reach 
global minimum (error>10◦) vs. number of test directions used to find the 
initial guess, 7 scans with SNR = 30 and 9 scans with SNR = 10, 30. 

Fig. 5. Mean (a) and standard deviation (b) of angular error using the proposed 
method with 7, 9 and 11 equidistant scan orientations. Results obtained using 
the method in (Szeverenyi and Bydder, 2011) are included for comparison. 

Table 1 
Computing times per voxel to calculate fibre directions for different numbers of 
test directions. The times for the previous method in (Szeverenyi and Bydder, 
2011)are provided for comparison.   

Previous 
Method 

Simplex minimisation 

Number of test 
dirs. 

900 1000 750 500 250 200 100 

Time (ms) 90 100 76 51 27 22 13  
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3.5. Sample tractography plots 

Vector field data may be used to construct tractography plots in the 
form of streamlines, which originate from suitably selected seed points 
and are calculated using the direction vectors computed for each voxel 
in the segmented set. Fig. 6, shows tractography plots obtained using 
Paraview for the caprine specimen in Fig.2, showing the patella tendon, 
anterior cruciate ligament (ACL) and the meniscus. 

3.6. Reconstruction from experimental images with noise 

The MR images obtained in the experiments were used to assess the 
performance of the method in the presence of image noise and the re
sults are summarised in Fig.9 for different SNR values. In each case the 
SNR values were calculated as SNR = 0.655∙S/σ, where S is the mean 
signal intensity and σ is the standard deviation of noise. S was taken to 
be the mean pixel intensity value of the segmented angle sensitive voxel 
in all 9 scans. The value of σ was found from the pixel intensities in a 
selected background region corresponding to background air. The factor 
0.655 is due to the Rician distribution of the background noise in a 
magnitude image. This arises because the intensity variations due to 
added noise were all made positive, which artificially reduces. 

Fig.7 summarises the results obtained for different SNR values. It 
presents sample images, including the original scans with SNR = 56, and 
those with increasing added noise, down to SNR = 5. Focussing on the 
patella tendon as the ROI, Fig. 7 also shows in each case the tractography 
plots, the fibre orientation distribution plots. In addition, Table 2 sum
marises the values of the calculated Alignment Index obtained for 
different SNR values. In all cases the direction corresponding to the peak 
of the orientation distribution was found to be (0.09, 0.12, 0.99), for 

which the maximum AI was calculated. The consistency of these results 
indicates that the method performs well even for images where the noise 
is quite significant. This is evident from the visual quality of the trac
tography plots, and also from the consistently similar number of 
segmented voxels, AI distribution plots and the maximum AI value in 
each case. 

The robustness of calculating fibre orientations for different SNR 
values was measured by recording the percentage of failed calculations. 
Here, the original acquired images with no added noise (SNR = 56) were 
taken as the gold standard, yielding calculated fibre directions that were 
taken as absolutely accurate, and the results obtained from images with 
added noise were compared against those. A fibre estimation calculation 
was considered to fail if the resulting error was found to be >10◦, 
consistent with the equivalent simulation studies in II.A. The results are 
presented in Fig. 8, which also includes the simulation results for com
parison. The difference between the two plots can be attributed to a 
number of effects that are not accounted for in the simulations, 
including partial volume effects, the fact that voxels in different scan 
involve different orientations, non-uniformity of the actual tissue 
microstructure in ROI, as well as any errors due to registration. 

4. Discussion 

Methods exploiting the magic angle effect have the potential to 
provide valuable new diagnostic information about the tissue micro
structures and can lead to reliable non-invasive diagnostic methods. 
However, it is difficult to envisage how such methods can be employed 
using conventional MRI scanners which use cylindrical magnets. The 
severely limited magnet confines make it impossible to change the angle 
between the main field and the subject, with few exceptions such as 
imaging of the wrist or the ankle. The situation is somewhat easier with 
open MRI in which the field is vertical and the patient is positioned 
between two magnet poles, although rotating the patient about two axis 
remains difficult to perform in practice. This issue can be solved by 
adopting novel MRI configurations involving a moveable magnet. Our 
group is currently developing a dedicated low-field scanner based on 
permanent magnets (McGinley et al., 2018), in which the magnetic field 
is parallel to the poles (transverse) and the magnet can be rotated about 
two axes (‘roll’ and ‘yaw’) while the patient remains stationary. In this 
way almost any desired field orientation can be achieved. 

Methods such as Diffusion Tensor Imaging (DTI) have been 
employed to obtain collagen tractography plots (Van Dyck et al., 2017). 
In principle DTI does not require changing of the field angle as the 
diffusion tensor can be constructed by applying gradients in various 
directions. However, in order to obtain a sufficient MRI signal it is still 
found necessary to orient the anatomy at the magic angle, so again, these 
techniques cannot be readily applied in conventional scanners. 

The conducted simulation studies conducted in this work were 
relatively simple, as they were intended only to provide a performance 
benchmark, with the noise as the main influencing parameter, and they 
were not intended to be a faithful simulation of MRI scanning at low 
field. For the purposes of the simulations, the values of parameters A and 
B (Eq. 3) were chosen according to the image intensity variation 
observed in experimental images. Those values can be expected to be 
different for a low field scanner and for different imaging sequences, and 
the value of B in particular will depend on the choice of TE. The values of 
A and B could be readily chosen for each image set according to the 
observed image intensity variation, as we did in this work. However, it is 
worth noting that our experiments with different values indicate that the 

Fig. 6. Example tractography results for different regions of interest: A: patella 
tendon, B: anterior cruciate ligament (ACL), C: the meniscus. The data was 
obtained from 9 vol scan orientations equally spaced in 3D. 

Table 2 
Maximum alignment Index values calculated for different signal-to-noise ratios. 
In all cases the peak fibre direction was found to be (0.03, 0.23, 0.94).  

Signal-to-Noise Ratio 56 30 20  10 5 

Maximum Alignment Index 0.562 0.586 0.600  0.621 0.624  
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performance of the fibre estimation method is quite insensitive to the 
choice of the parameter A. This could be explained by the fact that the 
method involves correlation, so it is the shape of the underlying curve of 
Eq. 3 that has the dominant influence, not the absolute values. 

As mentioned above, the synthetic added noise in this work was 
Gaussian, involving only positive values in the range 0 − 255 which 
were added to the voxel intensity values. Strictly speaking, MR noise is 
known to have the Rician characteristic, but for noise values SNR ≥ 3 
this is known to be represented accurately by the Gaussian characteristic 
(Gudbjartsson and Patz, 1995). Therefore using Gaussian noise simpli
fied the coding of the simulation without a significant sacrifice in ac
curacy. We accounted for the Rician nature of the background noise in 
the calculation of the resulting SNR, with the factor 0.655 in the for
mula SNR = 0.655 S/σ. 

We have shown that the number of scanning orientations can be 
reduced by as much as 50 % or more with an appropriate choice of 

directions, which adequately detect the angle-dependent variation in 
signal intensity. Simulation studies suggest that 9 equispaced scanning 
directions are sufficient to capture the angle sensitive signal intensity 
variation. However, even 7 equispaced scanning orientations may be 
sufficient for reasonable SNR. It should be noted that no a priori 
knowledge has been assumed about the expected orientation of collagen 
fibres, and we expect that in certain cases it would be possible to utilise 
such knowledge in order to reduce the required number of scans even 
further. 

The proposed simplex minimisation method for estimating fibre 
orientations has been shown to achieve significant improvements over 
previous methods in both accuracy and speed, without the need to trade 
one against the other. The analysis of experimental data indicated that 
improved accuracy is particularly important for visualisation of orien
tation distribution plots, where lower accuracy can lead to less well 
defined distribution peaks and therefore less conclusive results. The 

Fig. 8. Percentage of failed fibre direction computations (error>10◦) as a function of image SNR for the experimental images and Monte Carlo simulations. For the 
experimental images the original data with SNR = 56 was used as the gold standard, while the other images where those with synthetic noise added. 
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main factors influencing accuracy are the number of scans and the SNR 
value. 

Importantly, the method was shown to be robust and accurate in the 
presence of significant imaging noise. Reliable results were obtained 
even for quite low SNR values of about 6, and very consistent results 
were obtained for SNR > 10. It is reasonable to expect that much higher 
SNR can be routinely achieved in practice even with a low field system. 
This is a useful practical consideration as SNR may be traded to increase 
the overall scanning speed. 

The adoption of the Alignment Index as a measure of 3D anisotropy, 
and visualisation using the AI plots, were found to be useful techniques 
for quantitative analysis of the results. The choice of 20◦ solid angle in 
this work was made as a compromise following different trial values, as 
we found that adopting a solid angle >10◦ led to consistent AI values 
across the range of SNR considered, while choosing an excessively large 
angle could compromise the usefulness of this metric. 

A limitation of this study was that the accuracy of determining fibre 
orientations was not assessed against methods such as polarised light 
microscopy, which could provide a direct measurement of fibre orien
tations, as this equipment was not available. However it would be 
difficult to obtain results comparable to those presented here using such 
techniques, because they can deal with only a small tissue sample at a 
time and cannot assess the whole joint. Seidel et al. (Seidel et al., 2013) 
reported such comparison involving small tissue samples and a method 
similar to that by Szeverenyi (Szeverenyi and Bydder, 2011) with 
encouraging results. Our simulation studies did include the method in 
(Szeverenyi and Bydder, 2011) for comparison, and we were able to 
replicate their reported accuracy while demonstrating the improve
ments using the proposed simplex method. 

It would also be useful to compare the tractography results with 
those obtained using diffusion tensor imaging (DTI) (Ferizi et al., 2017; 
Van Dyck et al., 2017), but this was not possible in the scope of our work. 
DTI typically requires long TE of 50− 90 ms, which makes it difficult to 
obtain sufficient signal for tissues with short T2 such as ligaments. This 
necessitates the use of suitably modified imaging sequences (Wengler 
et al., 2018) that provide a shorter TE, while it is also necessary to extend 
T2 as much as possible by orienting the sample at the magic angle. 

The current implementation of the method uses rigid body regis
tration based on passive spherical markers, which was chosen for its 
accuracy, speed and convenience. Nevertheless, geometric distortions of 
images obtained at different orientations to the magnet, caused by the 
gradient non-uniformity and field inhomogeneity, pose a practical lim
itation. In the future we shall explore the use of soft registration methods 
(Klein et al., 2010) in this context, as well as the use of methods for 
accurate scanner calibration. 

Our current research is directed towards providing high quality 
receiver coils for the prototype scanner such that consistent images are 
obtained at various arbitrary orientations of the subject and the receiver 
to the magnet. This will be followed by in-vivo studies using the methods 
presented. 

5. Conclusions 

The key achievement presented in this paper is the minimisation of 
the number of scans and a new method to compute fibre orientations 
which yields significantly improved accuracy and reduced computing 
times. The main factors influencing accuracy are number of scans and 
signal to noise ratio. Importantly, the method was shown to perform 
well in the presence of noise for quite low SNR values, and this is highly 
encouraging when considering the adoption of this approach for use 
with a low field MRI scanner. Plots of orientation distribution were 
found to provide a useful and intuitive method for results visualisation 
that can be used in combination with 3D tractography plots. The pro
posed alignment index was found to be useful metric for quantifying 
fibre anisotropy. 
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