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Abstract
Single-cell RNA sequencing (scRNA-seq) is a novel technology that allows
transcriptomic analyses of individual cells. During the past decade, scRNA-seq
sensitivity, accuracy, and efficiency have improved due to innovations including
more sensitive, automated, and cost-effective single-cell isolation methods with
higher throughput as well as ongoing technological development of scRNA-seq
protocols. Among the variety of current approaches with distinct features,
researchers can choose the most suitable method to carry out their research.
By profiling single cells in a complex population mix, scRNA-seq presents great
advantages over traditional sequencing methods in dissecting heterogeneity in
cell populations hidden in bulk analysis and exploring rare cell types associated
with tumorigenesis and metastasis. scRNA-seq studies in recent years in the
field of breast cancer research have clustered breast cancer cell populations
with different molecular subtypes to identify distinct populations that may
correlate with poor prognosis and drug resistance. The technology has also been
used to explain tumor microenvironment heterogeneity by identifying distinct
immune cell subsets that may be associated with immunosurveillance and are
potential immunotherapy targets. Moreover, scRNA-seq has diverse applica-
tions in breast cancer research besides exploring heterogeneity, including the
analysis of cell-cell communications, regulatory single-cell states, immune cell
distributions, and more. scRNA-seq is also a promising tool that can facilitate
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individualized therapy due to its ability to define cell subsets with potential
treatment targets. Although scRNA-seq studies of therapeutic selection in breast
cancer are currently limited, the application of this technology in this field is
prospective. Joint efforts and original ideas are needed to better implement
scRNA-seq technologies in breast cancer research to pave the way for individ-
ualized treatment management. This review provides a brief introduction on
the currently available scRNA-seq approaches along with their corresponding
strengths and weaknesses and may act as a reference for the selection of suitable
methods for research. We also discuss the current applications of scRNA-seq in
breast cancer research for tumor heterogeneity analysis, individualized therapy,
and the other research directions mentioned above by reviewing corresponding
published studies. Finally, we discuss the limitations of current scRNA-seq
technologies and technical problems that remain to be overcome.
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1 BACKGROUND

Traditional RNA sequencing (RNA-seq) is performed
using bulk RNA extracted from homogenized tissues or
large cell populations to ensure sufficient RNA for subse-
quent analyses. However, bulk RNA-seq only provides an
average number of gene expression in the pooled popu-
lation of diverse cells and cannot capture the widespread
transcriptome heterogeneity in the cell population [1].
Therefore, analyses of bulk gene expression data cannot
identify distinct cell types that express certain genes but
instead provide a virtual average of the multiple cellular
components, which may represent very little information
about the specific cell type present [1, 2].
Due to technology advances, gene expression analy-

sis can now be performed at a much higher resolu-
tion [3, 4]. The expression level of every gene, even in
a single cell, can now be defined. In contrast to bulk
RNA analysis, the recently developed single-cell RNA-
sequencing (scRNA-seq) provides high-throughput, and
high-resolution transcriptomic analyses of individual cells.
By isolating single cells, capturing their transcripts, and
generating sequencing libraries at the single-cell level,
scRNA-seq can reveal the state and function of single cells.
scRNA-seq was first introduced by Tang et al. [5] in 2009.
The first scRNA-seq studieswere conducted in a number of
10∼ 100 cells [6–8].With the evolution of technology, these
methods have been gradually refined and new approaches
have been developed and the transcriptomic analyses of up
to tens of thousands of individual cells for a single project
have been achieved [9, 10].

Breast tumors contain a heterogeneous mix of cells
that includes cancer, vascular, immune, and fibroblast
cell types [11]. ScRNA-seq allows a deeper understanding
of the diversity of cell states and the heterogeneity of
cell populations, making it a useful tool for dissecting
the properties of the multiple cell types within and sur-
rounding breast tumors. The application of scRNA-seq
can also improve our understanding on the mechanisms
of oncogenesis and metastasis in breast cancer to pave
the way for individualized therapy. Due to the prominent
above-mentioned advantages, scRNA-seq has become a
booming technology in breast cancer studies in recent
years. Researchers have utilized scRNA-seq to analyze
tumor heterogeneity in breast cancer of different molec-
ular subtypes and have identified cell clusters related to
poor prognosis or therapeutic response [12–14]. Single-cell
profiling of diverse immune cells in the tumor microen-
vironment of breast cancer has revealed specific immune
cell subpopulations that may be potential immunotherapy
targets [15–17]. Studies focused on cell-cell communi-
cations, regulatory single-cell states, and immune cell
distributions in breast cancer have also been conducted
by scRNA-seq [18–21]. Furthermore, researchers have
used scRNA-seq to analyze the association between
therapeutic response and specific infiltrated immune cells
in the tumor environment [22, 23]. However, there is still
a research gap to be filled by scRNA-seq. For instance,
intratumoral heterogeneity that hampers the efficacy of
targeted therapy needs to be thoroughly studied, rationale
strategies are needed to identify drug-resistant cell popula-
tions associated with poor prognosis to achieve long-term

http://transcriptomic
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treatment efficacy and combinatorial therapeutic strate-
gies are required to co-target the multiple activated
pathways. Although scRNA-seq showed an incomparable
advantage over bulk RNA-seq in cancer research, there
is still room for improvement. Many technical problems
need to be tackled to enable scRNA-seq to provide a
better service for cancer research, such as protection of
cell viability during single-cell isolation, a better combi-
nation of spatial information and sequencing data, and
more.
Here, we reviewed the current scRNA-seq methods and

discussed their corresponding advantages and disadvan-
tages to provide researchers with a reference for the selec-
tion of suitable approaches. We then discussed the current
applications of scRNA-seq in breast cancer research and
analyzed its application prospects and technical barriers
that need to be overcome in the future.

2 TECHNICAL APPROACHES TO
SCRNA SEQUENCING

2.1 scRNA-seq workflow

The workflow of the critical steps in a typical scRNA-seq
experiment is shown in Figure 1. Compared to traditional
bulk RNA analyses, single cells must be isolated from the
tumor tissues at the beginning of scRNA-seq. Second, spe-
cific protocols are needed to perform mRNA reverse tran-
scription and cDNA amplificationwith high efficiency and
low biases as the quantity of RNA in a single cell is lower
than that in bulk RNA analyses. New strategies have also
been developed to better analyze data from scRNA-seq
because previously developed tools for bulk RNA-seq were
not appropriate for these complex data analysis. A com-
parison of scRNA-seq and bulk RNA analysis workflows is
shown in Figure 2.
Due to the unique workflow of scRNA-seq including

single-cell isolation at the beginning and the subsequent
mRNA reverse transcription from limited RNA in a sin-
gle cell, multiple methods such as micromanipulation and
microfluidics have been utilized and new approaches such
as Smart-seq and CEL-seq are constantly being reported
[24–26]. The following sections provide a brief introduc-
tion to the current strategies for single-isolation and spe-
cific protocols for scRNA-seq.

2.2 Single-cell isolation

Single-cell isolation is the first step in scRNA-seq. A brief
overview of these experimental methods, along with their
strengths and weaknesses, is presented in Table 1.

One simple approach is micromanipulation. Single cells
are manually picked with a glass pipet under a microscope
[5, 27], which enables sampling from a limited number of
cells or fragile cells, such as early embryos [28]. Micro-
scopic supervision of cell isolation ensures that each sam-
ple is indeed a single cell; however, this method is time-
consuming and has low-throughput. Another weakness of
this approach is the high technical requirements, which
may cause cellular injury due to mechanical shearing [29].
Therefore, due to these obstacles, micromanipulation is
now rarely being used.
Laser capture microdissection (LCM) is another

approach to capture single cells from solid tissue. Under a
microscope, a laser beam is focused on cells of interest and
attaches these individual cells to a thin and transparent
film [30]. The single cells on the film are then transferred
to a microcentrifuge tube containing appropriate buffer
solutions [31]. Similar to micromanipulation, LCM is also
laborious and inconvenient. Another shortcoming is that
this approach is technically challenging to capture the
contents of a single cell cleanly, without contamination
from flanking cells and without damaging the cell RNA
[32]. However, LCM also has unique advantages. It enables
single-cell isolation from solid samples and it can provide
spatial information for the target cell, which makes it still
usable in practice.
Generally, microfluidics refers to technologies using

micro-scale structures to precisely control fluids at
ultralow volumes, typically at the nanoliter-to-femtoliter
scale [33–35]. Microfluidics platforms, such as the Flu-
idigm C1 microfluidic robotic platform or microdroplet-
based microfluidics methods have been utilized to trap
single cells [36]. On microfluidics platforms, automated
single-cell isolation was followed by automated reverse
transcription and preamplification-on-chip, which down-
scale reactions to nanoliter or picoliter volumes and
further reduce costs [37]. Moreover, microdroplet-based
methods have the potential to capture thousands of cells in
a single experiment [38]. Although microfluidics methods
have their own limitations that capture efficiency can
be low for sticky cells [36], they have gained increasing
popularity due to their high throughput and low analysis
cost.
Fluorescence-activated cell sorting (FACS) is a special-

ized type of flow cytometry. First, a mixture of biologi-
cal cells is combined with a specific fluorescently tagged
antibody. By detecting the specific fluorescent signals from
individual cells based on the tagged antibody, single cells
of interest can be sorted from the heterogeneous cell pop-
ulations. Due to its capability of sorting particular cells
of interest and advantages of high throughput, low anal-
ysis cost, and flexibility of samples, FACS has become
a widespread method for isolating thousands of single
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F IGURE 1 Illustration of single-cell RNA-sequencing (scRNA-seq) experiments.
A typical scRNA-seqworkflow includesmost of the following steps: 1) single-cell isolation bymicromanipulation, laser-capturemicrodissection
(LCM), microfluidics, fluorescence-activated cell sorting (FACS) 2) cell lysis 3) reverse transcription of mRNA to cDNA 4) cDNA amplification
and library preparation 5) sequencing
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F IGURE 2 Workflow of a typical single-cell RNA-sequencing experiment and traditional bulk RNA analyses.
Themain difference between the workflows of single-cell RNA-sequencing and traditional bulk RNA analyses lies in the first step. In single-cell
RNA-sequencing, a single cell must be isolated from the samples at the beginning while in traditional bulk RNA analyses, RNA is extracted
from formalin-fixed paraffin-embedded tissues, fresh tissue or cultured cells. Strengths and weaknesses of each method are also listed.
Abbreviations: FFPE, formalin-fixed paraffin-embedded
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cells [29]. However, this method also has some drawbacks,
including the risk of damaging cell viability during sort-
ing and the difficulty in differentiating cell subpopulations
expressing similar markers [39].
Collectively, different single-cell isolation methods have

their own strengths. Micromanipulators ensure precise
cell picking and minimize cell damage. LCM enables
single-cell isolation from solid samples and reserve spa-
tial information.Microfluidicsmethods downscale the vol-
ume of reagents which makes it cost-effective. FACS can
capture particular cells of interest. Therefore, a compre-
hensive understanding of these single-cell separation tech-
nologies is necessary for the selection of proper single-cell
isolation methods.

2.3 Specific protocols for scRNA-seq

The accuracy and sensitivity of scRNA-seq depend on its
efficiency in reverse transcription and amplification pro-
cesses to obtain sufficient cDNA from a limited amount
of RNA in a single cell, which enables the transcriptomic
analyses at a single-cell level. Thus, several specific proto-
cols have been developed (Table 2).
Protocols in scRNA-seq are characterized by different

strategies used in reverse transcription reaction and cDNA
amplification. Poly(A) tailing and template-switching are
two main strategies in the reverse transcription reaction.
“Tang method” [5] and its improved version, Quartz-seq
[40], are representative methods using poly(A) tailing
while Smart-seq [41], Smart-seq2 [7], STRT-seq [42] and
Drop-seq [10] use template-switching to complete second-
strand synthesis. cDNA amplification after reverse tran-
scription can be achieved by either polymerase chain reac-
tion (PCR) or in vitro transcription (IVT). PCR can be car-
ried out after the second-strand synthesis by poly(A) tail-
ing or template-switching. As a nonlinear amplification
process, its efficiency is sequence dependent [36]. IVT is
a linear amplification method that incorporates the T7
promoter in the poly(T) primers [43] ScRNA-seq proto-
cols that apply IVT instead of PCR include CEL-seq [44],
MARS-Seq [45] and inDrops [9].
Among the multiple scRNA-seq protocols mentioned

above, a key difference is that some provide full-length
transcript data such as Smart-seq [41] and Smart-seq2 [7],
whereas others specifically count only the 3’ or 5’ ends of
the transcripts such as CEL-seq [44] and MARS-seq [45].
Therefore, the selection of a specific protocol depends
on the nature of the research question. Compared to
methods only capturing and sequencing the 3′ or 5′ ends
of the cDNAs, protocols capable of full-length transcrip-
tion are more suitable for alternative splicing pattern
analyses, allelic expression detection, and RNA editing
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TABLE 2 Brief overview of the current scRNA-seq protocols in terms of transcript coverage, strand specificity, UMI utility, amplification
technology, and early multiplexing

scRNA-seq
Transcript
coverage

Strand
specificity

UMI
utility

Early
multiplexing Amplification technology

Tang method Full length No No No PCR after polyA tailing
Quartz-seq Full length No No No PCR after polyA tailing
Smart-seq Full length No No No Template switching-based PCR
Smart-seq2 Full length No No No Template switching-based PCR
STRT-Seq 5’-end only Yes Yes Yes Template switching-based PCR
CEL-Seq 3’-end only Yes Yes Yes In vitro transcription
MARS-Seq 3’-end only Yes Yes Yes In vitro transcription
Drop-seq 3’-end only Yes Yes Yes Template switching-based PCR
InDrop 3’-end only Yes Yes Yes In vitro transcription
CytoSeq Pre-defined genes only Yes Yes Yes Gene-specific primers-based PCR

Abbreviations: scRNA-seq, single-cell RNA-sequencing; UMI, unique molecular identifier ; PCR, polymerase chain reaction.

identification [39]. The strength of protocols sequencing
the 3′ or 5′ end of the transcript is that they are able to
combine unique molecular identifiers (UMIs) [46]. These
tags allow for the identification and quantification of
individual transcripts, which improve the gene-level quan-
tification and throughput [24]. Therefore, in some cases
that full-length transcript data was not required, these tag-
based methods have become dominant for quantification
purposes, especially for larger cell populations [2].

3 APPLICATION IN BREAST CANCER
RESEARCH

The rapid development of single-cell transcriptomics
enables further understanding of the heterogeneity of cells
in solid tumors and has great potential for clarifying the
complex mechanisms of tumor development, metastasis,
and drug resistance, which may provide new strategies for
individualized therapeutic treatment. Additionally, multi-
ple novel approaches beyond clustering have been used to
study breast cancer when using scRNA-seq, which enables
the diverse application of scRNA-seq in cancer research
beyond exploring heterogeneity. This section describes
studies that have used scRNA-seq to study breast cancer
and discusses the promising applications of scRNA-seq in
the field of individualized therapy.

3.1 Tumor heterogeneity

Gene expression profiling has been widely used to char-
acterize bulk tumors in individual cancer patients to
discover potential target therapy [47–49] but cancers
usually display intratumoral heterogeneity, which may
influence their therapeutic response to specific targeted

therapy as well as clinical outcomes. The emergence
of scRNA sequencing allows the assessment of genetic
heterogeneity in breast cancer at a single-cell resolution
which can help researchers to uncover the immense
biological complexity in tumors.
Triple-negative breast cancer (TNBC) is a representative

breast cancer subtype characterized by extensive intra-
tumoral diversity. Although TNBC exhibits significantly
higher response rates to neoadjuvant chemotherapy, com-
pared to estrogen receptor (ER)-positive tumors, patients
with TNBC who failed to achieve a pathologic complete
response (pCR) were usually associated with very poor
outcomes [50]. This indicated the possible existence of
a minor subpopulation of TNBC cells not sensitive to
traditional chemotherapy that may induce subsequent
metastasis. Thus, identifying and characterizing these
distinct cells could guide targeted therapy development
and survival improvement in TNBC. As scRNA-seq can
provide complete gene expression patterns of individual
cells obscured in bulk analysis, a research group from
Harvard Medical School [12] applied single-cell profiling
to discover the sub-clonal heterogeneity and aggressive
disease states in TNBC. By performing scRNA-seq on
untreated primary TNBC tumors, the researchers con-
firmed the cellular heterogeneity within primary TNBCs
and identified five distinct clusters of cells by clustering
analyses. Among the identified five clusters of epithelial
cells named as cluster 1-cluster 5, cluster 2 had the highest
proportion of high-cycling cells, indicating its high prolif-
eration ability. Further investigation showed that cluster
2 was associated with a luminal progenitor (LP) signature
that was considered as the cell of origin for breast cancers
[51]. The study also validated that the high expression
of the cluster 2 signature was related to worse survival
outcomes. The researchers applied scRNA-seq to explore
tumor heterogeneity and discovered a malignant cluster
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subpopulation that may drive tumor progression and,
thereby, lead to poor survival outcomes. These findings
not only expand our knowledge on tumor heterogeneity in
TNBC but also provide potential predictors or treatment
targets for TNBC with poor prognosis.
Besides TNBC, scRNA-seq has also been used to

comprehensively characterize heterogeneous tumors of
other breast cancer subtypes. Korean researchers [13]
conducted transcriptome analysis of 515 single cells from
11 patients with different breast cancer subtypes, including
luminal A, luminal B, human epidermal growth factor
receptor 2 (HER2), and TNBC. The most versatile subtype
composition was observed for cancer cells isolated from
HER2-positive tumors, from predominant HER2 to mostly
TNBC type. The researchers also found that cells from
the ER/HER2 double-positive tumor tended to be the ER
subtype due to the low expression of HER2 module genes
and were related to the corresponding predominant ER
downstream signaling pathway activation. These findings
suggest that molecular profiling at the single-cell level
may bemore detailed and accurate compared tomolecular
subtypes defined by bulk analyses. Based on single-cell
molecular profiling, clinicians may identify ER/HER2
double-positive tumors with prominent activation of the
ER downstream signaling pathway that might benefit
from intensive hormone therapy, or identify HER2-
positive tumors with low levels of HER signaling pathway
activation but higher basal gene expression that might be
resistant to anti-HER2 target therapy. Guided by single-cell
molecular profiling, clinicians could choosemore effective
therapeutic regimen and improve the patients’ prognosis.
Single-cell profiling of circulating tumor cells (CTCs)

can also provide unique insights into tumor heterogeneity.
Genotypic and phenotypic characterization of CTCs has
the potential to provide a better understanding of tumor
evolution and identify metastasis-initiating cells [52–55]
to elucidate the onset of metastasis and identify poten-
tial therapeutic targets that could be used to prevent or
treat metastasis. A recent singleŋcell study on CTCs iso-
lated from blood samples of patients with primary and
metastatic breast cancer [14] reported that individual CTCs
had significant heterogeneity and identified two distinct
clusters of CTCs named as Cluster I and Cluster II. Clus-
ter I was characterized by the expression of genes asso-
ciated with the epithelial-mesenchymal transition while
Cluster II generally showed low to undetectable expres-
sion of these genes, which indicated that Cluster I may
be related to cancer progression and poor prognosis. The
researchers also compared the profiles of CTCs and breast
cancer cell lines that arewidely used in drug discovery. Sig-
nificant differences betweenCTCs and cell lineswere iden-
tified in the expression of certain genes, levels of growth
factors and clinically informative phenotypes, which indi-

cated that traditional cell lines may not perfectly simu-
late the seeding process of metastasis by CTCs and that
conventional therapies designed and tested based on these
cell lines may be inadequate for eliminating metastasis.
Thus, appropriate experimental systems for drug discov-
ery should be carefully selected with the help of cell-to-
cell profiling of CTCs.Meanwhile, liquid biopsiesmayhelp
to identify patients with specific CTC clusters and inform
the selection of therapeutic interventions targeting over-
expressed gene products and activated pathways in these
CTC clusters.

3.2 Tumor microenvironment

The tumormicroenvironment comprises of heterogeneous
cellular populations including tumor cells and the sur-
rounding nonmalignant cells, such as vascular, immune,
and fibroblast cell types [56]. As previously described
[57–59], constant cross-talk between tumor cells and the
surrounding microenvironment was associated with treat-
ment response and survival outcomes of malignancies.
ScRNA-seq is a powerful tool to explore the complex
tumor microenvironment and further facilitate individu-
alized therapy and overcome drug resistance. Here, we
briefly introduce a few key studies applying scRNA-seq
methods to explore tumor environment heterogeneity.
Researchers from the Memorial Sloan Kettering Can-

cer Center conducted a single-cell analysis of the immune
environment of eight primary breast carcinomas com-
posed of one HER2-positive tumor, two TNBCs and five
ER-positive tumors, and found a large degree of diversity
in the immune composition of each tumor [60]. By assess-
ing the immune cells captured in the normal and malig-
nant breast tissues, lymph nodes, and peripheral blood,
the researchers found that the immune phenotype was
associated with the tissue of residence, suggesting that
biomarkers based on blood samples may not reflect the
immune phenotype states in tumors [15]. In-depth analy-
ses of T cells, which are considered more clinically rele-
vant, revealed that intratumoral T cells displayed contin-
uous activation and differentiation transitions rather than
a few discrete and stable cell states. Therefore, the tradi-
tional classification of T cells in tumorsmay underestimate
the complexity of the T cell populations. The authors of
this study suggested that the single-cell profiling of diverse
immune cells facilitated the understanding of complex
mechanisms in immune enhancement and suppression in
the tumor environment, and the co-expression of check-
point receptor genes identified in some regulatory T cells
clusters may be potential immunotherapy targets.
Another single-cell profiling study of T cells in the

breast cancer microenvironment conducted by a research
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group in Australia analyzed data from 6,311 T cells isolated
from human breast cancer tissue. Their analyses revealed
heterogeneity in the CD8+ population [16]. CD8+ T cells
with features of tissue-resident memory T (TRM) cell
differentiation were found to express both immune check-
points and cytotoxic effector proteins. The expression of
inhibitory receptor genes such as PDCD1 and CTLA4
was higher in these distinct TRM cells. Thus, CD8+ TRM
cells may be associated with immunosurveillance and
could be potential immunotherapy targets. As indicated
in that study, scRNA-seq enabled the discovery of minor
subgroups of immune cells that were related to immuno-
suppression or immunosurveillance. Biomarkers of these
distinct immune cells may serve as prognostic factors or
therapeutic targets, allowing individual risk assessment
and stratification of patients for targeted therapies.
In summary, scRNA-seq helped to explore the com-

plexity of cell populations in the breast cancer microen-
vironment and revealed distinct cell subpopulations with
the potential to become individualized immunotherapy
targets.

3.3 Diverse approaches beyond
exploring heterogeneity

As mentioned above, many cancer studies have explored
the cellular heterogeneity within a tumor. However,
scRNA-seq can also be applied to many other types of
breast cancer research beyond exploring heterogeneity. For
instance, scRNA-seq has been used to study the cell-to-cell
communications mediated by secreted factors and its role
in tumor progression [18]. The different expression levels
of receptors and their ligands between tumoral and nor-
mal tissues, and the correlation between the expressions
of these specific ligand-receptor pairs could serve as indica-
tors of cell-cell communication. By providing information
on the expression level of ligands and receptors of individ-
ual cells, which determines “who talks to whom”, single-
cell transcriptome data has enabled researchers to map
a more-defined cell-cell communication network with
distributions of receiving and signaling cells in distinct
cell populations. Moreover, with increased knowledge of
the heterogeneity of the tumor parenchyma, research on
the communications between distinct cell populations
have also gained attention. ScRNA-seq could integrate the
ligand-receptor analysis and clonal analyses to construct
a heterotypic cell-cell communication network, and fur-
ther facilitate the study on cell-to-cell communications
between cell populations of clinical significance, which
might help to find novel targets of individualized therapy.
Besides genetic heterogeneity, tumors also display regu-

latory heterogeneity [61]. While the current scRNA-seq is

a powerful tool to study heterogeneity in lineage, it is still
difficult to reliably measure tumor-cell regulatory hetero-
geneities. Thus, complementary approaches are needed to
profile single-cell regulatory states. One example is the in
situ 10-cell RNA-seq (10cRNA-seq) [20], which combines
the single-cell resolution of laser capture and improves
the preamplification procedure; enabling RNA-seq of
10 micro-dissected cells andmaking it a reliable, unbiased,
and sensitive method to measure cell-state heterogeneity
in tumors.
Researchers have also used scRNA-seq to identify pro-

genitor or stem-like cells. By applying a marker-free sys-
tem biology approach called LandSCENT in single-cell
transcriptome data from the human mammary epithe-
lium, researchers have identified a novel bipotent stem-
like state that was also correlated with poor prognosis in
basal breast cancer [19]. The novel marker-free computa-
tional approach used in this study allowed the estimation
of cell potency to enable the identification of rare cell popu-
lations representing progenitor or stem-like cells. Its future
application in other tumor types to identify putative cancer
stem cells warrants investigation.
With the increasing awareness of the importance of spe-

cial cellular information in cancer research, novel com-
putational approaches have been developed to reconstruct
the spatial organization of cells lost in the process of
scRNA-seq analysis. Researchers in Sweden applied spatial
transcriptomics technology to identify immune cell dis-
tribution in HER2+ breast cancer [21]. They constructed
and analyzed three-dimensional images of the transcrip-
tional landscape to reveal immune cell infiltration patterns
among different patients, which may provide an opportu-
nity for the design of personalized treatments.

3.4 Therapeutic selection and
monitoring

The continued discovery of genotypically and phenotypi-
cally distinct cell subpopulations has changed our view of
cancer from a group of homogenous tumor cells to a con-
stellation of heterogeneous, continuously evolving cancer
subpopulations [14]. ScRNA-seq method can be an impor-
tant tool to identify optimum combined therapies to effec-
tively target these heterogeneous cell populations. In addi-
tion, scRNA-seq may identify alterations associated with
therapeutic resistance in distinct cell clusters to support
individualized cancer treatment.
To identify cell diversity by transcriptome profiling,

scRNA-seq was utilized to explore possible predictors
of clinical outcomes and drug targets in breast cancer
by characterizing cell subsets with metastatic potential.
For example, transcriptome profiling of migratory breast
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cancer cells using scRNA-seq by researchers at the Uni-
versity of Michigan [62] revealed that the over-expression
of certain genes in migratory cells was associated with
poor prognosis in breast cancer patients, suggesting
that these regulators of cell migration may be potential
prognostic markers or drug targets. Similarly, researchers
at the University of California conducting scRNA-seq
in matched primary breast cancer and micrometastases
discovered a distinct transcriptome program related to
poor prognosis in micrometastatic cells and identified
mitochondrial oxidative phosphorylation (OXPHOS) as a
top pathway upregulated during metastatic seeding [63].
Selective inhibition of OXPHOS may be a novel target
therapy to prevent breast cancer metastasis. Ongoing
research is expected to discover additional factors for more
accurate prediction of prognosis and novel drug targets
to facilitate pharmaceutical research, which may dramat-
ically affect the current treatment of patients with breast
cancer.
Currently, gene expression signatures are mainly gener-

ated by conventional molecular profiling methods such as
micro-array or bulk RNA-seq, whichmeasures the average
values of gene expression. scRNA-seq enables profiling at
the single-cell level and detection of gene expression differ-
ences within cell populations. Therefore, novel biomark-
ers related to cancer progression and response to target
therapies might be revealed by scRNA-seq. By comparing
single-cell transcriptome profiles between trastuzumab-
treated and non-treated patients with HER2+ breast can-
cer, researchers found that trastuzumab-enhanced matrix
Gla protein (MGP) gene expression was associated with
a better prognosis [64]. Moreover, they constructed a 48-
gene expression signature that was associated with car-
diomyocyte death, which could serve as a predictor for
trastuzumab-mediated cardiotoxicity. Although no other
gene expression signature-based on scRNA-seq data has
yet been reported, additional novel signatures will likely be
discoveredwith increased application of scRNA-seq. These
signatures may better guide therapeutic decision-making
in clinical practice.
As a major obstacle in the treatment of breast cancer,

drug resistance is related to tumor heterogeneity. There-
fore, the detection of cell populations able to survive
anticancer treatment is critical to the prediction and
reversion of drug resistance. The discovery of minor
groups of drug-resistant cells by genetic studies performed
on bulk samples was difficult. However, the develop-
ment of scRNA-seq enables extensive single-cell gene
expression profiling to characterize these drug-resistant
cells and identify the underlying mechanism of drug
resistance acquisition. Researchers have performed
scRNA-seq in docetaxel-resistant cells derived from the
luminal-type breast cancer cell line MCF7 [65]. Epithelial-

to-mesenchymal transition and stemness-related genes
were found upregulated, while cell-cycle-related genes
were found downregulated in these chemo-resistant cells.
A similar gene-expression pattern was also identified in
a subgroup of untreated cells, suggesting the existence
of cell subpopulations with an inherent predisposition
toward docetaxel resistance. Identification of distinctive
gene expression patterns of cells not sensitive to specific
drugs may inform the design of multi-gene panels to
predict the efficacy of specific drugs and assist clinicians
in choosing an individualized therapeutic regimen.
In metastatic breast cancer research, the significance of

CTCs in selecting appropriate therapies, monitoring thera-
peutic response, and innovating new treatments has been
widely recognized [66]. Multiple nucleic acid- and protein-
based assays have been developed to assess the ER and
HER2 status in CTCs, which help clinicians to identify
candidates for endocrine therapy and anti-HER2 therapy
[67, 68]. Researchers also found that other biomarkers
beyond ER andHER2 in CTCs could guide treatment deci-
sions and monitor treatment efficacy as well. For instance,
CD133 expression in CTCs may serve as a potential marker
for chemoresistance [69] while CTC-Endocrine Therapy
Index might predict resistance to endocrine therapy in
MBC patients [70]. The heterogeneity and rarity of CTCs
warrant the use of single-cell technologies to provide us
with a more comprehensive understanding of CTCs. In a
recent study, themolecular analysis of single CTCs isolated
from metastatic breast cancer patients has been achieved
in a noninvasive way and researchers have identified the
heterogeneity of PIK3CA mutational status at single-cell
level in CTCs isolated from individual patients [71]. Thus,
similar studies could be conducted to analyze other clin-
ically relevant genetic mutations in CTCs. CTC-derived
preclinical models could then be designed to develop new
drugs targeting specific genetic mutations. Furthermore,
corresponding clinical trials can be designed to investigate
the prognostic value of gene mutations detected in CTCs
and monitor the efficacy of newly developed drugs, which
may help clinicians to more effectively tailor therapeutic
regimens for individual patients.
ScRNA-seq is a powerful tool in discovering novel ther-

apies associated with tumor mutation burden or immune
checkpoint crosstalk. A Korean research group analyzed
scRNA-seq data from breast cancer and immune cells
to explore potential approaches for improving the ther-
apeutic outcome of immune checkpoint inhibition. The
studymainly analyzed the tumormutation burden (TMB),
immune checkpoint crosstalk, radiosensitivity, and their
relationships to test the hypothesis that the radiosensitiv-
ity of tumor cellsmight be related to its programmeddeath-
ligand 1 (PD-L1) expression or TMB [22]. According to their
results, radioresistant tumor cells were associated with
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a higher rate of PD-L1 positivity and TMB. Additionally,
increased immune checkpoint crosstalk between cancer
cells and immune cells was observed in TNBC compared
to those in the luminal and HER2-positive subtypes. These
findings suggest that radiotherapy could be combinedwith
immune checkpoint blockades to improve the outcome
of tumors with radiosensitive cells characterized by high
PD-L1 expression and higher TMB in TNBC. In another
recent study that performed scRNA-seq analysis in TNBC
murine models, a high mutation burden was also found
associatedwith immune checkpoint therapy response [72].
In these models, B cell activation of T cells was identi-
fied as an importantmechanism thatmediated response to
checkpoint inhibitors, which indicated that the combined
novel drugs that could induce B cell-dependent T cell acti-
vation may enhance the anti-tumor response of immune
checkpoint therapy [72]. Single-cell profiling also helped
researchers to find a distinct immunosuppressive imma-
ture myeloid cell (IMC) population that infiltrated the
fast-evolving cyclin-dependent kinases 4 and 6 (CDK4/6)
inhibitor-resistant tumors [73]. According to this study,
combinatorial immunotherapy of IMC-targeting tyrosine
kinase inhibitor cabozantinib and immune checkpoint
blockade could enhance anti-tumor immunity and over-
come CDK4/6 inhibitor resistance [73]. Single-cell pro-
filing showed its superiority in these studies to identify
potential biomarkers and optimal combination strategies
of immune therapy in the management of breast cancer.
ScRNA-seq was also performed to study the synergis-

tic effect of the anti-tumor immune response induced by
chemotherapy in breast cancer. A recent study conducted
by Chinese researchers identified the phenotype switch of
B cells induced by chemotherapy in breast cancer patients
and further explored the underlying mechanism. scRNA-
seq of tumor-infiltrating B cells was performed in paired
clinical samples of pre- and post-neoadjuvant chemother-
apy collected from breast cancer patients [23]. The results
showed that a distinct B cell subset that expressed high
levels of inducible T-cell co-stimulator ligand (ICOSL)
significantly increased after neoadjuvant chemotherapy.
Compared to patients with stable diseases or progres-
sion, the ICOSL+ B cell density in the residual tumor
was markedly higher in patients with partial or com-
plete remission (P < 0.001), indicating that the ICOSL+ B
cell subset was also related to improved therapeutic effi-
cacy. Meanwhile, survival analyses indicated that ICOSL+
B cell abundance was an independent positive prognos-
tic factor for disease-free survival (hazard ratio [HR],
0.275; 95% confidential interval[CI], 0.134-0.564) and over-
all survival (HR, 0.232; 95% CI, 0.090-0.601). The under-
lying mechanism behind the B cell switch was studied in
mouse models. The researchers found that the anti-tumor
immune response was elicited by these distinct B cell sub-

sets after chemotherapy, which enhanced therapeutic effi-
cacy. Further analyses found the generation of ICOSL+B
cells depended on complement receptor type 2 (CR2) sig-
naling, whereas tumoral CD55 expression could inhibit
this complement-dependent ICOSL+ B cell induction and
thereby undermine anti-tumor immunity. Therefore, CD55
could be a potential target to enhance immune response
and facilitate immunogenic cell death.
The combination of scRNA-seq with other technologies

has further facilitated the development of personalized
treatment. Combined with a scalable hydrodynamic
scRNA-seq barcoding technique, a high-throughput
contamination-free scRNA-seq, Hydro-Seq, enables the
analysis of small numbers of CTCs in 10mL of blood [74].
Hydro-Seq allowed the detection of ER, progesterone
receptor (PR), HER2 expression, and molecular profiles
in CTCs, which could be discordant compared to primary
tumors. Identification of the clinical markers of CTC in
lipid biopsy may help to identify drug targets for per-
sonalized therapy. Transcriptome analysis of CTCs also
increases our understanding on the intra-tumor cellular
heterogeneity and evolution of tumors following therapy,
which could provide insights into monitoring target thera-
peutics and processes underlying tumor metastasis. Using
functional cellular approaches combined with scRNA-seq,
researchers have analyzed cells with different degrees of
cancer stem cells (CSCs) properties in breast cancer cell
lines and identified potential breast cancer biomarkers
related to CSC properties [75]. Due to their self-renewal
capacity and potential to differentiate into cancer cells,
CSCs have been associated with tumor progression,
metastasis, and treatment resistance, leading to poor
prognosis [76]. Many useful markers for the identification
of CSCs can also serve as therapeutic targets to eliminate
CSCs, especially those involved in pathways associated
with self-renewal and epithelial–mesenchymal transition
(EMT), such as Notch, Hedgehog, and Wnt signaling
pathways [77]. The inhibition of the Notch signaling can
be achieved by γ-secretase inhibitors [78] and clinical trials
have already been launched to evaluate the efficacy of
γ-secretase inhibitorMK-0752 (Merck) inmetastatic breast
cancer [79]. Multiple CSC-based targets have been investi-
gated to inhibit Hedgehog andWnt signaling as well, such
as vismodegib [80] and vantictumab [81]. Therefore, the
identification of CSC markers and novel drugs targeting
CSCs may provide new opportunities for individualized
therapy. A newly developedmethod has enabled the detec-
tion of cell-level mutations from scRNA-seq data [82],
which further broaden the application of scRNA-seq in
future cancer research. Specific somatic alternations were
found associated with drug responses in breast cancer. For
example, GATA3 mutation may predict better response
for aromatase inhibition [83] and PI3K and/or ERBB2
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mutationsmay indicate the sensitivity of HER2+ tumors to
neoadjuvant docetaxel, carboplatin, trastuzumab and lapa-
tinib regimen [84].Mutation profiling based on scRNA-seq
in breast cancer research has not been conducted yet.
However, with the development of new methods like the
one mentioned above, it is believed that scRNA-seq will
be used to identify cell-specific mutations in future studies
and help to predict individual drug-response.
Individualized cancer management largely depends on

the precise detection of specific molecular subtypes or
therapeutic targets. Although heterogeneity-based person-
alized treatment has progressed substantially in breast
cancer, with a growing list of target agents in adjuvant,
neoadjuvant, and metastatic settings, there is an unmet
need to enhance precise medicine to improve survival and
eliminate late relapse. As mentioned above, scRNA-seq is
a powerful tool in exploring tumor and tumor environ-
ment heterogeneity. The detection of distinct cell subsets
not sensitive to conventional therapy may explain intrin-
sic drug resistance and targeted agents against these cell
subsets could provide crucial clinical benefits. By using
scRNA-seq, researchers have found that the endocrine-
resistance of fulvestrant and tamoxifen was caused by a
group of pre-existing genetically distinct cells not sensitive
to endocrine therapy and these cells were highly selected
during treatment [85]. Therefore, the innovation of novel
drugs targeting these cells might reverse the endocrine
resistance. ScRNA-seq could also be used to detect the
emergence of resistant cell subsets after treatment, which
could have significant clinical implications for second-
line treatment decision-making on available or new tar-
get drugs. For instance, in a translational research men-
tioned above, researchers have used scRNA-seq to trace the
tumor evolution during the combination treatment of anti-
HER2/neu antibody and CDK4/6 inhibitor and discov-
ered that the acquired resistance was related to infiltrating
immunosuppressive immaturemyeloid cell (IMC) popula-
tion [73]. They also found that combinatorial immunother-
apy of IMC-targeting drugs and immune checkpoint block-
ade was an effective regimen to treat these fast-evolving
CDK4/6 inhibitor-resistant tumors [73]. Collectively, inte-
grating scRNA-seq into basic and translational research
could promote personalized therapy by identifying poten-
tial treatment targets to develop novel drugs and reveal
promising biomarkers to monitor treatment efficacy and
guide therapeutic decision-making.

4 FUTURE OUTLOOK

ScRNA-seq is a promising new technology that pro-
vides a transcriptomic analysis of individual cells and

is a powerful tool to address the inherent complex-
ity of breast cancer and its tumor environment to
pave the way for individualized therapy. However, as a
recently developed technology, scRNA-seq still has some
limitations.
First, both cell integrity and cell viability are essential

for subsequent single-cell analyses. It means that single
cells need to be isolated from each other quickly and
accurately with minimum damage to the cells during
the single-cell isolation process. However, mechanical
dissociation of tissue might injure cell integrity and
enzymatic treatment using trypsin, collagenase, and/or
papain to isolate single cells from tissues may affect cell
viability or lead to transcriptional changes. Thus, there
is a need to improve approaches to enable the efficient
“gentle” extraction and capture of living cells and avoid
the potential damage to single cells caused by enzymatic
treatment. Another limitation is the relatively high cost
of single-cell sequencing. Even though the currently
available systems have cut down the price of sequencing
per cell to a seemingly acceptable level, the combined cost
is still too high because tens of thousands of cells must
be analyzed in some instances. Reduced sequencing costs
would facilitate the widespread use of scRNA-seq in tumor
research. Furthermore, integrating scRNA-seq with other
single-cell genomic or protein information is also a future
experimental challenge. The combination of scRNA-seq
and DNA sequencing may not only provide us with more
information on the interaction between the epigenome
and transcriptome, but also provide insight into the
transcriptomic phenotype of cells that share somatic
mutations in DNA. Other new directions of technology
development include imaging a cell before sequencing to
acquire morphologic information and localizing the cell
in a tissue or microenvironmental niche to acquire spatial
information. In addition to technological improvements,
computational methods also need to be upgraded to sep-
arate the technical noise. Failure to account for technical
noise in scRNA-seq data can lead to biased downstream
analyses and misleading results, therefore it has become
a key challenge to accurately separate the technical noise
from biological heterogeneity [86]. In order to take full
advantage of scRNA-seq and better quantify biological
variation, advanced methods for data analysis are needed.
These limitations are anticipated to be addressed by rapid
scientific and technological development. The application
of scRNA-seq to tumor biology research could fur-
ther expand our understanding on tumor heterogeneity,
provide insights intomolecularmechanisms in tumor evo-
lution and metastasis, and facilitate the discovery of novel
therapeutics for more prosperous individualized cancer
management
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5 CONCLUSIONS

Single-cell sequencing has provided enlightening insights
into the study of tumor heterogeneity and has allowed
a more comprehensive understanding of tumor develop-
ment and progression, which are crucial for the develop-
ment of targeted therapy and the realization of individual
management. Widespread use of scRNA-seq could lead to
a profound revolution in our understanding of breast can-
cer and facilitate the discovery of more effective therapeu-
ticmethods to prevent cancer relapse and improve survival
benefit.
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