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Childhood medulloblastoma (MB) is a threatening malignant tumor affecting children all

over the globe. It is believed to be the foremost common pediatric brain tumor causing

death. Early and accurate classification of childhood MB and its classes are of great

importance to help doctors choose the suitable treatment and observation plan, avoid

tumor progression, and lower death rates. The current gold standard for diagnosing MB

is the histopathology of biopsy samples. However, manual analysis of such images is

complicated, costly, time-consuming, and highly dependent on the expertise and skills

of pathologists, which might cause inaccurate results. This study aims to introduce a

reliable computer-assisted pipeline called CoMB-Deep to automatically classify MB and

its classes with high accuracy from histopathological images. This key challenge of the

study is the lack of childhood MB datasets, especially its four categories (defined by

the WHO) and the inadequate related studies. All relevant works were based on either

deep learning (DL) or textural analysis feature extractions. Also, such studies employed

distinct features to accomplish the classification procedure. Besides, most of them

only extracted spatial features. Nevertheless, CoMB-Deep blends the advantages of

textural analysis feature extraction techniques and DL approaches. The CoMB-Deep

consists of a composite of DL techniques. Initially, it extracts deep spatial features from

10 convolutional neural networks (CNNs). It then performs a feature fusion step using

discrete wavelet transform (DWT), a texture analysis method capable of reducing the

dimension of fused features. Next, the CoMB-Deep explores the best combination of

fused features, enhancing the performance of the classification process using two search

strategies. Afterward, it employs two feature selection techniques on the fused feature

sets selected in the previous step. A bi-directional long-short term memory (Bi-LSTM)

network; a DL-based approach that is utilized for the classification phase. CoMB-Deep

maintains two classification categories: binary category for distinguishing between the

abnormal and normal cases and multi-class category to identify the subclasses of MB.

The results of the CoMB-Deep for both classification categories prove that it is reliable.

The results also indicate that the feature sets selected using both search strategies have

enhanced the performance of Bi-LSTM compared to individual spatial deep features.

CoMB-Deep is compared to related studies to verify its competitiveness, and this

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.663592
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.663592&domain=pdf&date_stamp=2021-05-28
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:o.attallah@aast.edu
https://doi.org/10.3389/fninf.2021.663592
https://www.frontiersin.org/articles/10.3389/fninf.2021.663592/full


Attallah CoMB-Deep

comparison confirmed its robustness and outperformance. Hence, CoMB-Deep can

help pathologists perform accurate diagnoses, reduce misdiagnosis risks that could

occur with manual diagnosis, accelerate the classification procedure, and decrease

diagnosis costs.

Keywords: childhood medulloblastoma, histopathology, computer-aided diagnosis, convolutional neural network,

long short term memory

INTRODUCTION

Childhood brain tumors are themost common cancerous tumors
among children accounting for nearly 25% of all pediatric
tumors (Pollack and Jakacki, 2011; Pollack et al., 2019). They
are considered the second primary rationale of death among
children under 15 (Ailion et al., 2017). Among pediatric brain
tumors, childhood medulloblastoma (MB) is believed to be the
leading cancerous brain tumor among children (Iv et al., 2019).
MB accounts for around 15–20% of the central nervous system
tumors that affect pediatrics worldwide (Arseni and Ciurea, 1981;
Polednak and Flannery, 1995). It evolves within the cerebellum
on the posterior area of the brain and progresses rapidly to other
parts of the brain (Hovestadt et al., 2020). According to the
classification of WHO, there are four MB classes (Pickles et al.,
2018). Precise and early diagnosis of MB and its classes is crucial
to decide the appropriate treatment and follow-up procedure.
This procedure will correspondingly lead to higher survival rates
(Davis et al., 1998; Furata et al., 1998), slower disease progression,
and avoid acute side effects that could occur if not diagnosed and
treated in early stages. These side effects would affect children’s
movements and synchronization and reduce their quality of life.

Amid imaging modalities, MRI is used in the diagnosis
of pediatric brain tumors (Manias et al., 2017; Iqbal et al.,
2018). Radiologists experience some challenges, especially when
diagnosing pediatric brain tumors (Sachdeva et al., 2013;
Ritzmann and Grundy, 2018), like childhood MB and classifying
its four classes (Fan et al., 2019). The reason is that several MB
subtypes cannot show apparent dissimilarities within the visual
appearance of MRI scans (Fetit et al., 2018) which could lead
to misdiagnosis (Zarinabad et al., 2018). Thus, other imaging
techniques, such as histopathology can be more appropriate
for diagnosing MB (Grist et al., 2020). Histopathological
examination of biopsy samples is presently thought to be the gold
standard to accurately diagnose MB and its classes (Szalontay
and Khakoo, 2020). The four MB categories described by the
WHO are the classic MB, nodular MB, desmoplastic MB, and
anaplastic/large cell MB. Classifying these four classes is essential
(Ellison, 2010); however, minimal studies have examined the
four childhood MB classes (Dasgupta and Gupta, 2019). Analysis
of histopathological images manually is challenging due to the

complexity and similarity among childhood MB classes and the

small cell size and shape, and the correlation and orientation
discrepancy of the different MB tumor classes. Besides, manual

analysis wastes time. It also depends mainly on the experience
and skills of the diagnostician (Dong et al., 2020). Even expert
pathologists could provide distinct diagnoses concerning the MB

class (Zhang et al., 2019; Anwar et al., 2020). Another challenge
in the manual analysis is the lack of pathologists, especially in
the developed and developing countries (Robboy et al., 2013).
These challenges have raised the essential need for automated
computer-assisted-based pipelines to decrease the burden of
the pathologists in classifying the classes of childhood MB and
assisting them in achieving high accuracy rates of classification
(Das et al., 2018a).

Recently, computer-assisted methods have been extensively
used to resolve many related medical problems, and they
successfully achieved superior classification results (Ragab et al.,
2019; Yanase and Triantaphyllou, 2019; Fujita, 2020; Kumar et al.,
2020). However, fewer research articles have been conducted to
classify the four childhood MB classes from histopathological
images via computer-assisted-based approaches because of the
shortage of available datasets. The previously acquired datasets
are private or publicly available for classifying anaplastic MB
and non-anaplastic, which is a binary classification problem.
Therefore, most of the previous related studies performed binary
classification to differentiate between anaplastic MB and non-
anaplastic. For example, in 2011, Lai et al. (2011) presented a
pipeline based on Haar wavelets, Haralick Laws texture features,
and random forest (RF) classifier and attained a 91% accuracy.
Similarly, Galaro et al. (2011) proposed a computer-assisted
system based on Haar and MR8 wavelets and achieved an
accuracy of 80% using the k-nearest neighbor (k-NN) classifier.
The following year, Cruz-Roa et al. (2012) examined the influence
of the bag of features histograms method constructed from Haar
wavelet transform and visual latent semantic feature extraction
methods on the performance of the k-NN classifier. The authors
found that the bag of features using Haar wavelet transform is
better and achieved an accuracy of 87%. Later, Cruz-Roa et al.
(2015) made a comparative study to compare the performance of
several feature extraction methods, such as sparse auto-encoder,
topographic independent component analysis (TICA), and 3-
layered convolutional neural network (CNN). The uppermost
accuracy attained was 97% using the TICA method. In the
same year, Otálora et al. (2015) merged the TICA with wavelet
transform and utilized a 2-layer CNN for classification, attaining
an accuracy of 97%.

The previous techniques endured some limitations. Initially,
they were all based on traditional feature extractionmethods with
several parameters to be chosen manually, which increased the
time needed before classification. These conventional methods
may also be prone to error and are not suitable for all
classification problems as they depend on user experience and
skill to select the appropriate technique and adjust its parameters
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(Hssayeni et al., 2017; Basaia et al., 2019). For example, in the
gray level co-occurrence matrix (GLCM) texture-based method,
choosing the appropriate distance, d is essential. It should be
of sufficient size to involve all texture patterns and at the same
time, maintain the regional nature of the spatial dependence
(Humeau-Heurtier, 2019).

Another example is the local energy pattern feature extraction
technique, where the features extracted using such a method
are invariant to the imaging settings (Zhang et al., 2012). Some
of the previous approaches also rely on the textural features
alone, which might fail to describe different dataset patterns
(Hira and Gillies, 2015; Babu et al., 2017). For example, when
images are noisy, the GLCM method cannot extract significant
features from images distinguishing among patterns (or classes)
(Humeau-Heurtier, 2019). Moreover, almost all these methods
depend only on a single form of feature extraction to construct
their classification model. These methods did not examine the
impact of fusing several feature extraction methods on the
accuracy of classification. Also, they are all constructed using
a small dataset compromising on only 10 images. Lastly, they
all perform binary classification to differentiate between non-
anaplastic and analyptic (binary classification problem). On the
other hand, multi-class category is essential to figure out the
subclasses of childhoodMB and decide the appropriate treatment
and observation strategy according to each class.

Multi-class classification of the four classes of childhoodMB is
much more complicated than binary classification. Few research
articles have investigated this multi-class classification problem.
To the best of our knowledge, the first and only research group
that investigated the classification of the four MB subtypes from
histopathological images using machine and deep learning (DL)
techniques were studies by Das et al. (2018b) who presented a
diagnostic framework to diagnose the subclasses of such pediatric
tumor. The authors initially segmented images using k-means
clustering. Afterward, the authors pulled out morphological and
color features. They extracted textural features, including GLCM,
histogram of oriented gradients (HOG), and Tamura, in addition
to the local binary pattern (LBP) and gray level run matrix
(GLRM). Next, they reduced the feature space using principal
component analysis (PCA) and used them to construct a support
vector machine (SVM) classifier. They attained an accuracy of
84.9%. Later in 2020, the same authors utilized the same features
but used multivariate analysis of variance (MANOVA) as a
feature reduction method. They found out that the MANOVA
method increased the classification accuracy to 65.2%, which is
greater than that of 56.5% without MANOVA. In the same year,
Das et al. (2020b) decided that instead of using individual sets of
features (Das et al., 2018b), they produced various groups of fused
features to study the influence of feature fusion and selected the
best mixture of fused feature sets. They employed PCA and SVM
and achieved an accuracy of 96.7% utilizing the four combined
features. Later, in the same year, Das et al. (2020c) used two
pre-trained CNN, including AlexNet and VGG-16, with transfer
learning. They first used a soft-max classifier for classification
and reached an accuracy of 79.3 and 65.4% for AlexNet and
VGG-16 CNNs, respectively. They extracted deep features from

these networks and employed an SVM classifier for classification,
achieving an accuracy of 93.21 and 93.38% for AlexNet andVGG-
16 features, respectively. Afterward, Attallah (2021) introduced a
framework based on the deep features of three CNNs combined
with PCA and discrete cosine transform and classified using four
machine learning classifiers.

These previous methods have shown several drawbacks
that can be summarized as follows: the approaches by Das
et al. (2018b, 2020a) utilized traditional individual feature
extraction methods that depend on textural analysis, color, or
morphological operations. Drawbacks of conventional methods
are discussed earlier. The disadvantages of using color features
are their vulnerability to light situations and occlusion (Afifi
and Ashour, 2012; Park et al., 2012). The limitations of
morphological features like shape features are their dependence
on the human experience, and they might not produce efficient
results when used alone for classification (Liu and Shi, 2011).
Furthermore, the pipeline presented by Das et al. (2020b)
examined the combination of textural-based features alone to
perform classification. Das et al. (2020c) utilized only DL features
to build the classification model. In other words, the authors
employed only individual DL features for classifying the MB
subtypes, where every one of them was of enormous feature
dimension. The authors did not examine the influence of fusing
numerous DL features extracted from different DL approaches
to take advantage of different DL architectures. Additionally, Das
et al. (2020c) employed only two CNNs separately. The training
time achieved utilizing these DL methods is enormous. Finally,
some of them did not attain superior accuracy and cannot be
considered as reliable systems. A reliable system means that
it has a sensitivity that exceeds 80%, a specificity that exceeds
95%, and a precision that exceeds 95% (Ellis, 2010; Colquhoun,
2014). So, these systems did not achieve the criterion to be a
reliable system.

The originality of the study may be listed in the following
four contributions. First, a reliable pipeline called CoMB-Deep
is built to classify the four classes of childhood MB with high
accuracy. Second, CoMB-Deep is based on a composite of
DL methods that are merged. Third, it blends the advantages
of textural-based feature extraction and DL approaches using
three stages. Initially, 10 CNN DL methods are utilized to
mine deep spatial features. These deep spatial features are fused
using discrete wavelet transform (DWT), a textural analysis-
based approach capable of reducing the dimension of DL
features. Afterward, the best combination of fused features is
searched using two strategies to choose the appropriate set
of fused features that influence the classification performance.
Next, CoMB-Deep employs the bidirectional long short-term
memory (Bi-LSTM) DL method, which illustrates the temporal
information of the data, and not the spatial information like
the CNNs used in the literature. The fourth contribution is
the further reduction of the feature space dimension after
the process of DWT-based fusion using two feature selection
methods. We want to highlight that one of the core difficulties
in classifying the childhood MB classes is the obtainability of
the dataset.
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FIGURE 1 | Samples of the childhood pediatric MB images, (A) normal, (B) classic, (C) desmoplastic, (D) large cell, (E) nodular.

METHODS

Dataset Acquisition
Two medical centers for neurological research, including
Guwahati Neurological Research Center (GNRC), and the
Guwahati Medical College and Hospital (GMCH), involved
collaborating medical institutes to acquire the dataset. The
childhood MB dataset employed in CoMB-Deep was gathered
from kids diagnosed with MB tumor. These kids were aged <15
years. Some information blocks were generated from those kids at
the surgical department of the GMCH. The swabs were acquired
through these tissue blocks. Next, Hematoxylin and eosin (HE)
were employed to stain these sections of tissues at Ayursundra
Pvt. Ltd., in which a local medical specialist supplied pathological
help. Later, a certified specialist determined the region of interest
for ground truth from such slide scans. Afterward, the images
of these areas of interest taken with an amplification factor of
10x with a Leica 1CC50 HD microscope were stored in the Joint
Photographic Experts Group (JPEG) format. The four subclasses
of MB tumor were included in the dataset, which involved 204
images. Some of these images are displayed in Figure 1. The
number of samples for normal, classic, desmoplastic, large cell,
and nodule MB classes include 50, 59, 42, 30, and 23, respectively.
Details of the dataset can be found in the study by Das et al.
(2019).

Methods of Deep Learning
During the last decade, a new branch of machine learning
techniques called DL has been extensively used in many areas
due to its high capability of overcoming the drawbacks of
traditional artificial neural networks (Litjens et al., 2017; Attallah
et al., 2020b). There are several architectures of neural networks
based on DL. Among these architectures is the recurrent neural
networks (RNNs), such as long-short term memory which
are used for sequential data, and the CNN utilized for both
image/video classification (Liu et al., 2017, Ceschin et al., 2018;
Alom et al., 2019; Attallah et al., 2020c; Ragab and Attallah,
2020). The CNN demonstrates only spatial information from
images; therefore, this type of DL technique is combined with Bi-
LSTM, which determines the temporal data from the data given
as its input.

Convolution Neural Network Architectures
The fundamental components of CNNs involve convolutional
layers, rectified linear unit (Relu) layers, pooling layers, dropouts,
fully connected (FC) layers, softmax and output layers (Alom
et al., 2019). The organization of these layers may form a new
architecture. The convolutional layer convolves a portion of the
image with a filter of a small size. The outputs of the filter after
passing through the whole picture are known as the feature
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map. The Relu layer applies the Relu activation function, which
alters the entire negative activations to zero. It also enhances
the non-linear characteristics of the CNN without influencing
the receiving fields of the convolutional layer. The pooling layer
is responsible for downsizing the massive dimension of the
feature map of the previous layer. The most common types are
maximum and average pooling. The dropout layer is used to
prevent the network from overfitting by randomly adjusting the
output edges of hidden neurons to zero at every training iteration.
The FC layers are the last few layers of a CNN where the entire
inputs of the previous layer are connected to each neuron in
the subsequent layer. The softmax layer is responsible for the
classification procedure using the softmax function, assigning
probabilities for each class. The output layer produces the result
of the network after training (Pouyanfar et al., 2018). Some of the
state-of-the-art CNNs are briefly discussed below.

ResNet-50 CNN was proposed by He et al. (2016). The
fundamental building block of ResNet is the residual block
which involves shortcuts (known as residuals) within the
layers of a traditional CNN to step over specific convolution
layers at a time. This structure can enhance the performance
of the CNN and accelerate the convergence process of the
CNN, regardless of many deep convolution layers. ResNet-50
consists of 50 layers. The sizes and names of these layers are
illustrated in Supplementary Table 1. In 2016, Google proposed
the Inception-V3 CNN architecture (Szegedy et al., 2016b).
It is based on the inception module that combines several
convolutional filters of different capacities into a new filter. This
process correspondingly lowered the number of parameters used
in the training and the computational time. It consists of 48
layers, including convolutional, pooling, convolutional padded,
and fully connected layers. The sizes and names of these layers
are illustrated in the Supplementary Table 2. DenseNet was
proposed by Huang et al. (2017). The main building block of
DenseNet is the Dense block that connects every layer to every
subsequent layer in the feed-forward procedure. At every layer,
the feature maps of the earlier layers’ are considered inputs
to the current layer. DenseNet-201 consists of 201 layers. Its
structure comprises a convolutional layer followed by a Dense
block and a transition layer (Huang et al., 2017; Li et al., 2021).
The transition layer consists of a convolutional layer followed by
a pooling layer. The sizes and names of these layers are illustrated
in Supplementary Table 3.

MobileNet is a lightweight CNN proposed by Howard et al.
(2017). Its structure depends on two layers: depth-wise layers
and point-wise layers. The depth-wise layer has numerous
convolutional layers of 3 × 3 kernels. The point-wise layer
consists of several convolutional layers of 1 × 1 kernels, where
it contains 53 deep layers. The dimensions and names of
these layers are illustrated in Supplementary Table 4. Inception-
ResNet-V2 was proposed by Szegedy et al. (2016a), who inserted
residual shortcuts in the Inception block of the Inception CNN
structure. This network consists of 164 layers. The design of
Inception-ResNet-V2 and the output size of layers are shown
in the Supplementary Figure 1. Xception was introduced in
2017 by Chollet (2017). Its main building block is the Xception
module. The Xception module switched the standard Inception

modules with depth-wise separable convolution layers. This
module begins with two convolutional layers, followed by depth-
wise separable convolution layers, four convolution layers, and
a fully connected layer without average pooling. The non-
overlapping sections of the output channels from these layers are
concatenated. Xception CNN has 36 convolutional layers.

NasNetMobile was introduced by Zoph et al. (2018). Themain
building blocks of NasNetMobile are called cell convolutional,
which have a similar structure but different in weight. They are
optimized using reinforcement. This network searches for the
best architecture for a given dataset. ShuffleNet was proposed
in 2018 by Zhang et al. (2018). Its crucial element is the
ShuffleNet which delivers two new procedures known as point-
wise group convolution and channel shuffle. The point-wise
process utilizes a 1 × 1 convolution to decrease the computation
time while attaining an adequate accuracy, whereas the channel
shuffle procedure helps in streaming information among feature
channels. It consists of 50 layers. The architecture of ShuffleNet is
shown in the Supplementary Table 5. SqueezeNet was proposed
by Iandola et al. (2016). The basic building block of SqueezeNet
is the fire module. This module has a squeeze convolutional
layer (having only a 1 × 1 filter), supplying an expand layer that
consists of a mixture of 1× 1 and 3× 3 convolutional filters. The
layers and their sizes are shown in the Supplementary Table 6.
DarkNet-53 was initially proposed in 2017 by Redmon and
Farhadi (2017). DarkNet-53 primarily consists of a sequence of
convolution layers sizes of 1 × 1 and 3 × 3. It usually pairs with
the number of channels after each pooling phase. DarkNet-53 has
a total number of 53 layers (involving the last fully connected
layer but not including the residual layer).

Bidirectional Long Short-Term Memory
The long short-term memory DL architecture (Hochreiter and
Schmidhuber, 1997) was inspired by analyzing the stream of
error in the RNN (Angeline et al., 1994). The LSTM architecture
consists of an input gate, a forget gate, and an output gate. These
gates are responsible for recognizing the long-range temporal
reliance. The fundamental concept of the Bi-LSTM (Schuster and
Paliwal, 1997; Baldi et al., 1999) is to introduce every training
cycle forward and backward to two distinct LSTMs, both of which
are associated with the same output layer.

Proposed CoMB-Deep Pipeline
This study introduces a computer-assisted pipeline called CoMB-
Deep to classify childhood MB subclasses from histopathological
scans automatically. The CoMB-Deep consists of a combination
of multiple DL methods to classify childhood MB and its
subclasses. The classification is accomplished in two categories:
binary and multi-class classification categories. The former
category categorizes the microscopic scans into abnormal and
normal (binary classification category). The latter category
classifies the abnormal microscopic scans into four childhood
MB tumors (multi-classification category).

CoMB-Deep involves six phases: image preprocessing, deep
spatial feature extraction, feature fusion and reduction, fused
feature set election, feature selection, and classification phases.
During the first phase, the microscopic images are augmented
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FIGURE 2 | The block diagram of CoMB-Deep pipeline.

and resized. Afterward, spatial DL variables are obtained from
10 pre-trained CNNs in the deep spatial feature extraction phase.
Next, these features are fused using the DWT method. DWT is
also used in this phase to decrease the enormous size of fused
features. Then, in the combined feature set election phase, the
feature sets generated from the 10 CNNs are searched using two
strategies to detect the most acceptable mixture of fused feature
sets that influence the performance of CoMB-Deep. In the feature
selection phase, two feature selection approaches are performed
on the best-fused sets of features selected in the prior phase to
lessen the size of fused features further. Finally, a bidirectional
LSTM DL method is used to accomplish the classification
procedure of both the binary and multi-class categories. Figure 2
illustrates the block diagram of the introduced CoMB-Deep.

Image Preprocessing Phase
During this phase, the microscopic images are resized to the
input layer size of every CNN as shown in Table 1. Next,

an augmentation step is made to enlarge the number of
microscopic images available and avoid overfitting (Shorten and
Khoshgoftaar, 2019). The techniques used for augmentation to
create new microscopic scans from the training data in CoMB-
Deep are translation (−30, 30), scaling (0.9, 1.1), flipping in x and
y directions, shearing (0, 45) in x and y directions as observed by
Ragab and Attallah (2020) and Attallah et al. (2020c).

Deep Spatial Feature Extraction Phase
During this phase, spatial DL features are extracted from
10 CNNs architectures using transfer learning. These CNN
architectures include Inception V3, Xception, ResNet-
50, Inception-ResNet-V2, DenseNet-201, NasNetMobile,
ShuffleNet, SqueezeNet, MobileNet, and DarkNet-53 networks.
The transfer learning process corresponds to the ability of
the network to identify similarities between distinct data,
which helps develop the training procedure for a new similar
classification task (Thrun and Pratt, 1998; Raghu et al., 2019). In
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TABLE 1 | The depth, input, and output sizes of the 10 CNNs along with the description of the layers from which features where extracted.

CNN structure Depth Size of input Feature extraction layer name Feature extraction layer description Size of features

Shuffle 50 224 × 224 × 3 “node 200” The last average pooling layer just before the fully connected layer 544

ResNet-50 50 224 × 224 × 3 “avg_pool” The last average pooling layer just before the fully connected layer 2,048

NasNetMobile 913 224 × 224 × 3 “global_average_pooling2d_1” The last average pooling layer just before the fully connected layer 1,056

MobileNet 19 224 × 224 × 3 “avg_pool” The last average pooling layer just before the fully connected layer 1,280

SqueezeNet 18 227x227x3 “relu_conv10” Rectified Linear unit layer just after the 10th convolutional layer 392 (Binary)

784(Multi-class)

DenseNet-201 201 224 × 224 × 3 “avg_pool” The last average pooling layer just before the fully connected layer 1,920

Inception-V3 48 229 × 229 × 3 “avg_pool” The last average pooling layer just before the fully connected layer 2,048

Xception 71 229 × 229 × 3 “avg_pool” The last average pooling layer just before the fully connected layer 2,048

Inception-ResNet 164 229 × 229 × 3 “avg_pool” The last average pooling layer just before the fully connected layer 1,536

DarkNet-53 53 256 × 256 ×3 “avg_1” The last average pooling layer just before the fully connected layer 1,024

other words, transfer learning enables pre-trained CNN to learn
demonstration from a huge number of images, such as those
available in ImageNet and afterward used this knowledge in a
similar classification problem which has smaller datasets (Pan
and Yang, 2009; Han et al., 2018). In this paper, 10 pretrained
CNNs that were previously trained on the ImageNet dataset
are employed. Transfer learning is also employed to extract
deep spatial features from a specific layer of a CNN. In this
phase, after adapting the FC layers and some of the parameters
(discussed later in the parameter setting section) of the 10
pretrained CNNs to the number of labels in the dataset used
in this paper rather than the 1,000 labels of ImageNet, the 10
networks are trained. Afterward, features are extracted from the
layers as mentioned in Table 1. Table 1 illustrates the depth,
input, and output sizes and mentions the layers where features
are extracted.

Feature Fusion and Reduction Phase
Deep spatial features obtained in the earlier phase are fused
using DWT. The reason for choosing DWT is that it is a well-
known technique based on texture analysis and is commonly
used in the medical area. DWT can reduce the vast dimension
of the data and demonstrate temporal-frequency representations
from any given data (Li and Meng, 2012; Ponnusamy and
Sathiamoorthy, 2019). DWT utilizes a group of perpendicular
basis functions called wavelets to analyze data (Antonini et al.,
1992). In the case of 1-D data, like the deep spatial features mined
from the 10 CNNs utilized in CoMB-Deep, the DWT process
is performed by passing the data through low and high pass
filters (Demirel et al., 2009). Afterward, a downsampling step is
accomplished to reduce the data dimension (Hatamimajoumerd
and Talebpour, 2019). Two sets of coefficients will be generated
after this step: the approximation coefficients CA1 and detail
coefficients CD1 (Attallah et al., 2019). This phase is executed
to consider the privileges of DL and textural-based feature
extraction approaches. The discrete Meyer wavelet (dmey) is
employed as the mother wavelet. The CD1 variables are only
selected because these coefficients comprise information from
most of the data. Furthermore, the large size of the features
extracted in the former phase is decreased.

Fused Feature Set Election Phase
Deep spatial variables mined in the deep spatial feature
extraction phase are ranked in descending order according to the
classification accuracy obtained using the LSTM network. This
ranking is used to generate several feature sets that are fused
using DWT. In this phase, two searching strategies, including
the sequential backward and forward schemes (Attallah, 2020),
are done to select the merged feature sets which have the
highest impact on the accuracy attained by CoMB-Deep. In the
backward scheme, the feature set selection begins with fusing
all features using DWT and eliminating the lowest ranking
feature (lowest accuracy). Next, each set of features having a
better ranking is deleted; if the excluded set of features improved
the accuracy of CoMB-Deep, it is kept deleted; else, it is not
deleted. Alternatively, in the forward scheme (Fauvel et al., 2015;
Pohjalainen et al., 2015), the selection begins with the first feature
set having the highest rank. Afterward, every successive set of
features is included one by one; if the set of features included
increased the accuracy of CoMB-Deep, it is retained; else, it
is ignored. This procedure continues until all feature sets are
investigated (Ververidis and Kotropoulos, 2005).

Feature Selection Phase
To further reduce the vast dimension of the fused feature
sets chosen in the previous phase, feature selection is essential
(Attallah et al., 2017b) because the massive size of the features
raises the complexity of the classification phase and might
decrease its performance (Li and Liu, 2017; Hatamimajoumerd
et al., 2020). Feature selection is frequently utilized in medical
frameworks to reduce the dimension of the feature set and delete
unnecessary and irrelevant variables (Chandrashekar and Sahin,
2014; Attallah et al., 2017a, 2020a; Cai et al., 2018). In this
phase, two feature selection approaches, including Relief-F and
Information gain (IG) feature selectionmethods are used to select
a reduced set of features.

Information gain is a standard filter feature selection method.
The fundamental concept of filter methods is to utilize the overall
characteristics of the data to choose themost significant attributes
based on these characteristics before the construction process
of the classifier. The main benefit of the filter feature selection
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approach is its fast and straightforward feature (Sánchez-Marono
et al., 2007). IG selects relevant features according to the
fundamental idea of the entropy by calculating the differences
among the entropy of the whole training samples and the
weighted total sum of the values of the subset of their partition
(classes) available for a given attribute (Roobaert et al., 2006). IG
method is considered to be one of the fastest and straightforward
filter methods. Therefore, it is utilized in this paper.

Relief-F feature selection is a well-recognized filter feature
selection approach commonly used in medical classification
problems due to computation efficiency and straightforwardness.
The Relief-F method was proposed by Kononenko (1994) to
be used for multi-class, noisy, and incomplete problems of
the datasets. Its basic idea is to calculate the significance of
features based on their capabilities to differentiate among the
same class instances that are close and distinct to others in a
local neighborhood. This capability is measured by estimating the
weight or score of each feature (Urbanowicz et al., 2018). Those
features that have a higher ability to distinguish between different
class instances and increase the distance between them are given
higher scores than others with lower capacities.

Classification Phase
The Bi-LSTMDL-based technique is used in the two classification
categories of CoMB-Deep (binary and multi-class). This process
is accomplished using four schemes. In the first scheme, spatial
DL features are taken out from the 10 CNNs to train several Bi-
LSTM classifiers. Afterward, these spatial DL features are ranked
according to the accuracy achieved by the Bi-LSTM. This ranking
is used in the following two schemes. The order of the previous
scheme is employed to explore the most acceptable combination
of fused features during the second scheme, enhancing the
accuracy of the LSTM classifier using a sequential forward
strategy. Note that fusion is done using the DWT method. The
third scheme is like the second scheme, but it uses a sequential
backward strategy instead of a sequential forward strategy. In the
last scheme, two feature selection approaches are used to select a
reduced number of features from the chosen fused feature sets in
the second and third schemes. Figure 3 defines the four schemes
of the proposed CoMB-Deep.

All CoMB-Deep schemes were done with Matlab 2020a. The
Bi-LSTM classifier was constructed using the Weka data mining
software (Hall et al., 2009). The processor used is Intel(R)
Core (TM) i7-10750H with NVIDIA GeForce GTX 1660 video
controller of 6 GB capacity, with the processor frequency of 2.6
GHz 64-bit operating system.

EXPERIMENTAL SETTINGS

Assessment Measures
To assess the performance of the presented CoMB-Deep
pipeline, several assessment measures are utilized. These
measures include the accuracy, Matthews correlation coefficient
(MCC), sensitivity, precision, F1 score, and specificity. They
are computed using the following rules (Attallah et al., 2020b)
(Equations 1–6).

Accuracy =
TP + TN

TN + FP + FN + TP
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

F1− Score =
2× TP

(2× TP)+ FP + FN
(6)

Where, the number of MB images that are correctly identified
to belong to the MB class which they refer to is called true
positive (TP) and true negative (TN) is the total number of MB
images that does not refer to the identified MB class, and does
not actually refer to. For each subtype of MB tumor, false positive
(FP) is the sum of all classified images as this MB subtype, but
they do not truly belong to. For each subtype of MB tumor, false
negative (FN) is the total sum of images not classified as this
MB subtype.

Parameters Set Up
Several parameters aremodified for the 10 CNNs. Themini-batch
dimension and validation frequency are set to 4 and 26 for multi-
class and 17 for binary class. The epochs and the initial learning
rate are found to be 20 and 3 × 10−4, respectively, while other
parameters of the 10 CNNs are set with their default values. To
assess the performance of the classification process and avoid
overfitting, a 10-fold cross-validation is applied. It is used in Bi-
LSTM classification, and the announced accuracy is found to be
average across the 10-cross validation folds. For the Bi-LSTM
network, the number of epochs is set to 30, the batch size is set
to 100, and the validation frequency is set to 10.

RESULTS

This section will illustrate the four scheme results of the
CoMB-Deep pipeline for the binary and multi-class classification
categories. Scheme I represents the deep spatial features obtained
through the 10 CNNs distinctly as inputs to LSTM networks.
The classification accuracies attained using the 10 DL features
are utilized to rank them in the descending order. This sorting
is then employed in the following two schemes. Scheme II
explores the 10 spatial feature sets using a forward strategy to
determine the best combined spatial feature sets that improve the
performance of CoMB-Deep. Similarly, Scheme III searches for
the most acceptable mixture of combined feature sets but using
a backward strategy. The combination of the feature sets is made
utilizing DWT to reduce the dimension of the fused feature sets.
In Scheme IV, two feature selection methods are employed to
further decrease the size of the merged feature sets and to select a
reduced number of features.

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2021 | Volume 15 | Article 663592

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Attallah CoMB-Deep

FIGURE 3 | The four schemes of CoMB-Deep.

Results of Scheme I
The results of Scheme I are shown in Table 2. For the
binary classification category, the highest accuracy of 100%
is attained using Inception-ResNet-V2 and ResNet-50. This
is followed by DarkNet 53, Inception V3, MobileNet, and
Squeeze CNNs to obtain an accuracy of 99%. Then, DenseNet-
201 and ShuffleNet CNNs accomplish an accuracy of 98%,
which is >96 and 92% accuracy obtained using Xception
and NasNetMobile CNNs. On the other hand, for the multi-
class classification category, the greatest accuracy of 96.1% is
achieved using DenseNet-201 and Inception V3 spatial features.
Next, ShuffleNet, SqueezeNet, and ResNet-50 features reach an
accuracy of 95.45, 92.86, and 92.2%, respectively. Afterward,
both Inception-ResNet-V2 and MobileNet features attain an
accuracy of 90.91%. Subsequently, DarkNet-53, Xception,

TABLE 2 | The classification accuracies (%) achieved using LSTM network trained

with individual DL features for binary and multi-class classification categories.

CNN Binary classification Multi-class classification

DarkNet53 99 88.31

DenseNet-201 98 96.1

Inception 99 96.1

InceptionResNet 100 90.91

MobileNet 99 90.91

NasNetMobile 92 75.97

ResNet-50 100 92.2

ShuffleNet 98 95.45

Xception 96 87.66

Squeeze 99 92.86
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TABLE 3 | Binary classification accuracy (%) and number of features before and

after DWT for ResNet-50 and Inception-ResNet CNNs.

Type of features No of features Accuracy

ResNet-50

Spatial DL 2,048 100

DWT 1,074 100

Inception-ResNet

Spatial DL 1,536 100

DWT 818 100

and NasNetMobile CNNs obtain accuracies of 88.31, 87.66,
and 75.97%.

Results of Scheme II
This section discusses the results of the fusion of multiple DL
features using the forward strategy and DWT. Note that in the
binary classification category, it can be noticed that both the
Inception-ResNet-V2 and ResNet-50 attain a 100% accuracy in
Scheme I; thus, there is no need for feature fusion in the binary
classification category done in Schemes II and III. The DWT in
this category is used to reduce the dimension of features extracted
from both Inception-ResNet-V2 and ResNet-50. Table 3 shows
the accuracy and size of features after and before the DWT
for both Inception-ResNet-V2 and ResNet-50 CNNs. It is clear
from Table 3 that the DWT has reduced the number of features
from 2,048 to 1,074 for the ResNet-50 CNN and from 1,536 to
818 features for the Inception-ResNet-V2 achieving the same
accuracy of 100%.

For the multi-class classification category, the main target of
Scheme II is to explore the different combinations of deep spatial
features using the forward strategy. The search starts with the
feature set 1 corresponding to only one feature type. It starts to
add feature sets iteratively; if the feature set included increased
the accuracy, then it is kept, else it is ignored. Note that the feature
selection processing is performed on the training set separate
from the testing set. The feature set selection results on the
training set of the multi-class classification category of Scheme
II are shown in Figure 4. This figure shows that feature set 3,
which contains the fused features of DenseNet-201+ShuffleNet
after DWT having a dimension of 1,282 features, has attained
the highest accuracy of 97.22%. For this reason, it is selected in
Scheme II. The results of feature set 3 are then evaluated on a
separate testing set, and the results are shown in Table 4. Table 4
indicates that feature set 3 selected using the forward strategy has
an accuracy of 95.65%, a sensitivity of 0.957, a specificity of 0.992,
a precision of 0.958, an F1-score of 0.946, and an MCC of 0.99.

Results of Scheme III
The results of the backward search strategy for the multi-class
classification category are illustrated in this section. Feature set
1 corresponds to the fusion of all the 10 deep features; each
feature set is eliminated iteratively; if the accuracy is improved,
then it is removed; else, it is kept. The results of the backward
strategy executed on the training set are shown in Figure 5. It

can be noticed from Figure 5 that feature sets, 3 and 5 achieve
the highest accuracy of 97.22%. Feature set 3 has a dimension
of 6,170 features representing the fusion of the features from all
CNNs except those of Xception, whereas feature set 5 contains
5,402 features of the combined DenseNet-201 + Inception V3
+ ResNet-50 + Darknet-53 + MobileNet + ShuffleNet +
SqueezeNet + NasNetMobile CNNs. This dimension shows that
feature set 5 has a lower size of features than the feature set
3; therefore, it is selected. The testing performance of feature
5 selected during the backward strategy is shown in Table 4.
Table 4 illustrates that feature set 5 chosen using backward
strategy has an accuracy of 95.65%, a sensitivity of 0.957, a
specificity of 0.975, a precision of 0.961, an F1-score of 0.955, and
an MCC of 0.94.

Results of Scheme IV
This section illustrates the results of Relief-F and IG feature
selection methods for both classification categories of CoMB-
Deep. Table 5 shows the number of features, classification
accuracy, and other performance metrics after feature selection
for the binary classification category. This table verifies that
100% accuracy is achieved using only 578 features selected using
Relief-F and IG methods instead of 1,074 utilized in Scheme
II (using DWT) for ResNet-50 CNN. On the other hand, the
same accuracy is reached using 200 and 550 features obtained
with Relief-F and IG approaches which are lower than the
818 features employed in Scheme II (using DWT) Inception-
ResNet-V2 CNN. It is clear from the table that the sensitivities,
specificities, precisions, F1-scores, and MCCs are equal to 1.

For the multi-class classification category, it can be noticed
from Table 6 that for the forward search strategy, both Relief-
F and IG methods have reduced the number of features from
1,282 features of feature set 3 (Scheme II) to 448 and 738 features,
respectively, while attaining the same accuracy of 98.05% which
is higher than that obtained in Scheme II. Similarly, in the
backward search strategy, the features selected using Relief-F and
IG methods have attained an accuracy of 99.35%, which is better
than that obtained in Scheme III, where the number of features
has been decreased to 739 (for Relief-F), and 2,313 (for IG) which
are lower than the 5,403 features of feature set 5 chosen in Scheme
III. Table 6 also indicates that both feature selection methods
for the forward strategy achieve a sensitivity of 0.981, precisions
of 0.981, and F1 scores of 0.981 and 0.972, respectively. The
specificity and MCC attained using Relief-F, and IG methods are
0.993, 0.99, 0.972, and 1. For the backward approach, both feature
selection methods achieved sensitivities of 0.994, specificities of
0.996, precisions of 0.984, F1 scores of 0.993, and MCCs of 0.991.

DISCUSSION

This study presented a computer-assisted pipeline called CoMB-
Deep for the automatic classification of childhood MB and
its classes from histopathological images. CoMB-Deep has two
classification categories: binary and multi-class classification
categories. CoMB-Deep discriminates between normal and MB
images in the binary classification category, whereas the multi-
class classification category classifies the four classes of childhood
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FIGURE 4 | The classification accuracy (%) attained for the different feature sets generated using forward strategy. Feature set 1: DenseNet-201 (1,010 Features);

Feature set 2: DenseNet-201 + Inception V3(2,034 Features); Feature set 3: DenseNet-201 + Shuffle (1,282 Features); Feature set 4: DenseNet-201 + Shuffle +
Squeeze (1,674 Features); Feature set 5: DenseNet-201 + Shuffle + ResNet-50 (2,306 Features); Feature set 6: DenseNet-201 + Shuffle + MobileNet (1,922

Features); Feature set 7: DenseNet-201 + Shuffle + Inception-ResNet-V2 (2,050 Features); Feature set 8: DenseNet-201 + Shuffle + DarkNet-53 (1,794 Features);

Feature set 9: DenseNet-201 + Shuffle + Xception (2,306 Features); Feature set 10: DenseNet-201 + Shuffle + NasNetMobile (1,810 Features).

TABLE 4 | Testing performance metrics of the feature sets selected using forward and backward strategies.

Selected feature set Accuracy (%) Sensitivity Specificity Precision F1-score MCC

Forward search strategy

Feature Set 3 95.65 0.957 0.992 0.966 0.958 0.946

Backward search strategy

Feature Set 5 95.65 0.957 0.975 0.961 0.955 0.940

MB. The presented pipeline involved a mixture of deep learning
techniques fused by the DWT method. CoMB-Deep searched
for the most acceptable combination of combined deep learning
feature sets using forward and backward strategies. It consists
of six phases which include image preprocessing, deep spatial
feature extraction, feature fusion and reduction, fused feature
set election, feature selection, and classification phases. In the
first phase, images were resized and augmented, and then spatial
deep features were extracted from 10 CNNs. Afterward, a fusion
process was performed using the DWT method, which lowered
the dimension of the fused features. Next, sequential forward
and backward search strategies were utilized to explore the best-
reduced feature sets, which improved the accuracy of CoMB-
Deep. Two feature selection approaches were then employed
further to reduce the selected feature sets of the previous phase.

Lastly, in the classification phase, a bidirectional LSTM classifier
was utilized to accomplish classification.

CoMB-Deep consists of a cascaded composite of CNNs and
Bi-LSTM. For the feature extraction, these composite of CNNs
extracted the spatial sequence of features (N) from the images.
Afterward, these features were fused using the DWT method,
which presents the time-frequency representation of the features.
Next, the Bi-LSTM (Hochreiter and Schmidhuber, 1997) was
employed to learn the temporal information from the set of N
features vectors previously extracted and fused using the CNNs
and DWT. The Bi-LSTM is an extension of a bidirectional RNN
(Schuster and Paliwal, 1997) that is capable of modeling the
temporal dependent states, and this is done through a direct
cyclic connection among its units that can save its intrinsic
hidden status and enable the modeling of the dynamic temporal

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2021 | Volume 15 | Article 663592

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Attallah CoMB-Deep

FIGURE 5 | The classification accuracy (%) attained for the different feature sets generated using backward strategy. Feature set 1: DenseNet-201 + Inception V3 +
Shuffle + Squeeze + ResNet-50 + MobileNet + Inception-ResNet-V2 + DarkNet-53 + Xception + NasNetMobile (7,194 Features); Feature set 2: DenseNet-201 +
Inception V3 +Shuffle + Squeeze + ResNet-50 +MobileNet + Inception-ResNet-V2 + DarkNet-53 +Xception (6,666 Features); Feature set 3: DenseNet-201 +
Inception V3 + Shuffle + Squeeze + ResNet-50 + MobileNet + Inception-ResNet-V2 + DarkNet-53 + NasNetMobile (6,170 Features); Feature set 4: DenseNet-201

+ Inception V3 + Shuffle + Squeeze + ResNet-50 + MobileNet + Inception-ResNet-V2 + NasNetMobile (5,658 Features); Feature set 5: DenseNet-201 + Inception

V3 +Shuffle + Squeeze + ResNet-50 + MobileNet+DarkNet-53 + NasNetMobile (5,402 Features); Feature set 6: DenseNet-201 + Inception V3 + Shuffle +
Squeeze + ResNet-50 + DarkNet-53 + NasNetMobile (4,762 Features); Feature set 7: DenseNet-201 + Inception V3 + Shuffle + Squeeze + MobileNet +
DarkNet-53 + NasNetMobile (4,378 Features); Feature set 8: DenseNet-201 + Inception V3 +Shuffle + ResNet-50 + MobileNet+DarkNet-53 + NasNetMobile

(5,010 Features); Feature set 9: DenseNet-201 +Inception V3 + Squeeze + ResNet-50 + MobileNet + DarkNet-53 + NasNetMobile (5,030 Features); Feature set 10:

DenseNet-201 + Shuffle + Squeeze + ResNet-50 + MobileNet + DarkNet-53 + NasNetMobile (4,378 Features); Feature set 11: Inception V3 + Shuffle + Squeeze

+ ResNet-50 + MobileNet + DarkNet-53 + NasNetMobile (4,442 Features).

TABLE 5 | Binary classification accuracy (%), number of features, and other performance metrics before and after feature selection for ResNet-50 and Inception-ResNet

CNNs.

Method No of features Accuracy (%) Sensitivity Specificity Precision F1-score MCC

ResNet-50

DWT 1,074 100 1 1 1 1 1

Relief-F 578 100 1 1 1 1 1

IG 578 100 1 1 1 1 1

Inception-ResNet

DWT 818 100 1 1 1 1 1

Relief-F 200 100 1 1 1 1 1

IG 550 100 1 1 1 1 1

attitude. It consists of three gates called input, output, and forget
gates, which help realize the prolonged temporal dependencies.

For the binary classification category of CoMB-Deep, it was
noticed from the results of Scheme I that both Inception-ResNet-
V2 and ResNet-50 had attained a 100% accuracy. Therefore,
feature fusion using forward and backward strategies were not
performed. The feature reduction process using DWT followed
by the Relief-F and IG feature selection methods was only
accomplished. Figure 6 shows the number of features of Scheme

I (spatial DL feature extraction), feature reduction (DWT), the
Relief-F, and IG feature selection methods for both Inception-
ResNet-V2 and ResNet-50 CNNs. The figure shows that the
number of features of Scheme I is 2,048 and 1,536 for ResNet-
50 and Inception-ResNet-V2, respectively. The DWT technique
has reduced the number of features to 1,074 and 818 for ResNet-
50, and Inception-ResNet-V2 DL features, respectively. These
features were further reduced to 578 and 200 using the Relief-F
approach, and 578 and 550 using the IG method for ResNet-50
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TABLE 6 | Binary classification accuracy (%), number of features, and other performance metrics before and after feature selection for the feature set 5 selected using

forward and backward strategies.

Method No of features Accuracy (%) Sensitivity Specificity Precision F1-score MCC

Forward search

Relief-F 448 98.05 0.981 0.993 0.981 0.981 0.972

IG 738 98.05 0.981 0.99 0.981 0.972 1

Backward search

Relief-F 739 99.35 0.994 0.996 0.994 0.993 0.991

IG 2,313 99.35 0.994 0.996 0.994 0.993 0.991

FIGURE 6 | The number of features of Scheme I (spatial DL feature extraction), feature reduction (DWT), and the Relief-F and information gain feature selection

methods for both Inception-ResNet-V2 and ResNet-50 CNNs for the binary classification category.

and Inception-ResNet-V2 DL features. Note that the accuracy
attained after all these processes is 100%. This means that the
CoMB-Deep has successfully decreased the number of features
used to construct the Bi-LSTM classifier while attaining the same
accuracy of 100%.

On the other hand, for themulti-class classification, Figure 7A
shows a comparison between the highest classification accuracies
attained using the four schemes of CoMB-Deep using a 10-fold
cross-validation. The figure indicates that the highest accuracy of
96.1% is obtained using ResNet-50 and DenseNet-201 features
in Scheme I. For Scheme II, the same accuracy of 96.1% is
obtained using feature set 3 (Dense-201 + Shuffle Features).
The figure also verifies that Scheme III (Feature set 5 for
backward search strategy without feature selection), including
DenseNet-201 + Inception V3 + Shuffle + Squeeze + ResNet-
50 + MobileNet + DarkNet-53 + NasNetMobile, and Scheme
IV (Feature set 5 for backward search strategy with feature
selection) have higher accuracies than the previous schemes.
The highest accuracy attained using both Schemes III and IV
is 99.35%. The peak accuracy in Scheme II (forward search

strategy) was achieved using the feature set 3 corresponding
to feature size of 1,282 features as shown in Figure 7B. The
maximum accuracy in Scheme III was reached using feature set
5 (backward strategy), representing 5,402 features as illustrated
in Figure 7B. In contrast, Scheme IV has lowered the feature
dimension to 739 features using the Relief-F feature selection
technique. Figure 7B compares the number of features obtained
using the four schemes of CoMB-Deep.

Figure 8 shows a comparison between the classification
accuracy of CoMB-Deep compared to the end-to-end DL
classification of the 10 CNNs for the multi-class classification
category. It is evident from the figure that CoMB-Deep has
outperformed the 10 CNNs constructed based on an end-to-
end classification procedure. This is because CoMB-Deep has
attained an accuracy of 99.35% using 1,541 features selected
using the IG method (Scheme IV) applied on the feature set
5 chosen using the forward search strategy (Scheme II). The
outperformance of CoMB-Deep proves that it is better than using
individual CNNs constructed by an end-to-end approach. This
verifies that CoMB-Deep can help the pathologist classify the four
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FIGURE 7 | Comparison between the four schemes of the multi-class classification category of CoMB-Deep. (A) The highest classification accuracy (%) attained

using the four schemes. (B) The number of features utilized in the four schemes. Scheme I: ResNet-50 or DenseNet-201; Scheme II: DenseNet-201 + Shuffle;

Scheme III: DenseNet-201 + Inception V3 + Shuffle + Squeeze + ResNet-50 + MobileNet + DarkNet-53 + NasNetMobile; Scheme IV: DenseNet-201 + Inception

V3 + Shuffle + Squeeze + ResNet-50 + MobileNet + DarkNet-53 + NasNetMobile.

childhoodMB classes, which can help them select the appropriate
treatment and follow-up plan.

The performance of CoMB-Deep is compared with related
studies based on the same dataset to prove its competence.
Table 7 displays this comparison. Das et al. (2018b) extracted
textural features, comprising GLCM, HOG, Tamura, LBP,
and GLCM. They fused all these features and used PCA
to reduce them and SVM classifier to classify pediatric MB
classes. The highest accuracy attained was 84.9%. Similarly,
the same authors utilized the same textural features and fused
them all using MANOVA. The authors employed SVM for
classification, attaining an accuracy of 65.2%. It can be noticed
from these results that fusing all these features does not always
guarantee the best performance. Therefore, the authors (Das
et al., 2020b) searched for the best combination of these
feature extraction methods and found that fusing only four

features sets (GLCM + Tamura + LB + GRLN) has the
highest impact on the classification performance, obtaining
an accuracy of 91.3% using SVM classifier and 96.7% using
PCA with SVM classifier. This means that investigating a
different combination of feature sets and selecting the most
influential fused feature set can improve the accuracy of the
classifier. In the same manner, CoMB-Deep pipeline explored
different combinations of features extracted from several CNNs
and fused using DWT to select the most fused feature sets
that impact the performance of the classifier As mentioned
before DL techniques are more favorable than the traditional
feature extraction methods (Das et al., 2018b, 2020a,b). CoMB-
Deep merges DL and textural analysis benefits, as it first
extracts spatial features from 10 CNNs. It then searches for
the most significant feature sets fused using DWT producing
spatial-temporal-frequency features. DWT is a textural analysis
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FIGURE 8 | Multi-class classification accuracy (%) of CoMB-Deep compared to end-to-end deep learning classification of 10 CNNs.

technique that illustrates the temporal-frequency information
of the data while reducing the dimension of the features.
Finally, the Bi-LSTM DL technique is used for classification.
The accuracy attained by CoMB-Deep is 99.35% which proves
that merging DL techniques is better than conventional feature
extraction techniques as it is higher than those achieved by
Das et al. (2018b, 2020a,b). Also, it verifies that combining
DL and textural analysis feature extraction methods can
enhance the classification accuracy. Furthermore, utilizing
spatial-temporal-frequency features is better than using each one
of them independently.

The results indicated in Table 7 verify that CoMB-Deep is
a competitive pipeline for both classification categories. This is
obvious as CoMB-Deep accomplished an accuracy of 100% (for
binary classification category) which is the same as observed by
Das et al. (2018b, 2019, 2020a), but greater than that achieved by
Das et al. (2020c). The competitiveness of CoMB-Deep is found
in its ability to distinguish the subclasses of MB. This is because it
reached an accuracy of 98.05%, a sensitivity of 0.981, a specificity
of 0.993, and a precision of 0.981 using the forward strategy in
Scheme IV. It also reached 99.35% accuracy, a sensitivity of 0.998,
specificity, and precision of 0.994 using the backward strategy in
Scheme IV. These performance metrics achieved in Scheme IV
are greater than all related works. This outperformance confirms
that CoMB-Deep is reliable; thus, it may be utilized to support
clinicians and pathologists in performing diagnosis with high
accuracy, decreasing the chances of misdiagnosis during manual
diagnosis, and speeding up the classification process, and finally,
lower the cost of diagnosis.

CONCLUSION

This study introduced a computer-assisted pipeline called
CoMB-Deep, a composite of deep learning techniques for
the automatic classification of MB and its classes. It has six
phases: image preprocessing, spatial DL feature extraction,
feature fusion and reduction, fused feature set election, feature
selection, and classification phases. CoMB-Deep examined if
deep feature fusion can enhance the accuracy of Bi-LSTM
classifier compared to deep individual features. The fusion phase
was accomplished using DWT, which lowers the dimension of
fusion features, whereas deep feature sets are explored using
forward and backward search methods. The results showed that
deep feature fusion had improved the performance of the Bi-
LSTM classifier. To further reduce the dimension of selected
features chosen using forward and backward approaches, Relief-
F and information gain feature selection methods were utilized.
The results verified that both methods had successfully decreased
the dimension of features while attaining the same peak accuracy
of 100% and 99.35% for binary and multi-class classification
categories, respectively. The performance of CoMB-Deep was
compared with related works, which proved its competence;
thus, it is reliable and can be used to help pathologists in
accurately classifying childhood MB and its classes. Also, it
may reduce the complications that pathologists face during
manual diagnosis. It can accelerate the classification procedure
while achieving high accuracy, decreasing the classification cost,
lowering the possibility of tumor progression, and helping
the pathologist choose suitable follow-up and treatment plans.
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TABLE 7 | A comparison between CoMB-Deep and related studies using the same dataset.

Classification category

Method Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)

Das et al. (2019) HOG, GLCM, Tamura, and LBP features +
GRLN + SVM

100 100 100 100

Das et al. (2020c) AlexNet + SVM

VGG-16 + SVM

– – – 99.44 99.62

Das et al. (2018b) (Shape + Color) features + PCA + SVM 100 100 100 100

Das et al. (2020c) AlexNet

sVGG-16

– – – 98.5 98.12

Das et al. (2020a) HOG, GLCM, Tamura, and LBP features +
GRLN + MANOVA + SVM

100 100 100 100

Proposed

CoMB-Deep

Inception-ResNet + DWT + Information

gain + LSTM

100 100 100 100

Classification (multi-class category)

Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)

Das et al. (2018b) (Shape + Color) features + PCA + SVM – – – 84.9

Das et al. (2020a) HOG, GLCM, Tamura, and LBP features +
GRLN + MANOVA + SVM

72 66.6 – 65.21

Das et al. (2020c) AlexNet

VGG-16 s

– – – 79.33 65.4

Das et al. (2020b) GLCM + Tamura + LBP + GRLN + SVM 91.3 91.3 97 91.3

Das et al. (2020b) GLCM + Tamura + LBP + GRLN + PCA

+ SVM

– – – 96.7

Das et al. (2020c) AlexNet + SVM

VGG-16 + SVM

– – – 93.21 93.38

Proposed

CoMB-Deep

Deep features of (DenseNet-201 +
ShuffleNet) + Relief-F + Bi-LSTM

98.1 98.1 99.3 98.05

Deep features of (DenseNet-201 +
Inception + Resnet-50 + Darknet-53 +
MobileNet + ShuffleNet + SqueezeNet +
NasNetMobile) + Relief-F + Bi-LSTM

99.8 99.4 99.4 99.35

Future work will focus on merging handcrafted features used in
the literature with DL techniques. Also, further analysis will be
conducted on using other DL techniques to analyze childhood
MB classes.
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