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Received August 11, 2017; Revised September 08, 2017; Editorial Decision September 11, 2017; Accepted September 28, 2017

ABSTRACT

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a
database providing information about the positions,
geometry and physicochemical properties of chan-
nels (pores and tunnels) found within biomacro-
molecular structures deposited in the Protein Data
Bank. Channels were deposited from two sources;
from literature using manual deposition and from a
software tool automatically detecting tunnels lead-
ing to the enzymatic active sites and selected cofac-
tors, and transmembrane pores. The database stores
information about geometrical features (e.g. length
and radius profile along a channel) and physico-
chemical properties involving polarity, hydrophobic-
ity, hydropathy, charge and mutability. The stored
data are interlinked with available UniProt annotation
data mapping known mutation effects to channel-
lining residues. All structures with channels are dis-
played in a clear interactive manner, further facilitat-
ing data manipulation and interpretation. As such,
ChannelsDB provides an invaluable resource for re-
search related to deciphering the biological function
of biomacromolecular channels.

INTRODUCTION

Channels (tunnels and pores) are highly important struc-
tural features of biomacromolecules intimately connected
with their biological function or structural stability.

Tunnels connect internal spaces of biomacromolecules
with the exterior, enabling substrates to travel inwards to
and product outwards from enzymes’ active sites (1); make
internal passages between two active sites, establishing sub-
strate channeling in between them (2–4), e.g. within photo-
system II (5); or facilitating the release of nascent synthe-

sized proteins to leave the ribosomal proteosynthetic center
via the ribosomal exit tunnel (6,7) to name just a few exam-
ples (see Figure 1A and B). It should be noted that tunnels
have been identified in 64% of enzymes with known crys-
tal structures (8) documenting that channels are common
features of enzyme structures.

Pores span through the structure from one side to an-
other. For this reason, they are especially useful for guid-
ing transport through cellular biomembranes (9), e.g. the
passage of ions through ion channels (10–12) and within
other transporters (13). Pores filled with ions also stabilize
the structure of G-DNA (14) (see Figure 1C and D). These
examples document important roles of channels in the bi-
ological function of biomacromolecules, and this knowl-
edge has also been exploited, e.g. in mutagenesis studies
focused on rationally engineering the substrate specificity
of haloalkane dehalogenases (15) or cytochrome P450 en-
zymes (16–19).

The importance of biomacromolecular channels has mo-
tivated the development of tools and databases that pro-
vide information about these structural features. In the
last few decades, we have witnessed the intensive develop-
ment of many software tools for the detection and char-
acterization of tunnels and pores (20,21). The most pop-
ular is HOLE (22) for pores, Caver (23,24) for tunnels,
and MOLE and MOLEonline (25–27) for both, however
many others are available with various functionalities and
performances (20,28). In parallel, several databases col-
lecting information about channel proteins were created.
Unfortunately, most of them focus mainly on the features
and ontologies of proteins rather than the structural fea-
tures of channels; TransportDB (29) annotates transport
channel proteins in genomes. The Transporter Classifica-
tion Database (TCDB) (30) classifies transporter proteins
and provides structural, functional, mechanistic, evolution-
ary and disease/medical information about transporters
from organisms of all types. The Orientations of Proteins
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Figure 1. Visualization of selected channel systems. (A) Substrate channels 1 and 2b (orange), together with water access channels 3a and 3b (blue), are
involved in the proline catabolism pathway catalyzed by proline utilization protein (PutA) in Gram-negative bacteria (PDB ID: 4NM9). PutA contains
two active sites interconnected by the ∼75 Å long channel H (magenta), through a hydrolysis cavity. Finally, channel 4 connects the base of the other
active site, suggesting a possible escape route for L-glutamate (4), for further details see the interactive view at http://ncbr.muni.cz/ChannelsDB/4nm9. (B)
The ribosomal polypeptide exit tunnel directs a nascent protein from the peptidyl transferase center outside of the ribosome (here Haloarcula marismortui
large ribosomal subunit PDB ID: 1JJ2). The exit tunnel is ∼100 Å long and its wall is made of a mosaic of negatively and positively charged residues to
prevent the nascent protein from sticking inside the tunnel (6), see at http://ncbr.muni.cz/ChannelsDB/1jj2. (C) The ∼30 Å long aquaporin water channel
(PDB ID: 1YMG) is a transmembrane pore crucial for maintaining water homeostasis. Residues important for water molecule permeation are highlighted
with a stick model and include a selectivity filter (ar/R; magenta); canonical hydrogen bond acceptors important for proper water orientation (yellow);
and a constriction region (orange) (61), see at http://ncbr.muni.cz/ChannelsDB/1ymg. (D) The potassium-importing KdpFABC membrane complex (PDB
ID: 5MRW) is a potassium transporter with two domains coupled together (13). Cellular potassium import via the access channel (gray) is regulated
by a charge transfer via the intermolecular channel (red) from the KdpA (yellow) to the KdpB (green), which eventually leads to the conformation
change allowing potassium release to the cytosol. The potassium ion is shown as a sphere and is located at the bottom of the selectivity filter, which
is reachable by a gray tunnel. The functionally important residues Glu370, Asp583 and Arg493 and Arg116 are displayed as magenta sticks; see at http:
//ncbr.muni.cz/ChannelsDB/5mrw. The position of the lipid bilayer in figures C and D was obtained from MemProtMD (62).

in Membranes (OPM) (31) and PDBTM (32) databases are
specialized in the identification of the membrane-associated
regions of known structures of proteins. The ABC protein
mutations (ABCMdb) (33) and � -aminobutyric acid trans-
porter mutagenesis (GATMD) (34) databases list the ef-
fects of mutations of individual transporters. The voltage-
gated potassium channel database (VKCDB) (35) contains
sequence data for various voltage-gated K+ channels ad-
justed with their electrophysiological parameters. Channel-
pedia (36) synthesizes ion channel information from the
literature and connects it with Hodgkin–Huxley models.
The IUPHAR/BPS Guide to Pharmacology (17) anno-
tates pharmacological targets including channel proteins
and their ligands. SuperPain (37) contains data about pain-
relieving compounds targeting ion channels with measured
binding affinities connected with predicted ligand-binding

poses. And finally, the PDBsum (38) database contains in-
formation about tunnels and pores predicted for individual
PDB entries. These databases are very useful to their respec-
tive research communities, as reflected in the wealth of the
scientific literature in these fields. However, to date there
is no available comprehensive general purpose database
collecting and combining information about channels that
were described in the literature, channels connecting ac-
tive sites with the exterior, transmembrane pores etc., to-
gether with supportive information for rationalization of
their function (e.g. physicochemical properties).

To fill this gap, we have developed the ChannelsDB
database––a comprehensive and up-to-date resource of the
channels found in entries from the Protein Data Bank
(PDB) (39). The channels were detected using the software
MOLE (26) based on information from the literature, po-

http://ncbr.muni.cz/ChannelsDB/4nm9
http://ncbr.muni.cz/ChannelsDB/1jj2
http://ncbr.muni.cz/ChannelsDB/1ymg
http://ncbr.muni.cz/ChannelsDB/5mrw
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Figure 2. Visualization of cytochrome P450 2D6 tunnels on entity page. Page shows the 3D structure of cytochrome P450 2D6 (PDB ID: 3TBG) with two
channels selected in the Channels tab––solvent (yellow) and 2f (purple). The ligands present within the structure are shown as vdW spheres, including one
of the thioridazine molecules resting within channel 2f (magenta). The red rectangle on the interactive Channel profile tab is locked by the mouse on the
channel’s bottleneck, and its properties are shown in the Layer tab. The lining residues tab then lists all residues along the selected channel. Residue and
Protein annotations tabs use data from UniProt to show known residue mutations for this UniProt ID, its function and catalytic activity.

sitions of buried catalytic sites or cofactors (frequent end
points of tunnels) or positions of transmembrane proteins
in a membrane. The stored information is accessible via
an advanced and easy-to-use user interface, which provides
interactive visualization using the state-of-the-art web-
based molecular viewer LiteMol Viewer (https://litemol.
org) (Sehnal, D., Deshpande, M., Svobodová Vařeková, R.,
Mir, S., Berka, K., Midlik, A., Pravda, L., Velankar, S. and
Koča, J. (2017) LiteMol suite: interactive web-based visual-
ization of large-scale macromolecular structure data. Nat.
Methods, in press) and detailed information about the ge-
ometrical and physicochemical features of individual chan-
nels.

DATABASE CONTENT

ChannelsDB is built over the data layers obtained from the
PDBe (40) and UniProt (41) databases. Individual PDB ID
entries are used as a key for a biological assembly struc-
ture upon which the channels are deposited, whereas the
UniProt ID maps unique information about the protein un-
der study and residue annotation. The annotation of chan-
nels in ChannelsDB was obtained in several ways:

a) hundreds of entries were reviewed manually by consider-
ing the information available in the scientific literature
and mapped over the channels precalculated by MOLE,

b) ∼15 000 enzyme entries were detected by MOLE as tun-
nels connecting the buried catalytic sites annotated in
Catalytic Site Atlas (CSA) (42) with the protein surface.

c) ∼12 000 protein entries were identified by MOLE as tun-
nels connecting selected cofactors (typical reaction cen-
ters) with the protein surface,

d) hundreds of entries were predicted by MOLE to be
transmembrane pores.

The ChannelsDB homepage allows querying for struc-
tures with annotated channels using any PDB-related meta-
data, such as PDB ID, protein name, protein family, co-
factor or other ligand, author or even journal. The search
engine is provided by the PDBe RESTful API. When the
PDB ID entry has channels identified in its structure, the
details in the record card together with the static picture of
channel system are displayed and are accessible upon click-
ing a PDB ID / protein name. The ChannelsDB website
also includes documentation explaining the methodology,
a tutorial of the database usage and five examples of typi-
cal channel systems (aquaporin channel, cytochrome P450
active site access channels, substrate channeling system in
PutA, ribosomal polypeptide exit tunnel and potassium im-
porter complex).

https://litemol.org
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Figure 3. Comparison of tunnel bottlenecks′ properties. Comparison of two cytochrome P450 2D6 channels profiles shows different physicochemical
properties of their bottlenecks. The solvent channel has a hydrophilic bottleneck located in the vicinity of amino acids Gln210, Asp179 and Leu206 ∼30 Å
from the starting point near the heme moiety within the active site. Channel 2f has a highly hydrophobic bottleneck in the vicinity of amino acids Phe120,
Val374 and Phe483 closer to the active site. It should be noted that while Phe120Ile is a known tolerated mutation (63), the Phe120 contributes to the
regiospecificity of the enzyme, as its mutation leads to the formation of a novel dextromethorphan metabolite (64). According to their properties, it can
be hypothesized that the solvent channel is also an egress path for the generally more polar product of the monooxygenation reaction, whereas channel 2f
might serve as a substrate access channel.

RESULTS

Description of prototypical database entity––protein with
channels

The entity details page (Figure 2) allows users to interac-
tively inspect the features of available channels listed in the
Channels tab. The web page enables visualization and ma-
nipulation with the 3D structure using LiteMol Viewer. The
inspected structure is downloaded as a biological assembly
of a PDB entry according to the information provided by
the PDBe. Channel 3D visualization is supplemented with
the Channel profile tab - a plot of channel radius vs. dis-
tance from the starting point divided into interactive lay-
ers. Channel profile layers are colored according to a se-
lected physicochemical property from the list of charge, hy-
dropathy (43), polarity (44), hydrophobicity (45) or muta-
bility (46), calculated by MOLE. The amino acids and val-
ues of these physicochemical properties for individual in-
teractively selected layer are shown in the Layer tab. The
Channels properties tab lists the properties of all detected
channels. Protein annotations tabs show text annotations
retrieved from UniProt and the literature using a publicly
available APIs (47,48). Specifically, the protein name is re-
trieved together with its function. When the protein in ques-

tion bears a catalytic activity, a list of known catalyzed re-
actions is also retrieved. Last but not least, Residue annota-
tions tab lists sets of functional annotations for individual
residues from both the UniProt and ChannelsDB databases.
When these residues form a channel’s walls, this information
is highlighted. All the visuals are interactive––the Selection
tab shows selected residues and channels. Annotations are
directly bound to the source of information in the literature,
and all the results are made available for download in sev-
eral reporting formats (ZIP, PY, PDB and JSON) for further
processing.

Case study––cytochrome P450 2D6 active site access chan-
nels

A well-known biological example of a protein family with
tunnels is cytochrome P450 (16,49–58). These highly im-
portant metabolic enzymes have an active role in the bio-
transformation of both endobiotic and xenobiotic com-
pounds. In humans, their broad substrate specificity affects
the pharmacokinetic parameters of most marketed drugs
and drug-drug interactions. Similarly to other oxidoreduc-
tases (1), their active site is deeply buried within the struc-
ture (49,52). Various substrates and products therefore have
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to pass through the series of tunnels leading towards the ac-
tive site heme cofactor. These tunnels have an already set
nomenclature developed by Wade and coworkers (50,59)
and it has been shown both theoretically (16,51,53–55) and
experimentally (56–58) that they play a role in the substrate
and product channeling to and from the active site and
therefore in the substrate specificity of individual members
of the cytochrome P450 family.

In our example (Figure 2; http://ncbr.muni.cz/
ChannelsDB/3tbg) we show cytochrome P450 isoform
2D6 (CYP2D6) with two thioridazine molecules bound in
the structure - one in the active site and the other one in
the channel 2f. Channels from family #2 are thought to
work as a substrate access route, and the X-ray structure of
CYP2D6 (PDB ID: 3TBG) with one thioridazine bound
in the 2f channel supports this idea (60). The active site of
cytochrome P450 is thought to be hydrated via a solvent
channel which may also function as a metabolite egress
channel (51). The function of the access channels is also
reflected in the different hydrophobicity and polarity of
bottlenecks of these channels (Figure 3). The bottleneck of
channel 2f is highly hydrophobic (hydropathy 3.27, polarity
0.28), whereas the bottleneck of the solvent channel is
highly polar (hydropathy –1.07, polarity 17.79). One may
anticipate that a nonpolar substrate would prefer channel
2f as an access route, whereas the more polar product of the
monooxygenation reaction would select the solvent channel
as an egress route. This example shows that ChannelsDB
can be utilized not only for the visualization of structural
features of channels, but also for the rationalization of
their biological function. In addition, information acquired
from ChannelsDB may be used to track the evolution of
channels in organisms.

User feedback and integration with other databases and
bioinformatics tools

To simplify contact with the user community, we also of-
fer the possibility for anyone to contribute or point out not
yet annotated systems with known channels. ChannelsDB
contains a form page where the user can specify the sys-
tem, PDB ID, DOI or Pubmed ID of a reference literature
and even a list of residues to annotate. In the near future
we will also provide an interactive annotation directly from
updated MOLEonline web services.

Another significant asset of the ChannelsDB is that the
data are provided over the API, and therefore everyone can
take advantage of this resource and integrate it into an ap-
plication freely or access its content programmatically.

DISCUSSION

ChannelsDB provides information about the presence and
positions of the channels in biomacromolecular structures.
It also contains information about local geometrical prop-
erties and residues lining the channel and their physico-
chemical properties. All the properties are transparently
mapped onto the channels’s profile via an easy-to-use and
interactive user interface, aiding data interpretation. Chan-
nelsDB also uses annotations from UniProt (e.g. a function
of protein as well as individual residues) and maps them

on the channel profile. Thanks to this distinctive combi-
nation of calculated properties overlaid with a handful of
residue annotations, ChannelsDB represents a unique re-
source for any analysis which includes the transport of lig-
ands and other small molecules within biomacromolecular
structures. We believe that ChannelsDB represents a signif-
icant step forward in channel analyses, which may facilitate
future studies devoted to a deeper understanding of the bi-
ological roles and evolution of these structural features of
biomacromolecules.

AVAILABILITY

The ChannelsDB database is available from http://ncbr.
muni.cz/ChannelsDB.
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Laskowski,R.A., Koča,J. and Otyepka,M. (2014) Anatomy of enzyme
channels. BMC Bioinformatics, 15, 379.

9. Cellular gatekeepers (2016) Nat. Struct. Mol. Biol., 23, 463–463.
10. Guskov,A., Nordin,N., Reynaud,A., Engman,H., Lundbäck,A.-K.,
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Damborský,J. (2006) CAVER: a new tool to explore routes from
protein clefts, pockets and cavities. BMC Bioinformatics, 7, 316.

24. Chovancova,E., Pavelka,A., Benes,P., Strnad,O., Brezovsky,J.,
Kozlikova,B., Gora,A., Sustr,V., Klvana,M., Medek,P. et al. (2012)
CAVER 3.0: a tool for the analysis of transport pathways in dynamic
protein structures. PLoS Comput. Biol., 8, e1002708.
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(2013) MOLE 2.0: advanced approach for analysis of
biomacromolecular channels. J. Cheminform., 5, 39.

27. Berka,K., Hanák,O., Sehnal,D., Banáš,P., Navrátilová,V., Jaiswal,D.,
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