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a b s t r a c t

Determinant factors which contribute to the prediction should take into account multivariate analysis
for capturing coarse-to-fine contextual information. From the preliminary descriptive analysis, it
shows that environmental factor such as UV (ultraviolet) is one of the essential factors that should be
considered to observe the COVID-19 epidemic drivers. Moreover, there are education, government,
morphological, health, economic, and behavioral factors contributing to the growth of COVID-19.
Besides descriptive analysis, in this research, multivariate analysis is considered to provide comprehen-
sive explanations about factors contributing to pandemic dynamics. To achieve rich explanations, visual
attribution of explainable Convolution-LSTM is utilized to see high contributing factors responsible for
the growth of daily COVID-19 cases. Our model consists of 1 D CNN in the first layer to capture
local relationships among variables followed by LSTM layers to capture local dependencies over time.
It produces the lowest prediction errors compared to the other existing models. This permits us to
employ gradient-based visual attribution for generating saliency maps for each time dimension and
variable. These are then used for explaining which variables throughout which period of the interval
is contributing for a given time-series prediction, likewise as explaining that during that time intervals
were the joint contribution of most vital variables for that prediction. The explanations are useful for
stakeholders to make decisions during and post pandemics. The explainable Convolution–LSTM code
is available here: https://github.com/cbasemaster/time-series-attribution.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The Wuhan Municipal Health Commission first detected the
019 Coronavirus Disease (COVID-19) in Hubei Province, China,
nd early information about the outbreak has been sent to the
orld Health Organization (WHO) [1,2]. As the number of people

xposed to COVID-19 increases, the disease’s ability to spread
n the community has rapidly improved. The rapid growth in-
olves evidence of person-to-person transmission, indicating that
OVID-19 is highly contagious. COVID-19 can also live actively
n the air and on the ground [3,4]. Environmental factors are
ffecting the success of airborne viruses spreading among sus-
eptible hosts [5]. These forms of transmission may cause a
andemic. A pandemic can cause severe activity and death in a
ide geographic area [6]. To withstand the spread of COVID-19,
natural factor that is rarely discussed is ultraviolet (UV). Many
V papers prove that it can inactivate viruses [7,8], especially
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ultraviolet rays from sunlight [9]. An example of virus inactivation
by ultraviolet light is ultraviolet-C radiation for virus inactiva-
tion [8]. Even though ultraviolet rays can inactivate the virus,
it will not be evident if the pollution level is high [10]. Please
note that smoke particles will weaken ultraviolet light’s ability
to exist in the air [11]. Efforts to reduce the spread of COVID-
19 can also reduce carbon emissions by reducing the intensity
of travel worldwide [12], which is good for the environment.
Moreover, vaccine development is not sufficient, and it takes a
long time to discover [13]. Therefore, urgent, large-scale, and
natural immunity is needed. Some technologies have been devel-
oped by using UV light [14,15]. Based on the above evidences, we
investigate how UV rays dynamically affect the spread of COVID-
19 based on geographic location, pollution levels, and human
activities. The fast-growing of digital health enables us to gather
health data massively from sensors attached to patients [16].
Consequently, data considered in this research like cardiovascular
death rates, diabetes prevalence, and the number of hospital beds
per thousand are now possible to be collected in quantity over

time. Multivariate time-series data analysis is a better choice

https://doi.org/10.1016/j.asoc.2021.107469
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107469&domain=pdf
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Fig. 1. (a) The growth of cumulative confirmed cases in northern subtropical (blue), tropical (green), and southern subtropical (red) countries (b) The growth of
cumulative recovered cases in northern subtropical (blue), tropical (green), and southern subtropical (red) countries (c) The growth of cumulative death cases in
northern subtropical (blue), tropical (green), and southern subtropical (red) countries (d) Daily mean UV Index dynamics over time of northern subtropical (blue),
tropical (green) and southern subtropical countries (red).
for analyzing the growth of the COVID-19 pandemic because
it has interdependence among multiple factors over time. The
classification of multivariate time-series is also an emerging hot
topic in machine learning [17].

The transmission dynamics were investigated by [18] consist-
ing of susceptible, exposed, infected, and recovered individuals
using differential equations. It shows explanations in form of
correlation of its parameter to prediction. However, it only con-
siders variables without time-series information of which differs
from us. Time-series information is problematic especially at the
beginning of a pandemic where the direction of dynamics is
still unknown. In that case, early forecasting is desirable even
though the availability of data is small. Polynomial Neural Net-
work (PNN) with corrective feedback was proposed to reduce
uncertainty and increase the robustness of the model trained on
2

a small dataset [19]. Deep neural network (DNN) can capture
information from big data, thus it is the best candidate to per-
form classification tasks [20,21]. The ability of DNN to generate
meaningful feature representations in the learning process has
attracted attention in the machine learning and data science cir-
cles. In this study, we use interpretable DNN forecasts to perform
multivariate time series data analysis. This explanation helps to
find critical joint characteristics to predict daily cases of COVID-19
over a period of time. One study using interpretable DNN is Roy
Assaf et al.’s multivariate multi-factory PV energy prediction, [22]
which uses a two-stage convolutional neural network (CNN).
The explanation provided by DNN is beneficial for policymak-
ers to formalize the framework to be implemented during and
post-pandemic such as in tourism [23].
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Fig. 1. (continued).
Based on the aforementioned evidences and problems, our
works have 4 contributions:

1. We provide descriptive and statistical analysis of the rela-
tionship of environmental and mobility factors in regards
to the dynamics of COVID-19.

2. We proposed a model that able to predict the COVID-19
pandemic over time consisting of 1D CNN with 1 × 1
kernels each of which has 59 channels followed by LSTM
layers to capture a multivariate time-series pattern.

3. We proposed gradient-based visual attribution for generat-
ing a saliency map to explain which variables during which
period contributing to daily new cases.

4. Explaining important factors contributing to the dynam-
ics of COVID-19 pandemics for understanding the current
situation about why the number of new cases appears to
increase.
3

The remainder of this paper is organized as follows. Section 2
describes material and methods which explains variables con-
sidered in this research. Section 3 explains the setup applied
throughout experiments and data sets applied in this research.
Section 4 shows the results of reconstruction and discusses expla-
nations produced by the network, and the last section concludes
the research.

2. Materials and methods

2.1. Multidimensional factors

Table 1 shows 59 factors used in this COVID-19 growth mul-
tivariate time-series analysis ranging from environmental, social,
government, economical to behavioral factors. The clear-sky UV
index (UVIEF) is a measure for the effective UV irradiance (1
unit equals 25 mW/m2) reaching the Earth’s surface. The UV
dose is the effective UV irradiance (given in kJ/m2), reaching
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Fig. 2. (a) Human mobility dynamics in Brazil (b) Weekly mean confirmed cases in Brazil (c) Human mobility dynamics in Malaysia (d) Weekly mean confirmed
ases in Malaysia (e) Human mobility dynamics in Indonesia (f) Weekly mean confirmed cases in Indonesia.
he Earth’s surface integrated over the day and taking the UV
adiation’s attenuation due to clouds. The cloud data is compiled
rom the geostationary Meteosat Second Generation (MSG) ob-
ervations. The UV dose is computed for three different action
pectra, i.e., for three other health effects: erythema (sunburn) of
he skin (UVDEF), vitamin-D production in the skin (UVDVF), and
NA-damage (UVDDF).
Government stringency is related to the measurement pro-

ided by the Oxford COVID-19 Government Reaction Tracker [24].
he Tracker includes 100 Oxford community individuals who
ave ceaselessly upgraded a database of 17 parameters of gov-
rnment response. These parameters look at control approaches
uch as school and working environment closings, open occa-
ions, open transport, and stay-at-home policies. The Stringency
ecord could be a number from 0 to 100 that reflects these
ndicators. The higher score shows a better level of stringency.

tringency list gives a picture of the policies at which any nation

4

implemented its most grounded measures. Some countries have
had their deaths continue to flatten only as they have hit their
hardest stringency, such as Italy, Spain, or France. As China took
harder than initial stringency, its death curve was flattened.

2.2. UV index dynamics as environmental factors

The UV index (UVIEF) is derived from the measured solar
radiation in the UV spectra that arrives on the surface. It is
calculated by considering the proportional contribution of UV-
A and UV-B, two of the three-wavelength based types of UV
radiation. UV-A is characterized as the UV radiation of which the
wavelength ranges from 280–315 nm, while the wavelength of
UV-B is between 315 nm and 400 nm. UV spectra are captured
by the Global Atmosphere Watch (GAW) station. In this study,
the daily mean UV index (0–17) and daily mean Ozone (Dobson

Unit) are considered as parameters involved in the correlation
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Fig. 2. (continued).
analysis. The depletion of the protective stratospheric ozone layer
due to chlorofluorocarbons (CFCs) and halons has increased UV
radiation. The UV index is measured under the assumption of
a clear sky without any barriers such as clouds. The trade-offs
between 3 geographical locations (northern subtropical, tropical,
and southern subtropical areas) are investigated in terms of how
UV index and COVID-19 are related over time. The selected GAWs
are located in Argentina, Australia, Chile, and Brazil (Sao Paulo)
for southern subtropical countries. For tropical countries, GAWs
of India, Saudi Arabia, and Thailand are selected as represen-
tative countries. Finally, GAWs of Germany, Italy, Japan, Russia,
Spain, and Taiwan are selected to represent northern subtropical
countries. The duration UV index time series is from 2020/01/22
to 2020/07/20. The time-series data are then transformed into a
weekly mean series to capture the bigger picture of dynamics.

Fig. 1a, 1b, and 1c show pandemic growth in tropical (green),
northern subtropical (blue), and southern subtropical (red) coun-
tries for confirmed, recovered, and death cases, respectively. Note
that the number of confirmed cases, recovered, and deaths are
5

normalized across all countries. Since the end of March, the blue
countries grew over time and faster than the green and red
countries. The green countries grew sharper and faster than red
countries, even though there were cross points in the middle
of growth. The overtaking points indicate a growth pace that is
becoming slower than the other, and vice versa. This dynamical
pace happened between two adjacent groups, either blue with
green or green with red. Blue countries were starting to converge,
and conversely, red countries were starting to emerge both at
the beginning of May even though outlier countries exist. These
phenomena possibly can be explained in Fig. 1d where daily
mean UV index in red countries were monotonically decreasing
as the winter comes and the opposite for blue countries. It can be
suggested that there is an indication that COVID-19 is a seasonal
pandemic depending on geographical locations.

During summer, UV can inactivate viruses that live in the air
and on the surface of the objects especially at noon in tropi-
cal or subtropical countries. However, it may not be significant
in closed spaces like workspace and areas with the intensive



N. Yudistira, S.B. Sumitro, A. Nahas et al. Applied Soft Computing 109 (2021) 107469
Fig. 2. (continued).
human-to-human transmission, especially in densely populated
areas. Different COVID-19 pandemic growth patterns in northern
subtropical, southern subtropical and tropical countries occur
over time.

2.3. Human mobility dynamics as behavioral factors

Human mobility dynamics are movement trends over time
by geography, across different categories of places such as retail
and recreation, groceries and pharmacies, parks, transit stations,
workplaces, and residential [25]. It sees how your community is
moving around differently due to COVID-19. The key drivers to
be used in human mobility analysis are community activities dy-
namics during a pandemic depending on geographical locations
(focusing on tropical countries). After the first outbreak, human
mobility has changed from before pandemic due to lockdown
or outdoor activity restriction from the government. To see the
effect of these restrictions, we investigate activities dynamics
relative to COVID-19 growth. To realize this, Google Mobility
6

data [25] that provide six different activities are utilized. Those
activities are grocery and pharmacy, workplaces, transit stations,
retail and recreation, residential, and parks percent change from
baseline. To see the effect of reducing activities intensity, we
analyze the time-lagged correlation between activities dynamics
and COVID-19 growth. It means that the impact of activities
reductions on COVID-19 growth patterns after several days is
temporally investigated. The countries to be investigated in this
study are India, Brazil, Malaysia, Saudi Arabia, Indonesia, and
Thailand (tropical countries).

Fig. 2a shows that human mobility in Brazil reached the lowest
activities percent change to baseline in the middle of April 2020
and then gradually increased its percentage of change to baseline
over time. The increasing phenomena reveal the new normal
life has been adapted. Fig. 2b shows weekly mean confirmed
cases in Brazil that grew since the middle of April 2020. Note
that the number of confirmed cases here has been normalized
across all countries considered in this dataset. Fig. 2c shows that
Malaysia’s human mobility reached the lowest activity of retail
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Fig. 3. Time lagged cross-correlation between weekly mean confirmed cases and human activities in Jakarta region.

Fig. 4. Pearson correlation of weekly mean confirmed, recovered, death cases and weekly mean human activities of all countries with off set of −2.

7
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5

able 1
9 factors used in this research ranging from environmental, government, economical, to behavioral factors during 2020-03-22 to 2020-09-11.
Number Factor Category Value

1 retail_and_recreation_percent_change_from_baseline Behavioral/Mobility Percentage

2 grocery_and_pharmacy_percent_change_from_baseline Behavioral/Mobility Percentage

3 parks_percent_change_from_baseline Behavioral/Mobility Percentage

4 transit_stations_percent_change_from_baseline Behavioral/Mobility Percentage

5 workplaces_percent_change_from_baseline Behavioral/Mobility Percentage

6 residential_percent_change_from_baseline Behavioral/Mobility Percentage

7 total_cases COVID-19 Number of people

8 new_cases COVID-19 Number of people

9 new_cases_smoothed COVID-19 Number of people smoothed

10 total_deaths COVID-19 Number of people

11 new_deaths COVID-19 Number of people

12 new_deaths_smoothed COVID-19 Number of people smoothed

13 total_cases_per_million COVID-19 Number of people per million

14 new_cases_per_million COVID-19 Number of people per million

15 new_cases_smoothed_per_million COVID-19 Number of people smoothed
per million

16 total_deaths_per_million COVID-19 Number of people per million

17 new_deaths_per_million COVID-19 Number of people per million

18 new_deaths_smoothed_per_million COVID-19 Number of people per
thousand per million

19 new_tests COVID-19 Number of people

20 total_tests COVID-19 Number of people

21 total_tests_per_thousand COVID-19 Number of people per
thousand

22 new_tests_per_thousand COVID-19 Number of people per
thousand

23 new_tests_smoothed COVID-19 Number of people smoothed

24 new_tests_smoothed_per_thousand COVID-19 Number of people per
thousand

25 tests_per_case COVID-19 Percentage

26 positive_rate COVID-19 Percentage

27 tests_units COVID-19 People tested or not

28 stringency_index Government 0–100

29 Population Demography Number of people within
country

30 population_density Demography Number of people within
country per km2

31 median_age Demography Age

32 aged_65_older Demography Percentage

33 aged_70_older Demography Percentage

34 gdp_per_capita Economic Gross domestic product per
capita (Purchasing Power
Parity)

35 extreme_poverty Economic Percentage

36 cardiovascular_death_rate Health The annual number
of deaths from cardiovascu-
lar diseases per 100000
people

37 diabetes_prevalence Health Percentage

38 female_smokers Health Percentage

39 male_smokers Health Percentage

40 handwashing_facilities Health Facilities Number of hand washing
facilities

41 hospital_beds_per_thousand Health Facilities Number of hospital beds per
thousand

42 life_expectancy Health Age

43 human_development_index Education 0–1

44 UVIEF (cloud-free UV index) Environmental 0–17

45 UVIEFerr (cloud-free erythemal UV index smoothed) Environmental kJ/m2

(continued on next page)
8
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able 1 (continued).
Number Factor Category Value

46 UVDEF (cloud-free erythemal UV dose) Environmental kJ/m2

47 UVDEFerr (cloud-free erythemal UV dose smoothed) Environmental kJ/m2

48 UVDEC (cloud-modified erythemal UV dose) Environmental kJ/m2

49 UVDECerr (cloud-modified Vitamin-D UV dose smoothed) Environmental kJ/m2

50 UVDVF (cloud-free vitamin-D UV dose) Environmental kJ/m2

51 UVDVFerr (cloud-free vitamin-D UV dose smoothed) Environmental kJ/m2

52 UVDVC (cloud-modified vitamin-D UV dose) Environmental kJ/m2

53 UVDVCerr (cloud-modified vitamin-D UV dose smoothed) Environmental kJ/m2

54 UVDDF (cloud-free dna-damage) Environmental kJ/m2

55 UVDDFerr (cloud-free dna-damage smoothed) Environmental kJ/m2

56 UVDDC (cloud-modified dna-damage) Environmental kJ/m2

57 UVDDCerr (cloud-modified dna-damage smoothed) Environmental kJ/m2

58 CMF (average cloud modification factor) Environmental –

59 Ozone (local solar noon ozone column) Environmental DU (Dobson Unit)
Fig. 5. Convolution–LSTM architecture and its visual attribution via Gradcam.
Fig. 6. Actual and reconstruction of Indonesia.
nd recreation percent change to baseline in the middle of May
020 and then gradually increased its percentage of change to
aseline. The duration of low activities was around a month,
tarting from the middle of April to May 2020. After May, the
9

increasing activities were recorded, revealing new normal life has
been adapted. Fig. 2d shows weekly mean confirmed cases in
Malaysia grew starting from the middle of March 2020. However,
starting from May 2020, the weekly mean confirmed cases were
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Fig. 7. Actual and reconstruction of Norway.
Fig. 8. Actual and reconstruction of Italy.
decreasing. Note that the number of confirmed cases here has also
been normalized across all countries considered in this dataset.
Fig. 2e shows that Indonesia’s human mobility reached the lowest
activities percent change to baseline in the middle of May 2020
and then gradually increased its percentage of change to baseline.
The increasing phenomena show that the new normal life has
been adapted. Fig. 2f shows weekly mean confirmed cases in
Indonesia that grew exponentially since the end of March 2020
as the number of tests increased. Note that the number of con-
firmed cases here also has been normalized across all countries
considered in this dataset.

To answer the question of whether there is any correlation
between the decreasing activities before new normal and weekly
mean confirmed cases after the new normal, time-lagged cross
correlation was carried out.
10
2.4. Statistical analysis

The investigation of cross-correlation in Jakarta region in Fig. 3
showed a strong positive correlation when weekly mean con-
firmed cases time series are correlated with weekly mean human
activities with an off set of −2. The weekly mean confirmed cases
strongly relate to weekly mean human activities after around two
weeks.

Based on the investigation in Fig. 4, we conducted a correlation
test of all countries between weekly mean confirmed, recovered,
and death cases with weekly mean human activities with an
offset of −2 (2 weeks before). It can be concluded that weekly
mean confirmed cases are positively correlated to weekly mean
workplaces and transit stations percent change from baseline by
0.42 and 0.43 with correlation p-value of 0.003 and 0.002, respec-
tively. Weekly mean confirmed cases are negatively correlated to
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Fig. 9. Actual and reconstruction of Sweden.
eekly mean residential percent change from baseline by −0.33
ith a correlation p-value of 0.03. It means that weekly mean
onfirmed cases correlate to weekly mean workplaces, transit sta-
ions, and weekly mean residential percent change from baseline
ith statistically significant (p < 0.05).

.5. Multivariate time series analysis via explainable deep neural
etwork

In this research, multivariate time series data set of 59 factors
rom 55 countries is employed. It consists of six behavioral, 21
OVID-19, one government, two geographical, three morpho-
ogical, two economics, five health related factors, two health
acilities, one education, and 16 environmental categories. Each
actor is captured daily, except environmental factors (UVs) are
epresented by daily mean observations. A variant of DNNs called
ong Short Term Memory (LSTM) [26] is trained to predict the
utcome series of daily 59 factors over 174 days (2020-03-22
o 2020-09-11). All features in the X dataset are normalized
eature-wise into following equation (Eq. (1)):

ˆ =
X − Xmin

Xmax − Xmin
(1)

To achieve explainable prediction of Spatio-temporal data, we
develop a Convolution–LSTM model that consists of 1 1D convo-
lution layer and 2 LSTM layers with 59 hidden states followed by
a fully connected layer (FC) with Sigmoid activation (Fig. 4). The
whole of LSTM units contains the input gate, the forget gate, and
the output gate to capture spatio-temporal correlation and dy-
namics of multivariate time-series data. The forward propagation
flows from input layer, hidden layers, and output layer followed
by Sigmoid activation.
11
Table 2
Parameters of proposed Conv–LSTM.
Layer Value

Input layer (length, features)=(174,59)
Convolution layer 59 filters, size=1 × 7 kernel, stride=3
LSTM layer 1 (input, hidden unit)=(59,59)
LSTM layer 2 (input, hidden unit)=(59,59)
FC layer (input,output)=(59 × 56,174 × 59)
Activation function Sigmoid
Output layer (length, features)=(174,59)

As shown in Table 2, our proposed Conv–LSTM consists of
the input layer with temporal length of 174 with 59 features, a
convolution layer of 59 channel with filter size of 1 × 7 each,
2 LSTM layers each of which has an input channel of 59 and
an output channel of 59. Finally, FC layer with an input size of
59 × 56 and an output size of 174 × 59 followed by the Sigmoid
activation function is utilized. With an output layer size of 174 in
temporal length and 59 in number of features, this architecture
is purposely used for the explanation of long-range multivariate
time series. Based on the architecture, our proposed model is
different from the usual Conv–LSTM [27] which is purposely
designed for training a sequence of stacked images. Moreover,
from the perspective of output size, our Conv–LSTM aims to
predict a long-range time series to obtain an explanation of
multivariate temporal prediction rather than only a single value
prediction [28,29].

After the learning phase, gradient-based optimization via back-
propagation is utilized from which attribution maps (saliency
maps) are generated. The visual attribution extracts attention
to features that relevant to final spatio-temporal time-series
predictions (Fig. 5). Specifically, the method called GradCAM [30]
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Fig. 10. Time and feature attention corresponding to a prediction for new daily COVID-19 cases in Italy.
is used to create its attribution maps. Grad-Cam is applied to
the last hidden layer where its output activation is weighted
with important weight associated with time-series predictions
followed by Rectified Linear Unit (ReLU) activation.

The formulation of Gradcam for LSTM hidden layer is given in
Eq. (2) as follows:

Att = ReLU
(

∂ p̂new_cases_smoothed

∂sigmoid(outLSTM_2)
∂sigmoid(outLSTM_2)

∂outLSTM_2
outLSTM_2

)
(2)

Where Att, p̂, p̂new_cases_smooothed and outLSTM_2 are visual attribu-
tion, reconstruction output containing 59 factors, reconstruction
output containing only new cases smoothed, and output of hid-
den layer of the second layer of LSTM (features), respectively. The
gradients are obtained through partial derivatives and chain rule.
The final visual attribution is transformed into clean visualization

using ReLU activation by eliminating negative values.

12
3. Experimental setup

This multidimensional study uses 3 data sets of COVID-19
growth and its attribution, UVs, and people mobility data. The
time-series data was taken from 2020-03-22 until 2020-09-11.
The selected countries are located in tropical, northern subtrop-
ical, and southern subtropical regions. Data sets of worlds con-
firmed COVID-19, UV index, pollution, and people mobility time
series were taken from Ourworldindata [31], Tropospheric Emis-
sion Monitoring Internet Service (TEMIS) [32], and Google Mobil-
ity [25], respectively. Specific data, like UV index and pollution
in Jakarta, Indonesia, were taken from Indonesia Meteorology,
Climatology, and Geophysical Agency (BMKG). Confirmed, recov-
ered, and death cases of COVID-19 data in Jakarta have been
obtained from the Indonesia Ministry of Health.

The aforementioned data set references can be accessed to
investigate the detailed definition of each factor. There are 55

countries at various scales of geographical area and population
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Fig. 11. Temporal aggregation of attribution in Italy (x-axis is variables and y-axis is aggregation score).
able 3
ontribution of features to Conv–LSTM prediction in RMSE.

Italy Sweden Indonesia Norway

Without
environmental
features

0.001 0.007 0.017 0.026

Without mobility
(behavioral)
features

0.002 0.009 0.007 0.028

All features 0.0005 0.009 0.008 0.012

trained on DNNs to reveal its explanations. Note that all factors
are normalized into the 0–1 range before feeding into DNNs.

We divide the dataset into training and validation, which are
5 and 4 countries, respectively. The total time-series length for
ll features is 174 days, 2020-03-22 to 2020-09-11. We use three
rchitectures, which are a layer of 1D CNN, a layer of LSTM, and
roposed Convolution–LSTM (Conv–LSTM), which are validated
o test the data set using Root Mean Squared Error (RMSE). The
umber of epoch is set to 3000. We use Adam optimizer to update
eights for each iteration with a learning rate of 0.001. The best
rchitecture based on best validation score is selected as a visual
xplanation model.

. Results

Table 3 shows when tested without environmental features
hich consist of ‘UVIEF’, ‘UVIEFerr’, ‘UVDEF’, ‘UVDEFerr’, ‘UVDEC’,

UVDECerr’, ‘UVDVF’, ‘UVDVFerr’, ‘UVDVC’, ‘UVDVCerr’, ‘UVDDF’,
UVDDFerr’, ‘UVDDC’, ‘UVDDCerr’, and ‘CMF’, Italy and Norway got
.001 and 0.002, respectively. All Features of Italy and Norway
roduce better prediction in terms of RMSE with 0.0005 and
.12, respectively compared to without environmental features.
hen compared to without mobility features which consist of

retail and recreation percent change from baseline’, ‘grocery and
harmacy percent change from baseline’, ‘parks percent change
rom baseline’, ‘transit stations percent change from baseline,
nd workplaces percent change from baseline’, complete features
btain better RMSE. It reveals that mobility features are impor-
ant for prediction especially in Norway and Italy. In Indonesia,
ithout mobility features got better RMSE compared to without
13
Table 4
Prediction accuracy (RMSE) of new cases of COVID-19 in Italy, Sweden,
Indonesia, and Norway.

Italy Sweden Indonesia Norway

1D CNN 1 layer 0.052 0.134 0.085 0.069
LSTM 1 layer 0.001 0.013 0.013 0.014
Conv–LSTM 0.0005 0.009 0.008 0.012

environmental and complete features. However, when environ-
mental features are not included, the prediction of new cases in
Indonesia is even worse at 0.017 revealing environmental fac-
tors are more important in Indonesia. This condition is reversed
in Sweden where mobility factors are more important for the
dynamics of COVID-19 new cases prediction.

Table 4 shows the (Root Mean Squared Error) RMSE to validate
model architectures to predict the time-series outcome of Italy,
Sweden, Indonesia, and Norway. The low RMSE indicates that
the prediction accuracy of validation is high and impacts reliable
feature attribution. After predictions, spatio-temporal feature at-
tention inside the Convolution–LSTM network can be visualized.
High attention is represented by red color and gradually becomes
blue as the attention value is decreased. The range of feature
attention degrees is in the range of 0 to 1.

Fig. 6 shows the reconstruction and actual of new cases
smoothed in Indonesia. Even though the reconstruction result
hardly matches the pattern of the actual one, the RMSE is 0.008,
which is the lowest compared to other models (Table 2). Improper
reconstruction is due to presumably Indonesia is a large country
with heterogeneous character and behavior. Compared to Swe-
den, Norway, or Italy, Indonesia is greater in terms of population,
and geographic area, leading to the need for more detailed and
complete data in terms of region and period. Another suggestion
is by adding more countries to be fed into the model; thus model
can generalize well and reduce overfitting. For future works, data
to be analyzed should be more detailed in terms of the region and
the time-series sample period.

Figs. 7, 8, and 9 show actual and reconstruction of new cases
smoothed in Norway, Italy, and Sweden, respectively. They have
a similar time-series pattern between actual and reconstruction
and thus have a better outcome than Indonesia. Coincidently, they
are located in a similar geographical location of the northern sub-
tropical area, which differs from Indonesia. It can be concluded



N. Yudistira, S.B. Sumitro, A. Nahas et al. Applied Soft Computing 109 (2021) 107469

t
a

L
W
a
f
t
p
o
a
T
t
h
w
h
t
t
e

Fig. 12. Time and feature attention corresponding to a prediction for new daily COVID-19 cases in Sweden.
hat more samples are necessary to generalize countries that have
similar pattern to Indonesia’s COVID-19 case.
Fig. 10 shows the example of the visual attribution of Conv–

STM prediction on a series of daily new COVID-19 cases in Italy.
hen the visual explanation is investigated, network put high

ttention on the residential, retail and recreation percent change
rom baseline at the beginning of time. It regards changing ac-
ivity on those area contributes to the COVID-19 daily new cases
attern over the time in Italy. Total test per thousand, number
f test units, and environmental factors of UVDDC and UVDDCerr
t the beginning of time also influence the new cases over time.
he number of aged 70 people at the end of the time contributes
o the pattern of new cases growth over time. The number of
ospital beds per thousand is linked over time by a network
hich suggests an important factor to be considered. Factors that
ave been put high attention at the beginning and the end of the
ime are the number of new deaths over time and environmen-
al factor of UVDDFerr. Over time new cases smoothed follows
nvironmental factor of UVDDFerr pattern which decreases at
14
the beginning of time and then increases again at the end of
time. It indicates the influence of UV in affecting the graph of
COVID-19 cases, especially in open spaces (the parks percent
change from baseline influences new cases at the small amount
at the beginning and the end of time) as the dynamics of UV in
northern subtropical countries. In terms of the joint contribution
of features, the network shows more attention to period between
2020-02-21 and 2020-04-21, which seems to correspond to res-
idential mobility, daily new deaths, number of total tests per
thousand, number of tests units, number of hospital beds per
thousand, and UVDDFerr. Furthermore, the network also shows
joint attention to between 2020-04-21 and 2020-05-21, which
seems to correspond to retail and recreation mobility, daily new
deaths, number of hospital beds per thousand, UVDECerr, and
UVDDFerr.

Fig. 11 shows the rank of contribution band of variables when
temporal information is aggregated in case of Italy. It shows
that number of hospital bed has highest band revealing that
it is dominant feature for daily new cases prediction in Italy.
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Fig. 13. Temporal aggregation of attribution in Sweden (x-axis is variables and y-axis is aggregation score).
he network also considers UVDDFerr, new deaths, UVDDCerr,
ged 70 older, retail and recreation mobility, UVDDC, number
f tests units, and number of new cases as contributing factors
o time-series pattern of daily new cases. In terms of category,
e figure out that the network’s attention for Italy is spreading
cross health facility, environmental, demographic, mobility, and
OVID-19 features.
Fig. 12 shows the visual attribution map of Conv–LSTM pre-

iction on a series of daily new COVID-19 cases in Sweden.
he Conv–LSTM network put attention into workplaces percent
hange from baseline almost the entire of the time while in-
ufficient attention on other places. The number of test units
nfluences new cases initially while median age people contribute
n the middle of time. Cardiovascular death rate also is attributed
y the network at the beginning and the end of the time. Same as
taly, the number of hospital beds per thousand gives significant
ontribution at the entire time. Environmental factors of UVIE-
err, UVDEF, and UVDDF affects new cases smoothed time series
attern in the middle of the time.
Temporally, attention to behavioral factors only highlights

orkplaces change to baseline over time. It regards open space
s a park contributes to the COVID-19 daily new cases. UV in-
ex and dose increase over time in the northern subtropical
ountries toward summer. Correspondingly, the visual attribution
lso shows the degree of attention on environmental factors.
t indicates the influence of UV on daily new COVID-19 cases,
specially in open spaces like parks. The contribution of aged
eople is not as intense as Italy and Norway revealing Swe-
en’s success in separating aged people and younger ones. In
egards the joint contribution of features, the network highlights
o period between 2020-05-21 and 2020-06–19 as joint attention,
hich seems to correspond to workplaces mobility, number of
ospital beds per thousand, UVDEF, and UVDDF.
Fig. 13 shows the rank of contribution band of variables when

emporal information is aggregated in case of Sweden. It shows
hat number of hospital bed has highest band revealing that it is
ominant feature for daily new cases prediction in Sweden which
s same as in Italy. The network also considers UVDEF, UVDDF,
orkplaces mobility, ozone, new cases smoothed, the number
f median age, daily new death smoothed, CMF, and UVIEF as
ontributing factors to time-series pattern of daily new cases in
15
Sweden. We figure out that in category, the network’s atten-
tion for Sweden is spreading across health facility, behavioral,
environmental, demographic, and COVID-19 features.

Fig. 14 shows the example of the visual attribution map of
Conv–LSTM prediction on series of daily new COVID-19 cases
in Norway. Conv–LSTM network put attention into residential,
grocery, and pharmacy percent change from the baseline while
insufficient attention on transit station percent change from base-
line. It regards closed space contributes to the COVID-19 daily
new cases. In Norway, the difference between Norway and Swe-
den is that closed space activities like in workplaces are not
given as much attention as Sweden of contribution to daily new
COVID-19 cases. It can be understood since the Sweden gov-
ernment’s treatment of society is not as strict as Norway [33].
Visual attribution map also shows that government stringency
is one of the critical factors contributing to daily new COVID-
19 cases. Consequently, as shown in Figs. 7 and 9, Norway and
Sweden have different new cases smoothed pattern over time
where the former decreased and then increased while the latter is
monotonically increasing. Besides, the number of test units, total
tests per thousand, and the number of new tests initially affect
the pattern of new cases smoothed over time.

The morphological demography factor of the number of aged
70 people at the end of time contributes to new cases smoothed.
Human index and health factors of cardiovascular rate and num-
ber of hospital’s bed are also factors that cannot be under-
estimated. Environmental factors like UVIEFerr, UVDVFerr, and
UVDDFerr contribute to the new cases smoothed in Norway.

In Norway, the network shows more attention to period be-
tween 2020-02-21 and 2020-04-21 as the joint contribution of
dominant features, which seems to correspond to grocery and
pharmacy mobility, residential mobility, daily new deaths, num-
ber of total tests per thousand, number of tests units, stringency
index, cardiovascular death rate, number of hospital beds per
thousand, human development index, UVIEFerr, and UVDDFerr. It
is interesting that different from the attribution map of Sweden
which does not highlight stringency index, attribution map of
Norway put attention to stringency index. Correspondingly, the
government of Norway is stricter than Sweden in restricting com-
munity activities [33]. Furthermore, the network also shows joint
attention to period after 2020-08-19, which seems to correspond
to new cases smoothed per million, aged 70 older, and UVDVFerr.
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Fig. 14. feature attention corresponding to a prediction for new daily COVID-19 cases in Norway.
Fig. 15 shows the rank of contribution band of variables when
emporal information is aggregated in case of Norway. It shows
hat number of hospital bed has highest band revealing that it
s dominant feature for daily new cases prediction in Norway.
he same dominant feature is highlighted in Italy and Sweden.
he network also considers UVDVFerr, new cases smoothed per
illion, aged 65 and 70 older, number of tests units, popula-

ion density, UVDDFerr, new cases smoothed and grocery and
harmacy mobility as contributing factors to time-series pattern
f daily new cases in Norway. In terms of category, we figure
ut that the network’s attention in Norway is spreading across
ealth facility, environmental, demographic, COVID-19, and mo-
ility features. The mobility feature in Norway is ranked at last
ut of ten compared to mobility feature in Sweden which is
anked at 4th out of ten, meaning that, people mobility in Sweden
16
is more contributed to the daily new cases than in Norway (see
Fig. 16).

Fig. 16 shows the example of the visual attribution map of
Conv–LSTM prediction on a series of daily new COVID-19 cases
in Indonesia. Unlike Italy, Sweden, and Norway, which are located
in the northern subtropical region, the Conv–LSTM network puts
high attention on behavioral factor of the residential percent
change from baseline. It regards open spaces are safer than closed
spaces like residential, grocery, and pharmacy where human-to-
human transmission intensely occurs and open spaces like parks
are not given much attention.

Low degree of attention on activity in parks, grocery, and retail
and UVIEF indicate that open spaces with low intensity of human-
to-human interaction are helped by environmental factors such
as UV (UVDDFerr at the beginning of time and UVDVFerr at the
end of time). Indonesia’s daily new COVID-19 cases also depend
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Fig. 15. Temporal aggregation of attribution in Italy (x-axis is variables and y-axis is aggregation score).
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eavily on the number of tests performed across the country
t the beginning of time (number of new tests, total tests per
housand, and tests units). The big population also contributes
o the new cases, especially if the number of tests grows over
ime. The number of hospital’s beds for the entire time is also an
mportant factor contributing to new cases smoothed.

In Indonesia, the network shows more attention to the 2-
onth period between 2020-02-21 and 2020-05-21 as the joint
ontribution of dominant features, which seems to residential
obility, daily new deaths, number of new tests, total tests per

housand, number of tests units, population, cardiovascular death
ate, number of hospital beds per thousand, and UVDDFerr. The
umber of tests (new tests, total tests per thousand, and the
umber of tests units) dominates the attention revealing that the
aily new cases of COVID-19 in Indonesia depend on its test rate
hich also relates to its population size. The residential mobility

s only behavioral feature that contribute to the daily new cases,
eaning that, the open spaces almost has no influence to the
rediction of daily new cases of COVID-19.
Fig. 17 shows the rank of the contribution band of variables

hen temporal information is aggregated in the case of Indonesia.
ame with the previously investigated countries, it shows that
umber of the hospital bed has the highest band. The network
lso considers new deaths, UVDDFerr, new tests, UVDVFerr, tests
nits, new cases smoothed per million, aged 70 and 65 older,
nd total tests per thousand as contributing factors to the time-
eries pattern of daily new cases. In terms of category, we figure
ut that the network’s attention for Indonesia is spreading across
ealth feature, environmental, demographic, and COVID-19 fea-
ures with the number of tests related features are dominating
ith the presence of three features (new tests, tests units, and
ests per thousand) among the top ten. There are no mobility
eatures among the top ten revealing that mobility activities have
o significant contribution to the dynamics of daily new cases in
ndonesia.

. Discussion

While environmental factor correlates to the global spread of
OVID-19 pandemic, we believe that it is not just a standalone
actor. Some other factors, like morphological and behavioral fac-

ors, influence the spread and growth of COVID-19 cases. Human

17
ctivity also influences the spread and growth of COVID-19 cases
ia human-to-human transmission, especially in workplaces, res-
dential, and groceries where direct human interaction is intense
n closed spaces. Based on direct evidence, even though there is
n indication that COVID-19 is seasonal flu where there is inter-
hanging conditions between northern subtropical, tropical, and
outhern subtropical locations, some other anticipation should be
aken into account:

1. The new normal life is an inevitable thing in daily life
where wearing a mask, hand washing, increasing the hos-
pital’s capacity, and minimizing the number of activities
that make up the crowd should be concerned.

2. Open space is safer than in a closed room with a crowd
due to the UV light and air circulation. Unfortunately, the
victims mostly occur in closed spaces such as groceries,
residential, and workplaces.

3. For tropical countries, an abundance of UV light helps
withstand the COVID-19 spread, especially in open space.
There must be a good balance between activities inside and
outside rooms, especially at noon, where the level UV index
is high. In closed spaces like workplaces, it is suggested to
expose UV rays in the room before leaving the places when
the work hour ends.

4. For subtropical country residents, wearing a mask is com-
pulsory while living in an open space and during the cold
season. By the time of the summer season, people in sub-
tropical countries should take advantage of the high UV
index level.

. Conclusion

In this work, the multivariate analysis consists of environmen-
al, mobility, demographic, COVID-19, health, health facilities,
overnment, economic, and education categories are considered.
he environmental and mobility factors are descriptively ana-
yzed its effect on the dynamics of COVID-19 cases. Moreover, we
roposed a model that able to predict the multivariate COVID-19
andemic data over time named Conv–LSTM. To explain which
ariables during which period contributing to daily new cases,
radient-based visual attribution is proposed for generating a
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Fig. 16. Time and feature attention corresponding to a prediction for new daily COVID-19 cases in Indonesia.
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saliency map. Based on results, it is shown that our proposed ex-
plainable Conv–LSTM can visualize the spatiotemporal network’s
attention on multivariate time series data, while not hinder-
ing prediction performance. By leveraging the generated saliency
map, important factors contributing to the dynamics of COVID-19
pandemics are explained for understanding the current situation
about why the number of new cases appears to increase.

For future works, data to be analyzed should be more detailed
in terms of the region and the period where the time-series
sample is acquired. Moreover, we would consider more data
and variables to see more general explanations leveraging the
richness of information extracted from big data. There is also the
possibility to adapt transformer network to capture important
patterns in COVID-19 time-series data. We can implement the
proposed method to explain the time-series prediction of other
fields such as influenza pandemics, electricity usage, or predictive
maintenance. The explanation can be displayed on a web page
 t

18
or mobile app that shows prediction results and also factors that
contribute to those predictions.
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