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A B S T R A C T   

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB 
strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal 
transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and 
responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, 
and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based 
inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate po-
tential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharma-
cophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP–DNA complex: ST132 (IC50 =

29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 μM) and ST132 (KD = 14.5 ± 0.1 μM) 
strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and 
ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations 
revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal β-hairpin of PhoP, with 
functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro 
antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane 
and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial 
agents to combat pathogenic mycobacteria.   

1. Introduction 

Mycobacterium tuberculosis (Mtb) is the causative agent of tubercu-
losis (TB)[1]. Tuberculosis (TB) is a persistent health problem that ranks 

as the 13th leading cause of death worldwide [2]; since 2012, it has been 
the leading cause of death among infectious diseases. Despite numerous 
efforts, the control of TB remains challenging. In 2021, TB is estimated 
to affect approximately 10.6 million people worldwide[3]. The World 
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Health Organization reported that the greatest share of the global TB 
burden fell in Southeast Asia (45% of all cases), followed by Africa 
(23%). Therefore, targeted interventions are necessary to effectively 
combat this disease. However, the emergence of multi-drug-resistant 
(MDR), extensively drug-resistant (XDR), and rifampicin-resistant TB 
has hindered efforts to effectively create an epidemic within the broader 
TB problem. Estimates indicate that, 450,000–470,000 cases of 
MDR/XDR-TB in in 2021 resulted in 191,000 fatalities[4]. Novel drugs 
must be developed to combat the threat to global public health caused 
by the rapid emergence of MDR- and XDR-TB. 

The survival and persistence of bacteria within a host organism de-
pends on their ability to sense and adapt to their environment[5–9]. One 
crucial mechanism involved in this process is the two-component signal 
transduction system (TCS)[10–13]. A typical TCS has two main com-
ponents: histidine kinase (HK) and response regulator (RR)[10–13]. HK 
is a sensor that detects environmental signals such as temperature, pH, 
nutrient availability, and the presence of antimicrobial compounds. HKs 
are transmembrane proteins comprising a periplasmic N-terminal 
sensing domain and a cytoplasmic/catalytic C-terminal domain (CTD). 
The CTDs of HKs contain a dimerization domain and an ATP-binding 
kinase domain. On sensing a signal, HK undergoes autophosphor-
ylation and transfers a phosphate group from ATP to a conserved his-
tidine residue in its catalytic domain. The phosphoryl group is 
transferred from HK to the cognate RR, which typically contains a 
conserved aspartate residue in its receiver domain. RRs are mainly 
transcription factors comprising an N-terminal receiver domain and 
C-terminal DNA-binding domain (DBD). This phosphorylation event 
triggers a conformational change in the RR, which leads to its activation 
and subsequent regulation of downstream genes or cellular processes 
[14]. Hence, bacteria use TCSs to adjust their behavior, physiology, and 
gene expression patterns in response to specific signals encountered 
within their host or the external environment, thereby enabling them to 
evade host immune responses, establish persistent infections, form 
biofilms, acquire antibiotic resistance, and exhibit pathogenicity. 
Moreover, TCSs are found only in bacteria, and not in humans. There-
fore, targeting the TCS components is a promising method for devel-
oping new antimicrobial agents that can disrupt bacterial adaptation, 
enhance host immune responses, and overcome antibiotic resistance 
[15–21]. 

Two key TCS RRs of Mtb, MtrA (Rv3246c) and PhoP (Rv0757), 
control drug resistance and virulence of Mtb. MrtA is one of 11 essential 
pairs of TCSs Mtb [22]. Phosphorylated MrtA binds to the promoters of 
dnaA, fapB, oriA, and ripA [23,24]. The MrtA/B system modulates li-
poprotein activity in Mtb to regulate drug resistance and cell wall ho-
meostasis[25]. MtrA is differentially expressed in avirulent and virulent 
strains during macrophage[22]. MtrA not only controls cell division 
[26] and cell wall metabolism, but also affects the susceptibility of Mtb 
to first-line anti-TB drugs[26]. Thus, MtrA is a key target for antimi-
crobial drugs[27,28]. Another TCS, PhoP/R, regulates the expression of 
more than 100 genes of Mtb [29]. Deletion of phoP or phoR genes can 
considerably attenuate the virulence of Mtb [30,31]. PhoP/Rs are also 
involved in the synthesis of complex cell wall lipids[30]. Thus, inhibitors 
of PhoP/R function could also be developed for use as anti-tuberculosis 
agents. Additionally, MtrA and PhoP have sequence and structural 
similarities in their C-terminal DBD[32], thereby suggesting that tar-
geting this region could be broadly effective if the activities of multiple 
RRs are disrupted simultaneously. Inhibitors that specifically or simul-
taneously target the C-terminal DBDs of these RRs can disrupt their 
binding to DNA and prevent the subsequent regulation of gene 
expression. 

Computer-aided drug design (CADD) is an efficient and cost-effective 
method for rapidly identifying inhibitors with specific biological activ-
ities such as those targeting the RRs of TCSs[33]. CADD methods include 
the structure-based drug design (SBDD) and ligand-based drug design 
(LBDD) methods. SBDD is more commonly used than LBDD because it 
relies on widely available crystallographic structures for various 

biological targets[34–36]. Conversely, LBDD requires structural infor-
mation about the target, which may be limited[35,36]. SBDD methods 
can be further classified into pharmacophore modeling and molecular 
docking methods[37]. Molecular docking is a virtual high-throughput 
screening method used to evaluate the potential biological activities of 
compounds based on their structural properties[38]. In contrast, phar-
macophore modeling can explore and define the arrangement of 
essential features of a ligand that enables it to specifically and effectively 
bind to a receptor[39,40]. The generation of receptor–ligand pharma-
cophores can reveal molecular features by converting protein properties 
into reciprocal ligand spaces. Hence, pharmacophore modeling enables 
the effective design of ligands with properties necessary for effective 
binding to a specific protein,[41] and numerous studies have reported 
that this method can accelerate the drug discovery process[42–46]. 
Thus, pharmacophore-based screening, known for its efficacy in iden-
tifying novel inhibitors that potentially exhibit biological activity[39, 
40,47,48,49], was employed in this study. 

Protein structures have been identified for the Mtb RRs of the MtrA- 
apo [50]and PhoP–DNA complexes[51]. This structural information for 
MtrA-apo (PDB ID: 2GWR) and the PhoP–DNA complex (PDB ID: 5ED4) 
enabled the use of CADD to screen for and develop potent inhibitors. In 
this study, pharmacophore-based inhibitor screening was coupled with 
biochemical and biophysical examinations to identify, characterize, and 
validate potential inhibitors of the PhoP–DNA complex. Recep-
tor–ligand-pharmacophore generation was used to comprehensively 
explore the functionally essential features of DNA–PhoP interactions. A 
pharmacophore model, Phar-PR-n4, was developed and employed to 
identify three out of 68,000 compounds from the IBS database that 
showed 50% inhibition against the formation of PhoP–DNA complex at a 
compound concentration of 100 μM. A further inhibition assay demon-
strated that ST166 (IC50 = 18 ± 1.3 µM), ST132 (IC50 = 29 ± 1.6 µM), 
and ST950 (IC50 = 88 ± 1.2 µM) all exhibited dose-dependent inhibition 
that disrupted PhoP–DNA complex formation. Localized surface plas-
mon resonance (LSPR) investigations revealed that the binding affinities 
of ST166 and ST132 to PhoP are 18.4 ± 4.3 and 14.5 ± 0.1 μM, 
respectively. In addition, the inhibitory potency and binding affinity of 
ST166 and ST132 for MtrA were investigated and compared with those 
of PhoP. The modes of action of ST166 and ST132 on PhoP and MtrA 
were investigated using structural analysis and molecular dynamics 
(MD) simulations. Finally, the in vitro antibacterial activity of ST166 
was characterized and confirmed for a Mycobacterium species (Macro-
bacterium marinum). This integrated approach of combining CADD with 
biochemical and biophysical techniques successfully identified, char-
acterized, and validated an inhibitor, ST166, that specifically targets 
both PhoP and MtrA in Mtb. ST166 can be further optimized to develop 
therapeutic agents for combating pathogenic Mycobacterium species. 

2. Materials and methods 

2.1. Preparation of the recombinant MtrAC and PhoP proteins 

An expression plasmid for full-length PhoP was designed by inserting 
the phoP gene into a pET28a vector (NdeI and XhoI restriction enzyme 
sites) with an N-terminal His-tag. The nucleotide sequence encoding the 
DBD of MtrA (MtrAC) was cloned into the pET28a vector at NdeI and 
XhoI restriction sites using an N-terminal His-tag. All genes were syn-
thesized and subcloned into the expression vectors of interest by Yao- 
Hong Biotechnology, Inc. (https://www.yh-bio.info/). The PhoP 
plasmid was transformed into Escherichia coli (Shuffle T7). Bacteria were 
cultured in Luria-Bertani (LB) medium at 37 ◦C with 50 mg/L kana-
mycin. When the cell density reached OD600 = 0.6, the culture was 
treated with 0.05 mM IPTG for induction and was incubated at 30 ◦C 
overnight. The MtrAC plasmid was transformed into E. coli [BL21 (DE3)] 
and cultured in LB medium at 37 ◦C with 50 mg/L kanamycin. The 
culture was then induced (0.2 mM IPTG for 4 h at 37 ◦C) at an OD600 of 
0.6. All cultured cells were harvested by centrifugation (6000 rpm for 
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20 min), resuspended in lysis buffer (20 mM Tris-HCl and 100 mM NaCl 
at pH 8.0), and disrupted using a microfluidizer (Microfluidics). The 
supernatant of the resulting crude extract was purified using nickel-
–nitrilotriacetic acid affinity resins (Qiagen, Hilden, Germany) and 
further purified using size-exclusion chromatography (Superdex 75 In-
crease 10/300 GL). The purity of the samples was verified using a 
Coomassie blue-stained SDS polyacrylamide gel. 

2.2. Preparations of DNA fragments 

The double-stranded oligonucleotides 5′-GGCGGTGTAGTTAT-
CACGCCGTTT-3′ (fragment of dna A promoter region) and 3′-ATCTAC-
GACACTTAGTCGACACTTAG-5′ used for biophysical studies of MtrA 
[52] and PhoP[51], respectively, were synthesized by and purchased 
from Yao-Hong Biotechnology. Double-stranded DNA was annealed by 
mixing equal aliquots of the two oligomers in 20 mM sodium phosphate 
buffer and 50 mM NaCl (pH 7.0), heating the mixture to 95 ◦C, and then 
slowly cooling it to room temperature. Subsequently, ion exchange 
chromatography [Mono-Q 5/50 GL column; Amersham Biosciences)] 
was used to purify the annealed double-stranded DNA. 

Analyses of DNA-binding properties of MtrA and PhoP through 
fluorescence polarization assay. 

The oligonucleotides used for the fluorescence polarization (FP) 
experiment (5′-GGCGGTGTAGTTATCACGCCGTTT-3′ and 3′-ATCTAC-
GACACTTAGTCGACACTTAG-5′) were labeled with 6-carboxyfluores-
cein (6-FAM) at the 5′ positions. The proteins PhoP and MtrAC were 
added at appropriate concentrations to wells containing 10 nM 6-FAM- 
labeled DNA in reaction buffer (20 mM sodium phosphate and 50 mM 
NaCl at pH 7.0) at 25 ◦C. A Synergy H1MF plate reader (BioTek In-
struments, Inc.) was used to measure the reactions thrice at excitation 
and emission wavelengths of 485 and 535 nm, respectively. The binding 
curves were fitted to one or two binding models. Data were analyzed and 
plotted using the Prism software (version 6; GraphPad, San Diego, CA, 
USA). 

Receptor–ligand-pharmacophore generation and pharmacophore- 
based inhibitor screening (ligand-pharmacophore mapping). 

Receptor–ligand-pharmacophore modeling can precisely identify the 
functionally critical features of ligands that interact with target proteins. 
Thus, we used the PhoP–DNA complex structure (PDB ID: 5ED4) to 
construct a pharmacophore model of these interactive features for 
screening inhibitors. The receptor–ligand-pharmacophore generation 
module in Discovery Studio 2021 (Accelrys Software, San Diego, CA, 
USA) was used to generate a pharmacophore model. The PhoP structure 
served as the input receptor and the DNA structure was used as the input 
ligand. The minimum and maximum feature values were 10 and 30, 
respectively, whereas the maximum pharmacophore value was 10. 
Conformation generation was performed with the “fast” and “rigid 
fitting” settings. The remaining parameters were set to default values. 
The constructed pharmacophore model was then used for ligand- 
pharmacophore mapping by fitting all molecules in the IBS database 
(https://www.ibscreen.com/; 68,000 compounds). The fitting method 
was set to “flexible,” and all other parameters were the defaults. 

2.3. Inhibitory activities of compounds as determined through FP 
measurements 

The oligonucleotide (3′-ATCTACGACACTTAGTCGACACTTAG-5′) 
retrieved from the determined PhoP–DNA complex [51] and labeled 
with 6-FAM at the 5′ position was dissolved in 20 mM sodium phosphate 
and 50 mM NaCl at pH 7.0 for FP experiments. Approximately 10 μl of 
PhoP (prepared in 20 mM sodium phosphate and 50 mM NaCl at pH 7.0) 
was first added to the wells of an ELISA plate. Next, 1 μl of serially 
diluted inhibitors (prepared in the same buffer as PhoP) was mixed with 
PhoP (final concentration 20 μM) to reach the desired concentrations, 
and the plate was incubated at 25 ◦C for 10 min. Subsequently, 9 μl of 

6-FAM-labeled DNA (final concentration = 10 nM) was added, followed 
by incubation at 25 ◦C for another 10 min. The reactions were measured 
three times using a Synergy H1MF plate reader (BioTek Instruments, 
Inc.) at excitation and emission wavelengths of 485 and 535 nm, 
respectively. The percentage inhibition was calculated using the 
following equation: 

Inhibition% =
{[(P + D) − (D) ] − [(P + I + D) − (D) ] }

[(P + D) − (D) ]
× 100  

where (D), (P + D), and (P + I + D) represent the polarization intensities 
of DNA alone, PhoP bound to DNA, and PhoP mixed with the inhibitor 
and then incubated with DNA, respectively. The MtrAC inhibitory ac-
tivities of the identified compounds were also determined with this 
method but using the other oligonucleotide (3′-ATCTACGA-
CACTTAGTCGACACTTAG-5′) with the 5′ end 6-FAM labeled. 

LSPR. 
The protein-binding affinities of the identified inhibitors were 

determined and analyzed using an OpenSPR instrument (Nicoya Life 
Science, Inc.). The protein solution was prepared in 1 × PBS at pH 7.3. 
The protein (80 μg/ml) was immobilized on a Ni2+-nitrilotriacetic acid 
sensor chip, and the interaction with fluid-phase inhibitors was subse-
quently detected. For detection, the inhibitors (analytes) were prepared 
at various concentrations in 1 × PBS containing 0.5% DMSO and 2% 
BSA. Throughout the analysis, the chip was regenerated using 10 mM 
glycine–HCl buffer (pH 2.2 for each experiment. The obtained data were 
fitted to a 1:1 binding model using Trace Drawer software and the 
dissociation constant (KD) was determined. 

2.4. MD simulations 

The structural conformations of the screened inhibitors (ST166, 
ST132, and ST950) from ligand-pharmacophore (Phar-PR-n4) mapping 
were investigated using MD simulations. The only direct binding site of 
the identified inhibitors was the CTD of PhoP (PhoPC); hence, the N- 
terminal domain of PhoP was removed from the MD simulations. The 
construction of the protein-ligand complex proceeded as follows. 
Initially, the conformation of the ligand was acquired from the outcome 
of ligand-pharmacophore mapping. Subsequently, the ligand fitted to 
the pharmacophore is relocated within the protein structure, which 
serves as the basis for generating a pharmacophore model. Before an MD 
simulation, the complex structures of the protein-ligand were subjected 
to the “Prepare proteins” method in Discovery Studio 2021 to remove 
any errors in these structures. Subsequently, the PhoPC–inhibitor com-
plexes were solvated (using Discovery Studio 2021) to create an ortho-
rhombic cell shape under the CHARMm force field, with 0.15 M NaCl 
added to neutralize the system. Consequently, the PhoPC–inhibitor 
complex was solvated with water, sodium, and chloride atoms (3053 
water molecules, 11 sodium atoms, and 8 chloride atoms for the PhoPC- 
ST166 complex; 3089 water molecules, 11 sodium atoms, and 8 chloride 
atoms for the PhoPC-ST132 complex; and 3094 water molecules, 12 
sodium atoms, and 9 chloride atoms for the PhoPC-ST950 complex). 
Energy minimization was then performed for 5000 steps using the 
steepest descent method, after which an additional 5000 steps were 
performed using the conjugate gradient method. This was followed by a 
heating phase of 20 ps and an equilibration phase of 500 ps. This pro-
cedure was performed using the Standard Dynamic Cascade protocol in 
Discovery Studio 2021. After the equilibration process, the entire 
protein-ligand complex was simulated in a production run of 100 ns 
executed in the NVT ensemble at 300 K; snapshots were saved every 
500 ps. In addition, the Generalized Born algorithm was used for the 
implicit solvent model during the simulations. The Particle Mesh Ewald 
(PME) method was used for the electrostatic calculations. Additionally, 
the SHAKE algorithm was employed to constrain hydrogen-containing 
bonds (time step = 2 fs). Once the simulation was completed, various 
parameters were assessed, including the root mean square deviation 
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(RMSD), root mean square fluctuation (RMSF), and radius of gyration 
(Rg). The RMSD, RMSF, and Rg values were calculated using the 
“Analyze Trajectory” protocol of the simulation tool in Discovery Studio 
2021. These evaluations were performed with the initial structure as the 
reference point to examine the conformational changes that occurred 
within the protein-ligand complexes throughout the simulation. 

2.5. Binding free energy calculation 

The binding free energy ΔG is a crucial parameter for assessing a 
compound’s affinity for a specific protein[53]. ΔG can be determined 
using the molecular mechanics Poisson–Boltzmann surface area 
(MM/PBSA) method. MM/PBSA is a rapid and precise method for pre-
dicting the absolute binding affinity of a compound to the active binding 
site of a target protein, which is crucial for understanding the thermo-
dynamic stability and efficacy of the compound in terms of either in-
hibition or activation[54]. The binding free energies for each 
protein-ligand complex were computed using the “Binding Free En-
ergy Single Trajectory” protocol in Discovery Studio 2021. The binding 
free energy was calculated for all generated conformations to determine 
the average ΔG for each protein-ligand complex[55]. 

3. Minimum inhibitory concentration 

To assess the susceptibility of M. marinum (NTUH-M6885) to anti-
biotics and ST166, bacterial cells were collected from 7H10 agar plates 
and resuspended in distilled water to achieve a McFarland standard 
equivalent of 0.1. Broth microdilution was performed using U-shaped 
96-well microtiter plates, with some modifications based on the pro-
cedure described by Coban et al. [56]. The wells were loaded with 100 μl 
of 7H9 Broth medium (BD Difco™ & BBL™) supplemented with ADC 
Enrichment (BD Difco™ & BBL™), and serial dilutions were carried out 
for each drug. Approximately 5 μl (1.25 × 104 CFU/ml) of bacterial 
suspension was added to each well. The plates were incubated at 28 ◦C 
until bacterial growth was observed in the control medium. Minimum 
inhibitory concentration (MIC) was defined as the lowest concentration 
at which no bacterial growth was detected by microscopic examination. 

4. Evaluation of cell viability 

In 24-well plates, OECM-1 oral cancer cells were seeded with Gibco 
RPMI-1640 medium containing 10% FBS and antibiotics. These cells 
were then treated with 0, 50, 100, 127, or 254 µM of ST166 and incu-
bated for 0, 2, or 4 d. After incubation, the supernatant was removed, 

and the attached cells were washed twice with PBS and stained with 
0.23% crystal violet solution (Sigma-Aldrich) for 10 min. After washing 
twice, the plate was air-dried before further dissolution in a 1% SDS 
solution. The cell viability was quantified using a microplate reader at 
562 nm. The value of the mock control was defined as 100% to calculate 
the relative cell viability. 

5. Results 

5.1. Receptor–ligand-pharmacophore generation and pharmacophore- 
based inhibitor screening 

We used the PhoP–DNA complex structure (PDB ID: 5ED4; Figure S1) 
to construct a pharmacophore model via receptor–ligand-pharmaco-
phore generation, with the PhoP moiety as the receptor and the DNA 
structure as the ligand. Two clusters of pharmacophore features 
(models) were generated, Phar-PL and Phar-PR (Fig. 1A). Phar-PL con-
tains seven hydrogen-bond acceptors (green spheres), two hydrogen- 
bond donors (magenta spheres), and one negatively charged molecule 
(blue sphere). Phar-PR comprises 11 hydrogen-bond acceptors, two 
hydrogen-bond donors, and five negatively charged features (Fig. 1A). 
The choice of pharmacophore scaffold is critical for efficient ligand- 
pharmacophore mapping and inhibitor screening. A comprehensive 
exploration of the pharmacophore features of Phar-PL and Phar-PR 
revealed that four negatively charged features (n1, n2, n3, and n4) 
represented a bioactive DNA scaffold that interacted with residues R223, 
S219, R222, T235, Y241, and K195 (Figs. 1B and 1C). These Phar-PR 
features were further grouped into a pharmacophore scaffold, Phar- 
PR-n4, and employed to screen potential inhibitors. A compound li-
brary comprising 68,000 molecules was obtained from the IBS database. 
Ligand-pharmacophore mapping was performed to screen and fit the 
compounds onto Phar-PR-n4. During ligand-pharmacophore mapping, 
the 3D coordinates of the ligands were aligned to the pharmacophore 
features of Phar-PR-n4, and the fit between the ligand and pharmaco-
phore was assessed. The following ten compounds with the best fit were 
selected as candidates (Figure S2): ST166 > ST132 > ST950 >

ST142 > ST270 > ST505 > ST439 > ST142 > ST524 > ST272. The 
detailed chemical structures are shown in Fig. 2. 

5.2. Inhibitor disruption of the formation of PhoP- and MtrAC-DNA 
complexes 

The DNA-binding properties of PhoP and MtrAC were characterized 
to establish an inhibitory assay. The DNA-binding affinity for the 

Fig. 1. Receptor–ligand-pharmacophore generation based on the structure of the PhoP–DNA complex. (A) Generated pharmacophore features and structure of the 
PhoP–DNA complex. (Pharmacophore features are color-coded as follows: hydrogen-bond acceptor, green; hydrogen-bond donor, magenta; negative charge features, 
deep blue) (B) Pharmacophore scaffold of Phar-PR-n4 aligned with the DNA structure (gray sticks); the interactive residues of PhoP are shown as cyan sticks and 
labeled. (C) Features at a specific distance correspond to the pharmacophore model Phar-PR-n4. (Pharmacophore features are colored as follows: hydrogen-bond 
acceptor, green; negative charge, deep blue). 
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PhoP–DNA complex was assessed with the DNA sequence (5′-GATTCA-
CAGCTGATTCACAGCATCTA-3′), and the affinity for the MtrAC-DNA 
complex was assessed with dnaA promoter DNA (5′- GGCGGTGTAGT-
TATCACGCCGTTT-3′) [52] in FP experiments. For PhoP, the polariza-
tion intensity increased as the PhoP protein concentration increased 
(Fig. 3A). However, substantial PhoP aggregation was observed at pro-
tein concentrations greater than 50 μM. Hence, 20 μM PhoP was iden-
tified as a suitable concentration for further inhibition assays. For 
MtrAC, strong binding to dnaA was observed with a KD value of 1.23 

± 0.26 μM (Fig. 3B). The polarization intensity plateaued for MtrAC 
concentrations greater than 10 μM; hence, this concentration was used 
for further inhibition assays. The inhibitory capability of the 10 candi-
dates was then evaluated at a concentration of 100 μM. For PhoP 
binding to DNA, ST166, ST132, and ST950 showed greater than 50% 
inhibition (Fig. 4A), ST142 showed approximately 40% inhibition, and 
ST270, ST505, ST439, ST524, and ST272 showed little to no inhibition 
(Fig. 4A). For MtrAC binding with DNA, ST166, ST132, and ST142 had 
over 50% inhibition; the other candidates showed little or no inhibition 

Fig. 2. Chemical structures of the identified top10 ranked hits from pharmacophore-based inhibitor screening.  

Fig. 3. DNA-binding properties of PhoP and MtrAC. Results of the FP experiments for DNA-binding ability of (A) PhoP and (B) MtrAC as a function of protein 
concentration. For MtrAC, the determined KD was 1.23 ± 0.26 μM. 
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(Fig. 4B). Candidates with > 50% inhibition were investigated in 
inhibitory experiments using a series of compound concentrations to 
determine the IC50 values. For PhoP binding with DNA, ST166, ST132, 
and ST950 had dose-dependent inhibition, with IC50 values of 18 ± 1.3, 
29 ± 1.6, and 88 ± 1.2 μM, respectively (Fig. 5A). Likewise, for ST166 
and ST132 against MtrAC binding with DNA, the IC50 was 24 ± 1.1 and 
48 ± 0.8 μM (Fig. 5B), respectively; the IC50 of ST950 could not be 
determined. 

5.3. MD simulations and MMPBSA-based binding free energy 

MD simulations were performed to determine binding of the inhib-
itor to the C-terminal DBD of PhoP (PhoPC). The average RMSD, RMSF, 
and Rg of PhoPC-ST166, PhoPC-ST132, and PhoPC-ST950 for all con-
formations were calculated through simulations with a duration of 
100 ns and compared with those of the control (PhoPC alone) to 
determine the stability of the complexes. The average RMSD for PhoPC 
alone was 1.35 Å, smaller than that of the PhoPC-ST166 complex 
(1.86 Å; Fig. 6A). However, the RMSD was higher for PhoPC-ST132 and 
PhoPC-ST950, equal to 2.10 and 2.81 Å, respectively. Fluctuations in 
individual residues within the simulation period are plotted in Fig. 6B. 
The residues for PhoPC and PhoPC-ST166 had similar RMSF patterns, 
but those of the PhoPC-ST132 and PhoPC-ST950 complexes differed 
greatly, suggesting that these ligands affected the stability of PhoPC and 
altered its dynamic behavior. Only the Rg for PhoPC was stable, and 
fluctuated slightly between 13.03–13.16 Å (Fig. 6C). Similarly, for 
PhoPC-ST166, Rg fluctuated slightly between 13.09–13.24 Å. By 

contrast, Rg fluctuated substantially for the PhoPC-ST132 and PhoPC- 
ST950 complexes between 12.93–13.31 and 13.03–13.50 Å, respec-
tively. In addition, ligand RMSD revealed the stable binding of ST166 to 
the target proteins (Fig. 6D). Moreover, the average free energy of 
PhoPC binding for each protein-ligand complex was determined using 
the MM-PBSA method as − 13.9, 6.5, and 3.7 kcal/mol for ST166, 
ST132, and ST950, respectively (Fig. 6E). Hence, ST166 formed a 
thermodynamically stable complex with PhoPC, whereas complexes 
with ST132 and ST950 were less stable. 

5.4. Analyses of molecular interactions of inhibitors with PhoPC 

To better understand the molecular interactions between the iden-
tified inhibitors—ST166, ST132, and ST950— and PhoPC, structural 
analyses were performed using the non-bond interaction analysis mod-
ule in Discovery Studio 2021. The conformations of ST166, ST132, and 
ST950 in complex with PhoPC were obtained at MD simulation time 
points of 10 and 100 ns. ST166, ST132, and ST950 bound to the DNA- 
binding region of PhoPC at distinct positions and orientations by inter-
acting with functionally essential residues (Fig. 7). ST166, ST132, and 
ST950 also interacted with the DNA-binding residues of PhoPC through 
various charge–charge interactions, hydrogen bonding, and hydropho-
bic contacts (Fig. 7). At a simulation time of 10 ns, ST166 interacted 
with PhoP through seven hydrogen bonds, two charge–charge in-
teractions, and one sulfur–x interaction (Fig. 7A). At the same time 
point, ST132 was bound to PhoPC with six hydrogen bonds, two char-
ge–charge interactions, one π–anion interaction, and one hydrophobic 

Fig. 4. Inhibitory potency of the 10 best candidates against PhoP and MtrAC for DNA binding. Inhibitory ability of the 10 hits against formation of the (A) PhoP–DNA 
and (B) MtrAC-DNA complexes at 100 μM. 

Fig. 5. Inhibitory potencies of ST166, ST132, ST950, and ST142 as a function of compound concentration. (A) Dose-dependent inhibition curves of ST166, ST132, 
and ST950 against the formation of PhoP–DNA complex. (B) Dose-dependent inhibition curves of ST166, ST132, and ST142 against the formation of MtrAC- 
DNA complex. 
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contact (Fig. 7B). In contrast, ST950 interacted with PhoPC through four 
hydrogen bonds, two charge–charge interactions, and one hydrophobic 
contact (Fig. 7C). 

5.5. PhoP and MtrAC binding affinities of ST166 and ST132 

In our pharmacophore-based inhibitor screen, we identified ST166 
and ST132 as strong inhibitors of PhoP and MtrAC, respectively. To 
confirm the interactions of these inhibitors with MtrAC and PhoP, their 
binding affinities were investigated by LSPR. First, the binding of MtrAC 
to DNA was verified; the determined KD value was 1.4 ± 0.3 μM 
(Fig. 8A). The binding of ST132 to MtrAC was investigated at ST132 
concentrations of 12.5, 25, and 50 μM. The Kon and Koff rates were 
determined to be 3.2 × 103 ± 5.2 × 102 (M− 1 s− 1) and 2.7 × 10− 2 

± 7.5 × 10− 4 (s− 1), individually, which reveals an interaction between 
ST132 and MtrAC using a slow-on-slow-off binding mechanism (KD =
8.5 ± 0.8 μM; Fig. 8B). The inhibitor ST166 was also tested at concen-
trations of 12.5, 25, and 50 μM in the LSPR experiments. The result 
showed that The SPR signal increased as the concentration of ST166 
increased, thereby indicating its binding to MtrAC. The resultant Kon and 
Koff rates were determined to be 2.9 × 103 ± 1.3 × 102 (M− 1 s− 1) and 
1.6 × 10− 2 ± 1.7 × 10− 4(s− 1), respectively. The sensorgrams indicated 
slow association and slow dissociation for the binding of ST166 with 

MtrAC, resulting in a KD value of 5.6 ± 1.2 μM (Fig. 8C). For PhoP, the 
inhibitor ST132 was assessed at concentrations of 12.5, 25, 50 100 and 
150 μM (Fig. 8E). The determined Kon was 5.3 × 103 ± 5.1 × 102 (M− 1 

s− 1), and the Koff rate was 7.7 × 10− 2 ± 3.1 × 10− 3 (s− 1), thereby 
resulting in a KD of 14.5 ± 0.1 μM. For ST166 binding with PhoP, slow 
association and dissociation were again observed, with KD = 18.4 
± 4.3 μM (Kon = 24.6 × 102 ± 1.1 × 103 (M− 1 s− 1) and Koff 
= 4.5 × 10− 3 ± 1.4 * 10− 5 (s− 1) (Fig. 8F). 

5.6. Antibacterial activity and cytotoxicity of ST166 

The biological activity of ST166 toward M. marinum was assessed to 
determine its MIC. ST166 inhibited the growth of M. marinum with an 
MIC of greater than 128 µg/ml (254 μM) (Figure S3A). For comparison, 
established drugs, such as ciprofloxacin and rifampicin, have MIC values 
of 8 and 2 µg/ml (24.1 and 2.43 µM), respectively (Figure S3B). The 
safety profile of ST166 as a drug for the treatment of Mycobacterium 
species infection was investigated. OECM-1 oral cancer cells were 
treated with 0, 2 50, 100, 127, or 254 μM ST166 for 0, 2, or 4 d. 
Treatment with ST166 for 4 d did not significantly affect the cells’ 
viability when the ST166 concentration was 50 or 100 μM but resulted 
in decreased cell viability after 4 d when the ST166 concentration was 
127 or 254 μM (viability of 59.8% and 32.5%, respectively; Fig. 9). 

Fig. 6. Stability parameters obtained from the MD simulation analysis and binding free energy. (A) RMSD of protein-ligand complexes as a function of simulation 
time. (B) RMSF values of the PhoPC residues. (C) Rg values as a function of simulation time. (D) RMSD of ligands as a function of simulation time. (E) Free binding 
energies for each protein–inhibitor complex, obtained through MM-PBSA. 
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Fig. 7. Molecular interactions of ST166, ST132, and ST950 with PhoPC. Molecular interactions of (A) ST166, (B) ST132, and (C) ST950 with PhoPC from MD 
simulations at the 10 ns time point and the corresponding interactions for (D) ST166, (E) ST132, and (F) ST950 at the 100 ns time point. In all three-dimensional 
structural plots, ST166, ST132, and ST950 are presented as sticks (gray); PhoPC is shown as ribbons (light blue and pink); and interactive residues are displayed as 
white sticks and labeled. In all two-dimensional schematic plots, the chemical structures of the inhibitors are black, the interactive residues of PhoPC are labeled, and 
the cyan, orange, magenta, green, and red dashed lines indicate hydrogen bonding, hydrophobic interactions, charge–charge interactions, carbon hydrogen bonds, 
and sulfur–x interactions, respectively. 

Fig. 8. SPR sensorgrams of ST166 and ST132 binding with PhoP and MtrAC. Binding affinity of (A) MtrAC to DNA (KD = 1.4 ± 0.3 μM), (B) ST132 to MtrAC (KD =
8.5 ± 0.8 μM), (C) ST166 to MtrAC (KD = 5.6 ± 1.2 μM), (D) ST166 to MtrAC-R175AR202A (KD = 34.2 ± 3.7 μM), (E) ST132 to PhoP (KD = 14.5 ± 0.1 μM), and (F) 
ST166 to PhoP (KD = 18.4 ± 4.3 μM). 
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These results revealed the cytotoxicity of ST166 in mammalian cells. 

6. Discussion 

Antibiotic resistance in pathogenic bacteria [57] is a global health 
concern, especially with the rise of MDR strains including Mycobacterium 
tuberculosis (Mtb)[58–60]. Novel strategies to combat this are necessary, 
such as disrupting bacterial TCSs to reduce biofilm formation, virulence, 
and antibiotic resistance [77–84]. The development of HK inhibitors has 
been hindered by their poor bioavailability due to their hydrophobic 
properties[61–63]. Some inhibitors lack selectivity [64,65] and influ-
ence protein aggregation instead of HK inhibition[66]. Targeting the RR 
is preferable because it can directly interfere with bacterial gene 
expression and behavior[67]. The RRs MtrA and PhoP mainly control 
the virulence and antibiotic resistance of Mtb [32,68,69], and their 
simultaneous disruption can compromise the multidrug resistance of 
Mtb. In this study, we aimed to develop potent inhibitors concurrently 
targeting PhoP and MtrA of Mtb, and attempted to achieve this by 
employing CADD coupled with biochemical and biophysical 
examinations. 

Inhibition of the C-terminal DBD of RRs is a practical strategy for 
disrupting RR–DNA complex formation because DBDs have well-defined 
binding sites that can be targeted by small molecules. Pharmacophore 
modeling is a powerful tool for exploring the functional requirements of 
receptor–ligand interactions, with specific applications in protein–small 
molecule and protein–protein complexes[70]. Construction of a phar-
macophore model of the essential features of ligand binding to the target 
protein enabled the identification of potential inhibitors through virtual 
high-throughput screening. We utilized pharmacophore approaches to 
explore the bioactive pharmacophore scaffold of the PhoP–DNA com-
plex and applied it to screen potential inhibitors. We rationally gener-
ated pharmacophore feature clusters Phar-PL and Phar-PR based on the 
left and right structural moieties, respectively (Fig. 1). Despite identical 
PhoP moieties in the left and right parts of the PhoP–DNA complex, the 
numbers and chemical properties of the pharmacophore features in 
Phar-PL and Phar-PR differ. This could be due to the distinct molecular 
interactions between PhoP and the asymmetrical DNA sequence 
(3′-ATCTACGACACTTAGTCGACACTTAG-5′). Moreover, the novel 
pharmacophore scaffold with four negatively charged groups (n1–n4), 
Phar-PR-n4, strongly contributed to PhoP-targeting DNA via electro-
static interactions. ST166, ST132, and ST950 were identified by 
ligand-pharmacophore mapping and were found to favorably match 
Phar-PR-n4 (Figure S2). Other candidates (ST270, ST505, ST439, and 
ST142) were aligned with only two or even one negatively charged 
feature (ST142, ST524, and ST272), thereby resulting in less favorable 
poses and lower fit values (Figure S2). Functionally, ST166 had the 
highest potency against formation of the PhoP–DNA complex (IC50 = 18 

± 1.3 µM), followed by ST132 with moderate inhibition (IC50 = 29 
± 1.6 µM) and ST950 with minor potency (IC50 = 88 ± 1.2 µM). These 
observations corroborated the ligand-pharmacophore mapping fitness 
results of ST166 (fit value = 4.50), ST132 (fit value = 4.36), and ST950 
(fit value = 3.71; Figure S2). These findings confirmed the utility and 
reliability of the pharmacophore model Phar-PR-n4 for screening tar-
geted inhibitors of PhoP–DNA complex formation. 

To gain insight into the binding dynamics of PhoPC with the in-
hibitors ST132, ST166, and ST950, we performed 100-ns MD simula-
tions to assess the stability of the complexes in terms of the key metrics 
RMSD, RMSF, and Rg (Fig. 6) in comparison with a control (PhoPC 
alone). The average RMSD for PhoPC alone was 1.35 Å; that for the 
PhoPC-ST166 complex was slightly greater (1.86 Å), and those for the 
PhoPC-ST132 and PhoPC-ST950 indicated greater deviations (Fig. 6A). 
This suggests that the inhibitors ST132 and ST950 reduce the stability 
and alter the dynamic behavior of PhoPC. The RMSF patterns of PhoPC 
and PhoPC-ST166 residues were highly similar, but those of PhoPC- 
ST132 and PhoPC-ST950 complexes differed significantly (Fig. 6B). 
Regarding the analysis of Rg, which indicates the structural stability 
during the simulation, PhoPC and PhoPC-ST166 were found to be the 
most stable, with Rg values of 13.03–13.24 Å; PhoPC-ST132 and PhoPC- 
ST950 had fluctuating Rg values of 12.93–13.31 and 13.03–13.50 Å, 
respectively (Fig. 6C). These findings implied that the introduction 
ST132 or ST950 led to pronounced changes in the overall structure and 
shape of the complex. The MM-PBSA calculations of the binding free 
energy also indicated that the PhoPC-ST166 complex was the most 
stable (− 13.9 kcal/mol vs 6.5 and 3.7 kcal/mol for ST132 and ST950, 
respectively; Fig. 6E). Thus, ST166 formed the most thermodynamically 
stable complex with PhoPC. MD simulations and binding free energy 
calculations provide a detailed understanding of the dynamic and 
thermodynamic aspects of the interactions between inhibitors and 
PhoPC, revealing the stability and behavior of these complexes for 
future drug design and experimental investigations. 

The atomic interactions of ST166, ST132, and ST950 with PhoPC 
were explored in detail using non-bonding interaction analyses. At a 
simulation time of 10 ns, ST166 was found to bind to PhoPC through 
charge–charge interactions, in which its two sulfonic groups interacted 
with residues R222 and K195 (Fig. 7A). ST166 also established a 
hydrogen-bond network with residues T235, R237, G238, and Y241, 
and the sulfonic group on its left side engaged in a π–sulfur interaction 
with residue Y241 (Fig. 7A). In addition, one sulfur atom on the tetra-
thiocane of ST166 interacted with E215 through a sulfur–x interaction, 
reinforcing the stability of the PhoPC-ST166 complex. These in-
teractions, coupled with the previously discussed hydrogen bonds and 
electrostatic interactions, underscore the structural compatibility of 
ST166 with part of the DNA-binding site of PhoPC, thereby leading to 
significant inhibitory effectiveness. At a simulation time of 100 ns, a 
sulfur–x interaction and two hydrogen bonds remained, maintaining the 
interaction of ST166 with PhoPC (Fig. 7D). At the time point of 10 ns, 
non-bonding interaction analysis of ST132 revealed electrostatic in-
teractions with residues R222 and K195 through its terminal sulfonic 
groups (Fig. 7B). ST132 also formed a hydrogen-bond network with 
PhoPC through the same residues as ST166 (T235, R237, G238, and 
Y241), strengthened by hydrophobic interactions with residue R237. 
However, unlike ST166, ST132 lacked a sulfur–x interaction with E215 
(Fig. 7B). The differences in the molecular interactions of ST166 and 
ST132 with PhoPC explain the lower efficacy of ST132 against 
PhoP–DNA complex formation. As the simulation time increased to 
100 ns, residues Y241 (π–anion), S219 (hydrogen bond), and G238 
(hydrogen bond) of PhoPC remained mostly in contact and bound with 
ST132 (Fig. 7E). ST166 and ST132 have structural similarities but both 
differ considerably from ST950 (Fig. 2). Structurally, the core of ST166 
and ST132 comprises 1,2,5,6-tetrathiocane (Fig. 2). Modifying the 3 and 
8 positions of the central core with ethanesulfonates forms the chemical 
structure of ST166 (Fig. 2), whereas modification with 2- 

Fig. 9. Cell viability of OECM-1 under ST166 treatment.  
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propoxyethanesulfonate at the 3 and 8 positions forms the structure of 
ST132. The chemical structure of ST950 consists of two benzene rings 
with attached sulfonic groups connected to a central core containing a 
phenylene group connected to two oxazole rings. ST166, ST132, and 
ST950 have two sulfonic groups that resemble the functional phosphate 
groups of DNA, which electrostatically interact and bind with PhoP. 
Structurally, the sulfonic groups of ST950 interact electrostatically with 
residues R223 and K195 of PhoP. However, the hydrogen-bond network 
in ST950 was less organized and involved residues R222, G238, and 
T235 (Fig. 7C). Although R237 engaged in hydrophobic contact with 
one of the benzene rings of ST950, it did not participate in hydrogen 
bonding. Therefore, the structure of ST950 is larger and longer, and the 
interactions of ST950 with PhoP are insufficient to stabilize the whole 
complex, resulting in ST950 having a lower inhibitory potency than 
ST166 and ST132. 

Sequence alignment of the RRs revealed high similarities among 
PhoP, MtrA, PrrA, and RegX3 of Mtb (Figure S4). Specifically, the C- 
terminal DBD of PhoP had 57.9%, 59.2%, and 56.3% sequence similarity 
with MtrA, PrrA, and RegX3, respectively (Figure S4A). The DBDs of 
PhoP, MtrA, and PrrA are structurally similar (Figure S4B). This 
conserved region included essential DNA-binding residues (K195, E215, 
R222, R223, T235, and Y241) in PhoP; the corresponding residues in 
MtrA and PrrA are highlighted in Figure S4B. These observations suggest 
that ST166, ST132, and ST950 target MtrA, PrrA, and RegX3, potentially 
disrupting their DNA-binding abilities. The in vitro inhibition assay 
showed that ST166 and ST132 exhibited similar inhibitory effects on 
MtrAC and PhoP for DNA binding (Fig. 5), whereas ST950 specifically 
affected PhoP, but not MtrAC. Further investigation revealed that ST166 
inhibited MtrAC in a dose-dependent manner, with an IC50 value of 48 
± 0.8 µM. ST132 moderately inhibited MtrAC with an IC50 of 24 
± 1.1 µM. In contrast, ST166 (IC50 = 18 ± 1.3 µM) and ST132 (IC50 =

29 ± 1.6 µM) exhibited strong inhibitory effects against PhoP. To un-
derstand these variations, a detailed structural comparison was per-
formed (Figure S5). The structures of ST166 and ST132 complexed with 
PhoPC (from MD simulations) overlapped with those of MtrAC, which 
reveals differences between PhoPC-ST166 and MtrAC (Figure S5A–C). 
Specifically, E215 of PhoPC forms a sulfur–x interaction with the middle 
ring of ST166, whereas N195 of MtrAC interacts with the sulfur atom 
through hydrogen bonding. Additionally, R237 and G238 of PhoPC 
interacted with ST166 through hydrogen bonds, whereas the side chain 
of R219 and main chain of G220 of MtrAC did not form hydrogen bonds 
with ST166 because they were positioned farther away. In the super-
imposition of PhoPC-ST132 with MtrAC (Figure S5D–F), the interactions 
observed between ST132 and R237 and G238 in PhoPC were lost 
because ST132 came into proximity with the corresponding residues 
R219 and G220 of MtrAC. These variations in the molecular interactions 
of ST166 and ST132 with PhoPC and MtrAC accounted for their distinct 
inhibitory potencies. To confirm the proposed binding sites of ST166 
and ST132, we performed MtrAC mutagenesis (see Supporting Infor-
mation and Table S1). In the MtrAC-ST166 complex, residues R175 and 
R202 interacted with ST166 via hydrogen bonding (Figure S5C). To 
confirm these interactions, residues R175 and R202 were mutated to 
alanine and subjected to LSPR to evaluate changes in binding affinity. 
The results showed that ST166 exhibited weaker binding to the variant 
MtrAC-R175AR202A (KD = 34.2 ± 3⊡7 μM; Fig. 8D) compared with 
the wild type MtrAC (KD = 5.6 ± 1.2 μM). This indicates that the 
binding sites for ST166 and ST132 could be located near residues R175 
and R202 on MtrAC, consistent with our modeled protein–inhibitor 
complex structures. Moreover, the lack of inhibitory activity of ST950 
against formation of the MtrAC-DNA complex is noteworthy given that 
ST950 was the most effective in reducing PhoP–DNA complex formation 
by at least 40% when used at a concentration of 100 µM. In the PhoPC- 
ST950 complex structure, the terminal sulfonic groups of ST950 were 
anchored by residues R223 and K195, whereas the oxazole and benzene 
rings on the right side interacted with residues R222, T235, R237, and 
G238 (Figure S5G–I). However, in its interactions with MtrAC, ST950 

forms only one connection with a terminal sulfonic group tethered to 
residue R175. The differences in these interactions stem from variations 
in the side-chain residues, thereby highlighting the importance of these 
variations in the effectiveness of ST950. 

7. Conclusion 

We employed a comprehensive approach that combined 
pharmacophore-based inhibitor screening with biochemical and bio-
physical examinations to identify, characterize, and validate potential 
inhibitors targeting PhoP and MtrA in Mtb. Using the pharmacophore 
model Phar-PR-n4, we conducted ligand-pharmacophore mapping of 
68,000 compounds and identified ST166 and ST132 as promising in-
hibitors that disrupt the formation of PhoP- and MtrA-DNA complexes. 
We demonstrated that ST166 and ST132 interact with PhoP and MtrAC 
in a slow-on-slow-off manner. The modeled complex structure revealed 
that ST166 and ST132 mainly interact with the α8-helix and C-terminal 
β-hairpin of the DBD, and the conserved and functionally essential res-
idues are hotspots for further structure-based inhibitor optimization. 
Our study demonstrated the application of the protein–DNA complex 
structure to generate a pharmacophore model and the use of this model 
to discover inhibitors with high inhibitory potency and binding affinity 
that target the RRs of Mtb PhoP and MtrA. ST166, characterized by its 
terminal sulfonic and oxazole groups, showed in vitro antibacterial ac-
tivity against Macrobacterium marinum and could serve as a starting 
point for the development of new antimicrobial agents. 
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