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Abstract: Silent speech decoding (SSD), based on articulatory neuromuscular activities, has become
a prevalent task of brain–computer interfaces (BCIs) in recent years. Many works have been devoted
to decoding surface electromyography (sEMG) from articulatory neuromuscular activities. However,
restoring silent speech in tonal languages such as Mandarin Chinese is still difficult. This paper
proposes an optimized sequence-to-sequence (Seq2Seq) approach to synthesize voice from the sEMG-
based silent speech. We extract duration information to regulate the sEMG-based silent speech using
the audio length. Then, we provide a deep-learning model with an encoder–decoder structure and a
state-of-the-art vocoder to generate the audio waveform. Experiments based on six Mandarin Chinese
speakers demonstrate that the proposed model can successfully decode silent speech in Mandarin
Chinese and achieve a character error rate (CER) of 6.41% on average with human evaluation.

Keywords: silent speech; electromyography (EMG); neuromuscular signal; sequence-to-sequence
(Seq2Seq)

1. Introduction

Silent speech decoding (SSD) is one of the most popular areas of brain–computer inter-
face (BCI) research, which makes it possible for humans to interact with their surroundings
and express their inner minds without speaking words [1,2]. SSD aims at detecting bio-
logical speech-related activities (instead of acoustic data) and decoding the thoughts of
humans using physiological measurements.

Speech-related signals detected by physiological measurements are defined as biosig-
nals [3]. The typical physiological measurements are obtained by using sensors to capture
biosignals from the brain [4], e.g., electrocorticography (ECoG) [5–7] and electroencephalog-
raphy (EEG) [8,9]. However, these devices for biosignal acquisition have several disadvan-
tages. ECoG is invasive and probably has surgical complications [10]; EEG has no harmful
side effects, but the signal processing of EEG is difficult for practical use [2]. Acquisition of
neuromuscular signals is a promising way to decode speech-related activity [3].

Surface electromyography (sEMG), which is non-invasive and convenient to apply
in practical applications, can be used to acquire the control signals that are transferred
from the cortex to the facial muscles and then decode the silent speech [11]. In addition,
the neural pathways from the brain to muscle can act as primary filters and encoders [12],
and EMG has lower channel requirements [2]. Electromagnetic articulography (EMA)
sensors [13] and optical imaging of the tongue and lips [14] are also often used in SSD
to record invisible speech articulators. However, they could not work in the absence of
articulator movement.
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Existing studies on SSD can be divided into two categories: biosignal-to-text and
biosignal-to-voice [3]. The former can be regarded as a kind of classification task, while the
latter is a kind of regression task [6]. Considering that the biosignal-to-text approaches may
lose some information about the speaker’s personality and emotion during processing,
the two-step approach “biosignal-to-text-to-voice” is too time-consuming for real-time
scenarios [7]. Many works have tried to decode silent speech by reconstructing voices [3,7].
In this paper, we denote this task as sEMG-to-voice (sEMG2V). This technology has many
applications. It will not be interfered with by external noise, which makes it remain effective
in noisy environments such as factories. This technology can also help patients who are no
longer able to speak due to surgical removal of their larynx due to trauma or diseases [1,15–17].
In addition, this mode is more concealed and cannot be observed through lip language
analysis and other means, which offers more privacy protection.

The existing methods of sEMG2V in a tonal language have the following problems:
Research on SSD is mainly concentrated in non-tonal languages such as English [15,16]

while SSD approaches for tonal languages are limited to solving the tasks of classification [2,18,19].
Different from non-tonal languages, the pitches, called tones in tonal languages, carry more
lexical or grammatical information to distinguish one word from another [20–23]. It has
been shown that tones carry no less information than vowels in Mandarin Chinese [24].
The distinctive tonal patterns of language are called tonemes [25,26] to distinguish them
from phonemes. There are five tones in Mandarin Chinese, which are transcribed by letters
with diacritics over vowels [27]: high level tone (first tone) such as /bā/ (eight), rising
tone (second tone) such as /bá/ (to pull), dipping tone (third tone) such as /bǎ/ (to hold),
high-falling tone (fourth tone) such as /bà/ (father), and neutral tone (fifth tone) such as
/ba/ (an interrogative particle). The total number of tonemes, including toned vowels
and consonants, is 139 in Mandarin Chinese [28], while the total number of phonemes
in English, which is a non-tonal language, is 44 [29]. With the same number of datasets,
Mandarin contains a larger dimension of information than English and is more difficult
to decode. One study recognizes 10 Chinese words in silent speech with an accuracy of
90% [2]. To our knowledge, there is little work studying sEMG2V in tonal languages.

In addition, the sEMG-based silent speech has no time-aligned parallel audio. To pro-
vide time-aligned parallel information, dynamic time warping (DTW) [30] can be applied
to obtain alignments between silent and vocal speech [15]. Recently, Gaddy and Klein [16]
utilized predicted audio for DTW to achieve alignments, extract audio features in parallel,
and obtain a word error rate (WER) of 68.0% in the sEMG-based silent speech. The accuracy
can still be improved by finding a better approach for providing corresponding audios.

In order to address these limitations of existing sEMG2V methods in a tonal language,
this paper proposes a novel approach based on a sequence-to-sequence (Seq2Seq) model,
inspired by the tremendous success of the Seq2Seq model in text-to-speech (TTS) and
voice conversion (VC) [31–34]. This technology can help solve the unparallel information
between silent speech and audio. We utilize a length regulator [32] for the sEMG2V to
obtain audio signals. The key contributions of this paper are summarized as follows:

1. The paper proposes a Seq2Seq model, the first attempt to introduce a Seq2Seq model
into the sEMG2V task. The model extracts duration information from the alignment
between sEMG-based silent speech and vocal speech. The lengths of input sequences
are adjusted to match the size of output sequences. Thus, our model can generate
audios from neuromuscular activities using the Seq2Seq model.

2. The model in the paper generates audios from sEMG-based silent speech by considering
both vocal sEMG reconstruction loss and toneme classification loss, and uses a state-of-
the-art vocoder to achieve better quality and higher accuracy of the reconstructed audios.

3. We collect an sEMG-based silent speech dataset with Mandarin Chinese and con-
duct extensive experiments to demonstrate that the proposed model can decode
neuromuscular signals in silent speech successfully in the tonal language.
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2. Data Acquisition
2.1. Recording Information

The signal from facial skin is collected by a multi-channel sEMG data recording system
using standard wet surface Ag/AgCl electrodes, as described in [2]. Meanwhile, we use
a headset microphone to record audio. The views of the electrodes around the face are
shown in Figure 1, and the electrode positions are shown in Table 1. The electrode positions
are highly correlated with vocalizing muscles and have different meanings in speech
production [19]. In our case, channel 1 is differential electrodes, and the others are single
electrodes. The differential electrodes can improve the common-mode rejection ratio and
improve the quality of signal [18].

Table 1. Electrode Location Details.

Electrode Index Position

1 1 cm right from the nose

2 1 cm right from corners of the mouth

3 1 cm left from the nose

4 left corner of chin

5 4 cm behind the chin

4

5

2

13

5

refbias

(a)

1

2
5

ref

(b)

34

bias

(c)

Figure 1. Three views of electrode distribution around the face and neck. (a) Main view, (b) right
view, (c) left view.

2.2. Dataset Information

We collect the data from six native Mandarin-speaking healthy young Chinese adults
with normal vision and oral expression skills. The average age of the six participants is 25.
The participants are asked to clean their face before the experiment and sit still wearing
electrodes and a microphone. They are trained to press the start button, read the sentences
shown on the computer screen in vocal and silent mode, and press the end button. In silent
mode, the participants are trained to imagine speaking sentences displayed on the computer
screen as [2] shows and slight muscle motion is allowed. The dataset includes the pair of
simultaneously recorded vocal sEMG (sEMGv) and audio signal (Audiov), and silent sEMG
data (namely, sEMGs). The vocal mode is recorded once, while the silent mode is repeated
five times. Each recording uses phonetically balanced utterances from a Chinese corpus
called AISHELL3 [35]. There are a total of 2260 words and 1373 characters in this dataset.
The dataset includes six speakers, and each of them has at least 0.73 h of silent speech data,
leading to 5.79 h in total. The dataset of each speaker is split into a training, validation,
and testing set, with a ratio of 8:1:1 according to the number of silent utterances from each
speaker, ensuring that they are phonetically balanced. Table 2 gives some statistics of each
speaker. In the following, the collected dataset is denoted as sEMG_Mandarin.
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Table 2. Statistics of the sEMG_Mandarin Dataset.

Speaker
Id Sex

Silent Speech Time (Min) Number of Utterances

Train Val Test Train Val Test

1 f 52.59 6.68 6.49 680 85 85
2 m 52.65 6.70 6.26 516 64 64
3 f 56.60 7.11 6.99 716 89 89
4 m 40.77 5.11 5.01 800 100 100
5 m 40.49 5.06 5.09 600 75 75
6 m 34.85 4.29 4.40 600 75 75

Total 277.95 34.95 34.25 3912 488 488

2.3. Signal Conditioning

The experimental system captures five channels of the sEMG with a sampling fre-
quency of 2000 Hz. A Butterworth bandpass filter (4∼400 Hz) is applied to remove the offset
and high frequency of the signal. A self-tuning notch filter is used to remove the power
frequency of 50 Hz and its harmonics [36]. Audio is recorded with a sampling frequency of
16 kHz. One example of the collected signals with the audio and their five-channel sEMG
signals is presented in Figure 2 and color is used to distinguish the 5 channels.
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Figure 2. Time–series plots of the audio waveform and neuromuscular signal from Spk-3 with
vocal mode and silent mode for the Chinese sentence “tui4 yi4 yun4 dong4 yuan2 you3 shen2 me5”.
The audio and neuromuscular signal of the same mode are collected time-synchronized.

2.4. Feature Extraction

To extract the feature of sEMG, we use time-domain (TD) features and time-frequency
domain features from the amplitude of short-time Fourier transform (STFT), with a 64 ms
Hanning window and 16 ms hop length [2,16]. Six TD features are calculated from one
frame following [37]. Finally, 5 × 6-dimensional TD features and 5 × 65-dimensional STFT
features are extracted and concentrated, i.e., 355-dimensional features are used as input to
our model.

To maintain the alignment with sEMG, we extract an 80-dimensional mel-spectrogram
with the band-limited frequency range (80∼7600 Hz) from Audiov, in which the window
length is 1024 points and the hop length is 256 points [38].

3. The Proposed Methods
3.1. Overview

In order to distinguish between two kinds of sEMG modes, X1:N represents sEMGs
features while x1:M represents sEMGv features. Additionally, Y1:M represents the mel-
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spectrograms from Audiov. The target task, i.e., the goal of the sEMG2V, is essentially to
transform an N-length time-series sequence X1:N into an M-length sequence Y1:M. Note
that the length M of the target sequence Y1:M is unknown and depends on the source
sequence itself.

To fulfill this task, we design a novel sEMG2V model, called Silent Speech Reconstruction
Network (SSRNet in short), see Figure 3. SSRNet generates the mel-spectrograms Y1:M
directly from the features of sEMGs X1:N . Moreover, SSRNet resamples the input sequence
according to the duration sequence d1:N (i.e., X1:N [i], the index i of XN corresponds to
[Y1:M[j], · · · , Y1:M[j + p− 1]] of YM, where p is the duration of X1:N [i], called d1:N [i]) which
is calculated from the alignment between sEMGs and Audiov. Finally, SSRNet transfers the
predicted mel-spectrograms Ŷ+

1:M to the audio waveform by a pre-trained vocoder.

Length 

Regulator

Vocoder

Toneme

Classification 

Duration 

Predictor 

Source Encoder

 !"#$

Reconstruction

Source Encoder
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Stage
Inference
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Figure 3. The overview of the training and inference stages in the SSRNet model. Blue and green
blocks represent the feature transformation and joint optimization of the training module, respectively.
Yellow blocks represent the non-trainable module, using a pre-trained model to predict the mel-
spectrograms without the joint optimization part. We will detail the duration predictor in Section 3.3,
and then detail the sEMGv reconstruction module and the toneme classification module in Section 3.4.

The procedure mentioned above can be formally described as follows:

h1:N = Encoder(X1:N) (1)

where h1:N is the hidden representations produced by the source encoder.

h1:M = LengthRegulator (h1:N , d1:N) (2)

where h1:M is generated from h1:N by the length regulator, note that M = ∑N
i=1 d1:N [i] and

d1:N is the ground-truth duration (GT duration) after the alignment.

Ŷ+
1:M = Decoder(h1:M) (3)
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where Ŷ+
1:M is the mel-spectrograms predicted by the decoder.

Audio = Vocoder
(
Ŷ+

1:M
)
. (4)

In the inference stage, we use modules of the feature transformation and the duration
predicted by the duration predictor instead of the GT duration. The inference stage is
also illustrated in Figure 3, h1:m is the same as h1:M; d̂1:N is the predicted duration by the
duration predictor; and Ŷ+

1:m represent the mel-spectrograms predicted in the inference
module, where m = ∑N

i=1 d̂1:N [i].

3.2. Feature Transformation

The feature transformation module aims to transform the sEMG features to audio
features by the length regulator using GT duration. The architecture for the feature trans-
formation in SSRNet includes an encoder, a length regulator, and a decoder. The main
structure of SSRNet is called the feed-forward transformer (FFT) [39], which consists of
self-attention in transformer and 1D convolution layers. The FFT aims at exploring the
relationship between X1:N and Y1:M at different positions. This module follows the setting
in [32].

The source encoder block, illustrated in Figure 4a, uses a fully connected layer with
rectified linear unit (ReLU) activation to convert multi-dimension features of the sEMG
to match the FFT hidden size [40]. The positional encoding is introduced to concatenate
with the output of the linear layer in order to highlight the position of the frame in X1:N .
After that, SSRNet uses a multiple FFT structure (shown as gray blocks in Figure 4a,c) with
multi-head attention and a two-layer 1D convolutional network.

Positional Encoding

+

Linear
Layer
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Dropout

Relu

Layer
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Add & 
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 !:"
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(a)

 !:"

 !:#

[2,0,2,1]
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(b)
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+ Add & 
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Add & 
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Attention
Conv

Layer
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Layer

+

 !:" #$!:"
% #$!:"

&

(c)

Figure 4. Illustrations of model details about the source encoder, length regulator, and the target
decoder. Ŷ+

1:M and Ŷ−1:M are the mel-spectrograms predicted before and after the postnet. The gray
blocks represent the FFT module. (a) Source encoder, (b) length regulator, (c) target decoder.

SSRNet applies a length regulator to adjust the length of output hidden represen-
tations of the source encoder block to match the output features. Figure 4b depicts the
length regulator where the length of the input is four, while the length of the output is
five. The length of the regulated sequence is adjusted to five by the GT duration d1:N .
The duration from the alignment between X1:N and x1:M is denoted as the GT duration
which will be detailed in Section 3.3. Note that d1:N is only used in the training procedure.
In the inference procedure, we use the output d̂1:N from the duration predictor as duration
to regulate.

The FFT layer used by the target decoder block is the same as the source encoder.
As illustrated in Figure 4c, the output hidden representations after FFT blocks are passed
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through the linear layer. Mel-spectrograms predicted after the linear layer are Ŷ−1:M. SSRNet
further uses convolutional layers called postnet to calculate the residual of the predicted
mel-spectrograms, which is used to improve the reconstruction ability of the model [41].
Ŷ+

1:M is the sum of Ŷ−1:M and the residual mel-spectrograms.
In the feature transformation, SSRNet uses the mean absolute deviations error (MAE)

as the loss function. To be more specific, we minimize the summed MAE of between Ŷ+
1:M

and Y1:M, and between Ŷ−1:M and Y1:M.

3.3. Duration Extractor

Given the synchronization between X1:N and x1:M, the duration extractor uses dy-
namic programming to achieve pair positions between N-length X1:N and M-length
x1:M [16,42]. The cost function is defined as follows:

‖X1:N [i]− x1:M[j]‖, 1 ≤ i ≤ N, 1 ≤ j ≤ M. (5)

In addition, similar to the predicted audio refinement [16], the model without the
length regulator obtains N-length predicted audio features Ŷ+∗

1:N during the training proce-
dure. As illustrated in Figure 5, the new cost function for DTW in this method is shown as
follows:

‖X1:N [i]− x1:M[j]‖+ λalign
∥∥Ŷ+∗

1:N [i]−Y1:M[j]
∥∥ (6)

where λalign is the weight of audio alignments.

MSE 

Loss

Source

Encoder

Conv

Layer

Linear

Layer

Duration 

Extraction

Duration Predictor

Target

Decoder

 !:"

+

DTW

# !:"

$!:"

%!:&'( )*+ features Predicted '( )*+ features 

without length regulator ,%!:"
-.

/0123 features 4!:"5!:&/012+ features /012 feat 4/012 feat

Figure 5. Illustration of duration extraction and predictor. The gray block represents the duration
predictor.

Instead of achieving a warped audio sequence from pairs, the proposed SSRNet model
calculates the duration sequence from the pairs as follows:

d1:N [i] =
M

∑
j=1

(A1:M[j] == i) (7)

where A1:M is the length of M sequence which represents whether the index i of the input
features is corresponding to the index j of the output features.

The duration predictor aims at predicting the length of audio features corresponding to
each frame of sEMG features. The duration extractor is based on the DTW algorithms [30].
SSRNet trains a duration predictor (i.e., convolutional layers and a linear layer) and uses
mean square error (MSE) to calculate the loss between GT duration d1:N and the predicted
duration d̂1:N .

3.4. Joint Optimization with Toneme Prediction and Vocal sEMG Reconstuction

The module of joint optimization with toneme prediction and vocal sEMG reconstruc-
tion aims at improving the model performance. SSRNet employs the pre-trained Mandarin
model from Montreal Forced Aligner (MFA) to obtain the toneme alignment tm1:M of the
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audio [43,44]. The set of tonemes for Mandarin is created by GlobalPhone [28] by splitting
into onset, nucleus (any vowel sequence), and codas, and then associating the tone of
the syllable onto the nucleus (i.e., /teng2/ is split as /t e2 ng/). In Figure 6, the hidden
representations pass to a linear layer to predict a sequence (including silent frames) t̂m1:M,
and SSRNet uses the cross-entropy (CE) to measure the loss between the target and the
output. The purpose of the module is to conserve information of the target context.

Linear

Layer-1

Linear

Layer-2

Montreal

Forced 

Alignment

CE

Loss  !":#
$ !":#

MSE 

Loss%&":# &":#

'":#

()*+,-

…

t ui4 e5

Figure 6. Detail of joint optimization. tm1:M is the tonemes with tones from MFA while t̂m1:M is the
tonemes predicted after the linear layer. x1:M is the sEMGv while x̂1:M is the sEMGv reconstructed
from the linear layer.

In addition, another linear layer at the same position in Figure 6 is used to restore the
hidden representation to the sEMGv for the stable training procedure.

During the inference stage, the joint optimization module is discarded. The joint loss
function of the proposed SSRNet model is formulated as follows:

LSSRNet = MAE(Ŷ+
1:M, Y1:M)

+ MAE(Ŷ−1:M, Y1:M)

+ MSE(d̂1:N , d1:N)

+ λtmCE( ˆtm1:M, tm1:M)

+ λrecons MSE(x̂1:M, x1:M)

(8)

where λtm controls the toneme classification loss and λrecons controls the sEMGv reconstruc-
tion loss.

3.5. Vocoder

This paper utilizes Parallel WaveGAN (PWG) as the final synthesizer of desired audible
speech [38]. This vocoder is an upgraded non-autoregressive version of the WaveNet
model [45]. Unlike some previous non-autoregressive methods such as [46–48], PWG gets
rid of the teacher–student framework, which significantly facilitates our training process
and speeds up in the inference stage.

To synthesize natural Audiov, PWG requires an input of auxiliary features, which
is Y1:M for training and Ŷ1:M for inference. The model consists of a non-autoregressive
WaveNet generator and a discriminator with non-causal dilated convolution. Instead of
the traditional sequential teacher–student framework, PWG has a structure of a generative
adversarial network (GAN) and jointly optimizes adversarial function loss Ladv and the
auxiliary loss Laux of multi-resolution STFT loss [45]. The loss function of the multi-tasking
generator is defined as:

LG(G, D) = λadvLadv(G, D)

+ Ev∼pdata ,zLaux(v, v̂)
(9)

where v is the original audio while v̂ = G(z, Y1:M) is the predicted audio, pdata represents
the distribution of ground-truth waveform data, z represents our injected Gaussian noise,
and λadv is a tunable parameter to balance the performance between tasks.
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On the other hand, loss equation of the discriminator defined below aims at strength-
ening its ability to tell the generated waveforms from the ground-truth:

LD(G, D) = Ev∼pdata

[
(1− D(v))2

]
+ Ez

[
D(G(z, Y1:M))2

]
.

(10)

The block diagram of PWG is shown in Figure 7. The generator and discriminator
are optimized according to a certain strategy during the training stage, and the trained
generator is further used in the inference stage to produce the final results of the SSRNet.

WaveNet

Generator (G)
Discriminator (D)

auxiliary

audible features
white noise

z

Multi-

resolution

STFT Loss

Avg.

0/1

Discriminator

Loss

Adversarial

Loss

 

!"

+

#$%&!$%&

!$'(

!)
Upstream Module

Training Module

Training & Inference

Module

Gradient Feedback

origin waveform

synthesized waveform

Y
1:M

* 

Feature Extraction

Figure 7. The framework of PWG. Orange blocks represent the training module, while red blocks
represent both the training and inference modules. Dotted lines mean gradient feedback.

4. Experiments and Results
4.1. Experimental Setting

In the training stage of the SSRNet, the batch size is set to 8 utterances. In addition,
the dropout rate for encoder and decoder is set to 0.1 and for postnet it is set to 0.5.
The detailed settings of SSRNet are shown in Table 3. The Adam optimization algorithm is
used to optimize trainable parameters. The Noam learning rate (LR) scheduler is used in
the training procedure as follows [39]:

lr = d−0.5
model ∗min(step−0.5, step ∗ step−1.5

w ) (11)

where stepw is set to 4000, dmodel is set to 384, and step denotes the number of the training
steps. These parameter values are chosen based on [39]. Furthermore, λalign in Equation (6)
is set to 10, λtm and λrecons in Equation (8) are both set to 0.5. The GT duration of the
training set is calculated as Equations (5) and (7) before training. The model uses this initial
GT duration to calculate the loss in the first four epochs. In the training stage, the GT
duration is updated every five epochs by Equations (6) and (7). The implementation of
the SSRNet model is based on the ESPNET toolkit (https://github.com/espnet/espnet,
accessed on 22 March 2022) [49].

https://github.com/espnet/espnet
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Table 3. Hyper-parameters of SSRNet.

Item Details

attention transformation dimensions 384

heads for multi-head attention 4

source encoder FFT layers 6
hidden units 1536

target decoder FFT layers 6
hidden units 1536

postnet
layers 5

filter channels 256
filter size 5

duration predictor
layers 2

filter channels 384
kernel size 3

For the vocoder, PWG is pre-trained within Audiov of multi-speakers in the training set.
In the first 100 K steps of the training stage, the discriminator parameters are fixed, and only
the generator is trained on the first stage. After that, the two modules are jointly trained
until 400 K steps to further build the synthesis quality. Our experiment is based on the
implementation of PWG (https://github.com/kan-bayashi/ParallelWaveGAN, accessed
on 22 March 2022). The detailed settings of PWG are shown in Table 4.

Table 4. Hyper-parameters of PWG.

Item Objects and/or Details

λadv 4
filter size 3
batch size 6

training audio length 16,384 (1.024 s)
WaveNet generator 30-layer dilated residual convolution

discriminator 10-layer dilated residual convolution

learning rate generator 1 × 10−4

discriminator 5 × 10−5

training steps generator-only 1 × 106

jointly 4 × 106

channel size skip channels 64
residual channels 64

optimizer RAdam optimizer ε = 1 × 10−6

activation function Leaky ReLU α = 0.2

The previous work proposed by Gaddy and Klevin [16] is considered as the baseline
model. The training parameters of the baseline model are consistent with those reported
in [16]. The training, validation, and testing data used are the same as those used in the
SSRNet model. Moreover, we employ the pre-trained PWG instead of WaveNet as the
vocoder in baseline to deal with the limitation of inference speed [38]. We train the SSRNet
and baseline separately for each participant.

https://github.com/kan-bayashi/ParallelWaveGAN
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4.2. Model Performance on the sEMG_Mandarin Dataset
4.2.1. Objective Evaluation

The objective evaluation is about the quality and accuracy of reconstructed voices.
For the objective accuracy evaluation, this paper employs an automatic speech recognition
(ASR), called Mandarin ASR (MASR) (https://github.com/nobody132/masr, accessed on
22 March 2022), as a metric. MASR uses the character error rate (CER) with the Levenshtein
distance to measure the accuracy between the predicted text and the original text [50]. Note
that CER ranges from 0 to +∞. CER can become infinite because the ASR can insert an
arbitrary number of words [51]. In the experiments, CER based on ASR for each epoch is
calculated on the validation set by the model, and parameters of the best CER epoch are
selected as the best-performing final model.

It is observed in Figure 8 that the proposed method SSRNet outperforms the baseline
significantly for all six speakers. The SSRNet obtains an average CER of 21.99% in ASR with
a standard deviation of 4.99% across six speakers. In addition, the SSRNet outperforms the
baseline by 24.63%. Meanwhile, the ground-truth voices from the testing set achieve a CER
of 11.30%. This verifies that SSRNet generates more intelligible voices. This occurs because
SSRNet calculates the duration of the silent speech, regulates the silent sEMG following
audio length, and uses a multi-task learning strategy to improve results. Additionally,
the results across speakers differ, among which the worst accuracy is achieved on Spk-4
with a CER of 27.20% and Spk-5 with a CER of 27.34%; the best accuracy is achieved on
Spk-1 with a CER of 13.62%. By studying the two speaker cases with the worst accuracy,
we find that the ground-truth voices of Spk-4, which performs poorly on ASR, can cause
low accuracy. At the same time, higher impedance resulting in a lower signal-to-noise ratio
during the experiment leads to the wrong result on Spk-5.
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Figure 8. Objective accuracy comparison between the ground-truth voices, reconstructed voices from
the baseline, and SSRNet.

For the objective quality evaluation, we use mel-cepstral distortion (MCD) (https:
//github.com/mpariente/pystoi, accessed on 22 March 2022) [52] and short-term objec-
tive intelligibility (STOI) (https://github.com/ttslr/python-MCD, accessed on 22 March
2022) [53]. The lower MCD indicates a higher similarity between the synthesized and the
natural mel-cepstral sequences. Meanwhile, the higher STOI reflects higher intelligibility
and better clarity of the speech.

Figure 9 summarizes the MCD and STOI evaluation. It is observed that the SSRNet
model consistently performs better than the baseline model for both quality and intelligibil-
ity. The reason is that the length of reconstructed voice in the baseline is consistent with
silent speech and impaired. As a comparison, SSRNet firstly provides length-regulated
voices, which are more similar to the ground-truth voices.

https://github.com/nobody132/masr
https://github.com/mpariente/pystoi
https://github.com/mpariente/pystoi
https://github.com/ttslr/python-MCD
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Figure 9. Objective quality comparison between reconstructed voices from the baseline and SSRNet.

4.2.2. Subjective Evaluation

We use subjective evaluation based on the transcriptions from 10 native Mandarin
Chinese human listeners. The average age of the ten listeners is 24. These listeners have no
prior knowledge of the context of the voices. They are required to listen to the voices with
earphones in a quiet environment. Each listener is required to listen to 60 sample voices
from 6 speakers, randomly selected from SSRNet and baseline testing set. They are asked
to transcribe the audios into text in Mandarin Chinese and give a score of the naturalness
of each speaker ranging from 0 to 100 (0 for the worst naturalness while 100 for the best).

The reconstructed samples can be found on our website (https://irislhy.github.io/,
accessed on 22 May 2022).

The results of human evaluation of six speakers’ samples are shown in Table 5 and
± indicates the standard deviation of the metrics across the evaluation of the listeners.
The results of the subjective evaluation are consistent with the objective evaluation. SSRNet
obtains an average CER of 6.41%, while the baseline obtains an average CER of 39.76% in
subjective evaluation. Additionally, the naturalness scores from listeners are consistent
with the objective evaluation results. Our exploratory analysis shows that the proposed
SSRNet outperforms the baseline in human intelligibility and naturalness.

Table 5. Subjective Comparison between Reconstructed Voices from the Baseline and SSRNet.

Spk-1 Spk-2 Spk-3 Spk-4 Spk-5 Spk-6

Baseline CER (%) 55.06 ± 41.62 17.72 ± 13.96 23.00 ± 2.71 53.37 ± 6.67 26.37 ± 21.18 63.05 ± 27.00
SSRNet CER (%) 1.70 ± 3.4 1.19 ± 1.46 2.31 ± 2.37 8.92 ± 5.77 20.67 ± 5.69 3.69 ± 3.05

Baseline Naturalness 44 ± 16 50 ± 14 51 ± 17 39 ± 13 51 ± 20 41 ± 18
SSRNet Naturalness 95 ± 7 71 ± 17 89 ± 5 64 ± 10 58 ± 11 77 ± 16

4.2.3. Mel-Spectrogram Comparison

Figure 10 depicts mel-spectrograms of one example from the testing set of Spk-3.
We have three observations: (1) The mel-spectrograms synthesized by SSRNet are closer
to the ground-truth one and have a similar length. This is because the length regulator
resamples the length of the output frames. Based on this, SSRNet deals with the lack of
time-aligned data of vocal and silent speech, and generates more natural sounds. (2) The
white box indicates a slight blurring of the pronunciation of /ye3/ in SSRNet compared to
the ground-truth pronunciation, but listeners and ASR can understand it. (3) The yellow
boxes indicate four examples of errors for the baseline that some listeners and ASR have
difficulty understanding, and the voice synthesized from the baseline is not clear overall.

https://irislhy.github.io/
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Figure 10. Mel-spectrogram visualizations of (a) ground-truth voice, (b) voice reconstructed by
SSRNet, (c) voice reconstructed by the baseline.

In conclusion, the experiments demonstrate that SSRNet provides a solution to narrow
the gap between the reconstructed and natural voices.

4.3. Ablation Study

Next, we conduct ablation studies to gauge the effectiveness of every extension in
SSRNet, including joint optimization, model prediction alignments, and tone evaluation.
Due to the consistency between the objective and subjective evaluation, only the objective
accuracy evaluation is performed for ablation studies. Table 6 summarizes the ablation
study results of different model modules. The first row shows the settings of SSRNet, while
the final column shows the change in average CER across six speakers compared to SSRNet.

Table 6. Ablation Results from the Model Module Study.

sEMGv
Reconstruction

Module

Toneme
Classification

Module

Toneme
Classification

Module Position

Tones in Toneme
Classification

Module

Cost Function
for DTW ∆CER (%)

X (λrecons = 0.5) X (λtm = 0.5) Before Decoder X λalign = 10 +0

× (λrecons = 0) X (λtm = 0.5) Before Decoder X λalign = 10 +9.38

X (λrecons = 0.5) × (λtm = 0) - X λalign = 10 +132.75

X (λrecons = 0.5) X (λtm = 0.5) After Decoder X λalign = 10 +1.89

X (λrecons = 0.5) X (λtm = 0.5) Before Decoder × λalign = 10 +6.51

X (λrecons = 0.5) X (λtm = 0.5) Before Decoder X λalign = 0 +81.18

4.3.1. Joint Optimization

The second and third rows show the changes in consequences of removing the joint
optimization. It is observed that removing the joint optimization could lead to perfor-
mance degradation in terms of accuracy. This indicates that the toneme classification and
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the sEMGv reconstruction are practical for SSRNet. Note that the toneme classification
module contributes significantly more in SSRNet than sEMGv reconstruction. We find that
removing the toneme classification results in an absolute difference between the context
of synthesized voices and the ground-truth context. It means that in the Seq2Seq model,
the hidden representations after the length regulator have difficulty in obtaining the con-
text information of the sEMGs. As a result, joint optimization is conducive to studying
feature transformation.

4.3.2. The Position of the Toneme Classification Module

We also investigate the position of the toneme classification module by comparing
results in the fourth row with those in the first row while the position of sEMGv recon-
struction is fixed. In the fourth row of the table, the position of the toneme classification
is located after the decoder. In contrast, the position in the first row is located before the
decoder. The position before the decoder outperforms the position after the decoder by
1.89%. This implies that the position of the module in the middle layer or final layer can
both represent the source content in the sEMG2V task.

4.3.3. Tone in Toneme Classification

We also conduct the tone evaluation. We use phoneme classification instead of toneme
classification. The phoneme classification module predicts a sequence and measures the
CE loss between true and predicted phonemes without any tone information. We find
that lack of tone information resulted in a 6.51% increase in CER in the fifth row, which
demonstrates that the sEMG2V task in Mandarin Chinese needs tone information in concert
with phoneme rather than separate phoneme information.

4.3.4. Cost Function for DTW

We conduct the alignment study as described in the sixth row. It shows that the CER
of the alignment strategy in SSRNet shows a relative reduction of over 81.18% compared to
the traditional approach, which demonstrates that effectiveness of the alignments between
N-length predicted audio features Ŷ+∗

1:N obtained by the SSRNet model without a length
regulator and M-length ground-truth audio features Y1:M.

4.4. Frame-Based Toneme Classification Study

Finally, we evaluate the frame-based performance of the toneme classification module
on the testing set except for silent frames. We use the GT-duration calculated by Equation (7)
with the best-performing model of each speaker to match the length of ground-truth
phonemes. As the confusion between vowel consonants is interpretable [54], this section
focuses on the vowel pairs, consonants pairs, and tone pairs. The confusion matrices are
calculated to elaborate more toneme prediction details, as shown in Figure 11.

It can be seen in Figure 11a,b that SSRNet provides excellent classification results for
consonants and vowels. We observe the confusion between nasal and other consonants,
which is consistent with [54,55]. This is due to the limitations of sEMG electrodes in
detecting velum [55].

Meanwhile, Figure 11c shows the confusion matrix of the tone set, which is calculated
from the ground-truth tones and the predicted tones from vowels and is directly extracted
from the entire confusion matrix. The tone classification achieves an average accuracy of
96.07%. This proves that neuromuscular signals can transfer most tone information in silent
speech. The fifth tone is sometimes mistaken for the other four tones. This indicates that
the fifth tone is sometimes difficult to express in silent speech.



Brain Sci. 2022, 12, 818 15 of 18

(a) (b)

(c)

Figure 11. Toneme confusion matrices on the testing set, with the number in row j, column i is the
ratio in percentage of the number of samples predicted as label j with the true label i to the number
of samples with the true label i. Values smaller than 0.5% are ignored. (a) Consonant confusability,
(b) vowel confusability, (c) tone confusability.

5. Conclusions

This paper proposes a Seq2Seq-based SSRNet model to decode neuromuscular signals
in a tonal language. SSRNet uses the duration extracted from the alignment to regulate the
sEMG-based silent speech. Furthermore, a toneme classification module and a vocal sEMG
reconstruction module are used to improve the overall performance. We conduct extensive
experiments on a Mandarin Chinese dataset to demonstrate that the proposed model
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outperforms the baseline model in both objective and subjective evaluation. The model
achieves an average subjective CER of 6.41% for six speakers and 1.19% for the best speaker,
demonstrating the feasibility of the reconstruction task.

In the future, we would like to enhance the robustness and generalization of the model
by including more speakers and utilizing transfer learning. Another possible direction
is making the system real-time because it is necessary for speakers to learn to improve
pronunciation by themselves in silent speech based on auditory feedback.
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