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Diazinon is one of the most widely used organophosphate insecticides, one

that is frequently detected in the environment. In this study, a diazinon-

degrading bacterium, DI-6, previously isolated from diazinon-contaminated

soil in China has been subsequently identified as Sphingobium sp. on the basis

of its physiological and biochemical characteristics, as well as by virtue of

a comparative analysis of 16S rRNA gene sequences. This strain is capable

of using diazinon as its sole carbon source for growth and was able to

degrade 91.8% of 100 mg L−1 diazinon over a 60-h interval. During the

degradation of diazinon, the following seven metabolites were captured

and identified by gas chromatography/mass spectrometry (GC–MS) analysis:

diazoxon, diazinon aldehyde, isopropenyl derivative of diazinon, hydroxyethyl

derivative of diazinon, diazinon methyl ketone, O-[2-(1-hydroxyethyl)-6-

methylpyrimidin-4-yl] O-methyl O-hydrogen phosphorothioate, and O-(6-

methyl pyrimidin-4-yl) O,O-dihydrogen phosphorothioate. Based on these

metabolites, a novel microbial biodegradation pathway of diazinon by

Sphingobium sp. DI-6 is proposed. This research provides potentially useful

information for the application of the DI-6 strain in bioremediation of

diazinon-contaminated environments.

KEYWORDS

Sphingobium sp. DI-6, diazinon-biodegradation metabolites, novel metabolic
pathway, 16S rRNA, environmental remediation

Introduction

Diazinon [O,O-diethyl O-(2-isopropyl-6-methyl-4-pyrimidinyl) phosphorothioate]
is an organophosphate insecticide in widespread use, with both agricultural and
non-agricultural applications; worldwide, two to four million pounds are deposited
into the environment, annually (Mahiudddin et al., 2014). It is used as an
insecticide and acaricide to control a variety of sucking and chewing animal
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parasites, for example, as a sheep dip to control ectoparasites
such as sheep scab and blowfly strike (Kim et al., 2006).
Additionally, it is utilized against a range of crop parasites
and also for the control of agricultural soil-dwelling insects.
Its widespread use against insects and arachnids, especially in
animal parasitism, has led to its identification as a potential
chemical mutagen that acts as a contact stomach and respiratory
poison (Bolognesi and Morasso, 2000). Additional studies have
demonstrated diazinon’s immunotoxicity (Neishabouri et al.,
2004), cytotoxicity (Giordano et al., 2007), and genotoxicity
(Çakir and Sarikaya, 2005). Given these toxic properties and the
potential toxicity of diazinon pose a threat to human health, it
is important to trace the entire process of diazinon-degradation
and dissipation of diazinon residues.

The removal of diazinon from contaminated soil or other
contaminated substrates can usually be achieved through several
processes, either alone or in combination, including chemical
hydrolysis, volatilization, photolysis, or hydrolysis, and also
through microbial degradation (Mahiudddin et al., 2014).
However, microbial degradation is considered to be the most
effective, eco-friendly, and technically challenging approach for
the decontamination of soil, sediment, bodies of water, and
other substrates. At present, several isolated bacterial species
that have great potential to accomplish diazinon degradation
and its use as the sole carbon source belong to different
taxonomic groups, including Flavobacterium sp. (Ghassempour
et al., 2002), Serratia sp. (Cycoń et al., 2009; Abo-Amer, 2011),
Burkholderia sp. (Mahiudddin et al., 2014), and Pseudomonas
sp. (Cycoń et al., 2009; Mahiudddin et al., 2014). However,
details of the pathway for diazinon degradation by these
bacteria have not yet been completely established in the research
literature. According to most reports to date, diazinon is usually
hydrolyzed to diazoxon, a toxic metabolite, and 2-isopropyl-
6-methyl-4-hydroxypyimidine (IMHP or oxypyrimidine), a
persistent but less-toxic product (Karpouzas and Singh, 2006;
Basfar et al., 2007).

This work describes the isolation and characterization of
a diazinon-degrading strain of Sphingobium sp., referred to as
DI-6, which can utilize diazinon as its sole carbon source for
growth. Factors influencing the specifics of DI-6’s degradation
in liquid medium were examined, and diverse novel diazinon
biodegradation pathways, including several newly characterized
intermediates, were proposed for the first time. It is hoped that
this work will aid the development of a set of guidelines for the
risk assessment of pesticides in the environment and also for
contaminated soil.

Materials and methods

Chemicals and media

Diazinon (98% purity) was purchased from Aladdin
Chemical Group Co., Ltd., Shanghai, China. All other chemicals

used in this study were of analytical grade and were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai China).

Mineral salts medium (MSM) consisted of the following
components: 1.0 g of NH4NO3, 1.0 g of NaCl, 1.5 g of K2HPO4,
0.5 g of KH2PO4, and 0.2 g of Mg2SO4.7H2O per liter of
deionized water. The final pH value was adjusted to 7.2. Luria–
Bertani (LB) medium contained 10 g of peptone, 10 g of NaCl,
and 5 g of yeast extract, with distilled water added to adjust
the final volume to 1 L. Solid medium plates were prepared
by adding 1.5% wt vol−1 agar to the liquid medium. After
autoclaving (121◦C, 30 min) and cooling, the medium was
supplemented with a diazinon solution, as described below.

Enrichment and isolation of
diazinon-degrading bacteria

A soil sample was collected from an agricultural field in
Nanjing, Jiangsu Province, China. The field has been managed
with pesticides for many years, and it has been found to
support microbial degraders that have some specificity for
diazinon. Diazinon was dissolved in acetone, sterilized by
filtration, and subsequently added to the sample at different
concentrations in the MSM medium. To isolate diazinon-
degrading organisms, approximately 10 g of the soil sample
was added to a 250-ml Erlenmeyer flask containing 100 ml
of MSM medium with the addition of diazinon (50 mg L−1)
as the sole carbon source; this mixture was incubated in a
rotary shaker at 160 rpm for 7 days. Every 7 days, 5 ml of
the enriched samples were transferred to 100 ml fresh MSM
medium with a stepwise increase in diazinon concentration to
200 mg L−1. The enrichment culture that exhibited the ability
to degrade diazinon was serially diluted and spread onto MSM
agar plates. After incubation at 30◦C for 10 days, colonies were
picked and further purified by repeated streaking, then tested
for diazinon-degrading capabilities through a combination of
UV–vis spectrophotometry (SHIMADZU Corp., Kyoto, Japan)
and high-performance liquid chromatography (HPLC) analysis.
One strain, which exhibited the highest diazinon-degrading
capability, was designated DI-6 and was selected and reserved
for further investigation.

Identification and characterization

The DI-6 isolate was characterized on the basis of
its morphological, physiological, and biochemical properties
according to Bergey’s Manual of Determinative Bacteriology
(Holt et al., 1994). In addition, 16S rRNA gene-based molecular
phylogenetic analyses were carried out, toward the identification
of the bacterial strain. Genomic DNA was extracted (Miller et al.,
1988) and the 16S rRNA gene was amplified by polymerase chain
reaction (PCR) using the universal eubacterial primers: 27F
(5′-AGAGTTTGATCCTGGCTCAG-3′), forward and 1492R
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(5′-TACGGTTACCTTGTTACGACTT-3′), reverse. The 50-µl
reaction mixture was composed of the following components:
1 µl total DNA as template; dNTP (2.5 mM) 1 µl, primer
(1 mM) each nucleotide, 1 µl; 10× Buffer, 5 µl; MgCl2 (5 mM),
3 µl; Taq Enzymes (5 U µl−1), 0.5 µl; and ultra-pure water,
37.5 µl. Amplification was conducted using a PCR Master Mix
Kit (Promega, Madison, WI, United States) according to the
manufacturer’s instructions, and a PTC-118 Thermal Cycler
(BIO-RAD, Irvine, CA, United States), under the following
conditions: (1) an initial denaturation step of 95◦C for 3 min;
(2) 30 cycles of denaturation, annealing, and extension (95◦C
for 1 min, followed by 52◦C for 1 min, with an extension step at
72◦C for 1.5 min); and (3) a final extension at 72◦C for 10 min
(Sambrook and Russell, 2001). PCR products were purified
using the QIAquick PCR Purification Kit (Qiagen, Valencia,
CA, United States) before the sequencing of the amplicons. The
nucleotide sequence coding for the 16S rRNA gene of DI-6
was sequenced (Sangon, Shanghai, China). Pairwise sequence
similarity was calculated by using a global alignment algorithm,
implemented at the EzTaxon server (Chun et al., 2007).
Phylogenesis was analyzed with MEGA version 6.0 software
and the distance was calculated using the Kimura 2 parameter
distance model (Thompson et al., 1997). A phylogenetic tree
was built using the neighbor-joining method. Each dataset was
bootstrapped 1,000 times.

Growth and biodegradation
experiments

Sample preparation
In preparation for further analysis of other inocula, isolates

that had previously been selected were inoculated onto LB agar
plates supplemented with 300 mg L−1 diazinon and incubated
at 30◦C for 5 days. A pure culture of each isolate, obtained from
individual colonies, was inoculated into a 250-ml Erlenmeyer
flask containing 100 ml of LB liquid medium and incubated
on a rotary shaker at 160 rpm for 3 days. The cell density
(OD600 nm) was measured using a UV–vis spectrophotometer.
All experiments were carried out in triplicate. During the
exponential phase, the bacteria were harvested by centrifugation
(5 min, 3,000 rpm). The pellet was gently rinsed with sterile
normal saline and was suspended in normal saline, to prepare
a bacterial suspension.

Biodegradation of diazinon by strain DI-6 in
liquid medium

After the cell density had been adjusted to approximately
1.0 × 108 CFU ml−1 (Inorganic salt medium), the aliquots
(5%, v/v) were inoculated into 500-ml conical flasks containing
100 ml of MSM supplemented with 300 mg L−1 diazinon.
Samples of MSM supplemented with diazinon but free of
bacterial inoculation were retained as controls. Conical flasks
were incubated at 30◦C on a rotary shaker at 160 rpm, in the

dark to avoid photodegradation of diazinon. Samples of liquid
medium were aseptically withdrawn at regular intervals to assess
both bacterial growth (OD600 nm) and diazinon degradation;
diazinon degradation efficiency was estimated by the loss of
diazinon from the culture. DI-6 cell growth was also investigated
to determine whether the strain could utilize diazinon as the sole
carbon source. Cell density was monitored by measuring the
absorbance at 600 nm using a SHIMADZU UV–vis recording
spectrophotometer.

Effects of including both diazinon and glucose
in growth media

To investigate the effect of diazinon concentration on
the overall rate and pattern of degradation, diazinon was
initially utilized as the sole carbon source in MSM. Conical
flasks (500 ml) containing 100 ml of MSM supplemented
with concentrations of diazinon, of 100, 200, 300, 400, and
500 mg L−1, respectively, were inoculated with 10 ml strain
DI-6 and incubated as described above. At designated
intervals, samples were withdrawn for the analysis of
diazinon degradation.

Glucose was included as the standard carbon source, readily
utilized by most soil bacteria (Caulfield et al., 2003). To study the
effect of glucose on diazinon biodegradation, the medium was
supplemented with 100, 250, 500, and 1,000 mg L−1 of glucose,
respectively. Conical flasks (500 ml) containing 100 ml of MSM
supplemented with different concentrations of glucose were
inoculated with 10 ml strain DI-6 and 300 mg L−1 diazinon.
All treatments were replicated in triplicate, and the control
without glucose was treated under the same conditions as the
experimental cultures.

In these two experiments, an initial bacterial inoculum with
a cell wet weight of 3 × 102 to 5 × 102 mg L−1 was applied in
each flask. Unless otherwise noted, cultures were incubated on a
rotary shaker at 160 rpm for 7 days at 30◦C.

Chemical analysis

Extraction of diazinon from the bacterial cultures was
performed using an equal volume of dichloromethane. This
extract was dried over anhydrous Na2SO4 and evaporated using
a vacuum rotary evaporator at standard room temperature.
The residue was then dissolved in an equal volume of
methanol. Samples were analyzed by high-performance liquid
chromatography (HPLC), utilizing a 600 controller, Rheodyne
7725i manual injector, and 2487 Dual k Absorbance Detector
(Waters Co., Milford, MA, United States). Kromasil 100-5 C18
stationary phase was used in the separation column (4.6-mm
internal diameter and 25 cm length). The extract was then dried
as described above and re-dissolved in an equal volume of the
following mobile phase: acetonitrile water (70:30, v/v), with the
flow rate 1.0 ml min−1, and injection volume of 20 µl. Diazinon
was detected at 254 nm.
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Statistical analysis data were expressed as mean ± S.D.
of three replicates. Statistical analyses were performed with
R, version 3.5.3.

Identification of the metabolites
resulting from diazinon degradation

To identify the metabolites deriving from diazinon
biodegradation, strain DI-6 was inoculated into 100 ml MSM
medium with 300 mg L−1 diazinon at 30◦C. Negative control
included the same components, except that the DI-6 cells
had been heat-killed before inoculation. Triplicate samples
were collected at 16, 48, and 72 h, respectively, and triplicate
samples from each time point were pooled and extracted with
an equal volume of dichloromethane. All organic phase extracts
were then evaporated as described above and subsequently
re-dissolved in a total of 2 ml of methanol. The combined
extracts were then separated and identified by GC–MS
(Thermo-Finnigan, Ringoes, NJ, United States).

The GC–MS analyses were performed in electron ionization
(EI) mode (70 eV), utilizing a Finnigan GC, equipped with an
MS detector. A Finnigan capillary column (30-m length × 250-
µm inside diameter × 0.25 µm film thickness) was used with
the following temperature program: 110◦C for 1 min; increased
to 200◦C for 3 min at 20◦C min−1; then increased to 250◦C
for 2 min at 5◦C min−1; and finally, increased to 270◦C for
1 min at 10◦C min−1. The helium carrier gas was set at constant
pressure mode with a pressure of 13.55 psi and a constant flow
of 3.0 ml min−1. The sample solution (1 µl) was analyzed in
split mode (15:1) at an injection temperature of 230◦C and an
EI source temperature of 230◦C and scanned in the mass range
from 30 to 650 m/z.

Results and discussion

Isolation and identification of
diazinon-degrading strain DI-6

Through initial utilization of the enrichment culture
technique, several bacterial strains were isolated from the long-
term diazinon-contaminated soil samples. All isolated strains
were tested for their degrading capabilities. Strain DI-6 emerged
because of its ability to nearly completely degrade 91.8 mg L−1

diazinon in MSM liquid medium over a 60-h period. It exhibited
growth at temperatures ranging from 20 to 37◦C, and at pH
values from 6.0 to 9.0. On LB agar, DI-6 colonies appeared
focally dense, semi-transparent, and pale yellow, emitting water-
soluble pigment after 3 days of incubation at 30◦C. Results
from biochemical tests identified DI-6 as Gram-negative, non-
motile, non-sporulating, and with rod-shaped morphology. This
bacillus tests positive for β-galactosidase and the metabolic

assimilation of D-glucose, L-arabinose, and maltose; it can
hydrolyze aesculin, but tests negative for catalase, urease, and
arginine dihydrolase.

The nucleotide sequence encoding DI-6 16S rRNA was
deposited in the GenBank database under accession number
KR778901. Multiple alignments revealed that DI-6’s 16S rRNA
gene sequence was closely related to that of Sphingobium
baderi LL03T (98.9% similarity; Kaur et al., 2013), Sphingobium
wenxiniae JZ-1T (98.5% similarity; Wang et al., 2011), and
Sphingobium faniae JZ-2T (98.4% similarity; Guo et al., 2010).
From molecular phylogenetic analyses, it is clear that the strain
DI-6 belonged to the genus Sphingobium. Currently, overall
genome relatedness values and whole genome–derived ANI
values are considered index for predicting the species status
of a bacterial strain (Wayne et al., 1987; Kim et al., 2014).
Moreover, the extent of sequence identity of the strain DI-
6 with closest phylogenetic relatives was above the threshold
values recommended for delineation of species in prokaryotes
(Stackebrandt and Goebel, 1994; Kim et al., 2014). Above this
threshold value, rRNA gene sequence identity loses its resolving
capacity and thus the value of overall genome relatedness has to
be determined to ascertain the species status. In the presence
of a high sequence identity value (with closest phylogenetic
relative that is above the threshold value) and the absence of
overall genome relatedness values, ANI values, and detailed
characterization (as per the polyphasic taxonomic approach),
its species status could not be determined. Therefore, the
strain DI-6 was identified as Sphingobium sp. On the basis
of morphological, physiological, and biochemical properties,
and this phylogenetic analysis of the 16S rRNA gene sequence
(Figure 1), strain DI-6 was identified as Sphingobium sp.
Members of this genus are found to be saprophytic soil
and water bacteria, and many isolates have been shown to
engage in the biodegradation of a variety of toxic organic
contaminants such as nonylphenol (Ushiba et al., 2003),
phenanthrene (Prakash and Lal, 2006), polycyclic aromatic
compounds (Wittich et al., 2007), pentachlorophenol (Zilouei
et al., 2008), pyrethroids (Guo et al., 2009), isoproturon (Sun
et al., 2009), lindane (Zheng et al., 2011), phenanthrene (Wang
et al., 2013), organophosphate and organochlorine pesticides
(Cao et al., 2013), and a mixture of polycyclic aromatic
hydrocarbons (Fu et al., 2014). Sphingobium sp. DI-6 degraded
diazinon rapidly, indicating the strain’s significant potential for
removing diazinon residues from the environment as well as
from agricultural products.

Degradation of diazinon by strain DI-6
in liquid culture

Figure 2 illustrates both the time course of diazinon
degradation and the kinetics of DI-6 cell growth in MSM
containing 100 mg L−1 diazinon. It was recorded that
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FIGURE 1

Phylogenetic analysis of strain DI-6 and related species by the neighbor-joining approach. Bootstrap values obtained with 1,000 resamplings are
indicated as percentages at all branches. A sequence of Novosphingobium decolorationis was used as the out-group. The scale bars represent
0.01 substitutions per nucleotide position. The GenBank accession number for each strain is shown in parentheses after the species name.

100 mg L−1 diazinon was degraded to 8.2 mg L−1 within
60 h. As measured by OD600 nm, DI-6 cell density increased
from 0.837 to 5.882 during diazinon degradation, indicating
that strain DI-6 was able to utilize diazinon as its sole carbon
source for growth. In contrast, in the non-inoculated control,
no changes in growth or diazinon concentration were observed
during the experimental period.

Additional studies on the degradation characteristics
showed that DI-6 could efficiently degrade diazinon at
temperatures ranging from 20 to 37◦C and pH values

ranging from 6.0 to 9.0. The optimal conditions for diazinon
biodegradation were 30◦C and pH 7.0.

Effect of diazinon concentration on
degradation

Diazinon degradation kinetics by DI-6 were contingent
on the initial diazinon concentration. As illustrated by
Figure 3, DI-6 degraded and utilized diazinon up to a
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FIGURE 2

Growth of bacterial isolate (DI-6) and degradation of diazinon.
Diazinon concentration and DI-6 cell growth in mineral salts
medium (MSM) supplemented with 100 mg L-1 diazinon at 30◦C
(n, diazinon concentration; s, cell growth). The data are
represented as the mean and standard deviation for triplicate
incubations.

concentration of 500 mg L−1, however, at higher diazinon
concentrations, the degradation lagged behind that observed
at lower concentrations. At an initial diazinon concentration
of 100 mg L−1, the degradation rate was such that 100% was
degraded by 72 h, and at an initial concentration of 200 mg L−1,
90% ± 3.9% (p < 0.05 by Student’s t-test) was degraded within
72 h, a 10% decrease in degradation rate compared to the initial
concentration of 100 mg L−1. However, when the concentration
was increased above 200 mg L−1, only 85.5% ± 2.7% (p < 0.05
by Student’s t-test), 75.7% ± 3.3% (p < 0.05 by Student’s
t-test), and 74.2% ± 2.8% (p < 0.05 by Student’s t-test) was
degraded within 72 h, for initial concentrations of 300, 400,
and 500 mg L−1, respectively, which was significantly lower
degradation rate than that of the initial diazinon concentration
of 100 mg L−1, with complete degradation requiring a longer
interval. Nonetheless, this is the first report of the isolation
of a soil bacterium with the capability of degrading diazinon
with such rapid kinetics. Previous results reported that the
isolates Serratia liquefaciens, S. marcescens, Pseudomonas sp.,
and their consortium required 14 days in which to degrade
80–92% of diazinon, when diazinon was added to MSM to
yield a concentration of 50 mg L−1 (Cycoń et al., 2009).
By contrast, at two times the diazinon concentration, DI-6
completely degraded diazinon in 3 days.

Effect of an extra carbon source on
diazinon degradation

The effect of different concentrations of glucose on
diazinon biodegradation by DI-6 was also investigated

FIGURE 3

Effect of initial substrate concentrations on the biodegradation
of diazinon by DI-6. Error bars, mean ± SD of three replicates.
Each symbol represents the substrate concentration of diazinon;
Square: 100 mg L−1 of diazinon was added; Circle: 200 mg L−1

of diazinon was added; Upper triangle: 300 mg L−1 of diazinon
was added; Lower triangle: 400 mg L−1 of diazinon was added;
Left triangle: 500 mg L−1 of diazinon was added.

(Figure 4). The diazinon degradation efficiency (the quantity
of diazinon degraded per unit time) reached a maximum
of 25.7% ± 0.6% degradation per 24 h when 300 mg L−1

diazinon was added as sole carbon source (control). In
comparison, after adding different concentrations of glucose,
degradation efficiency was greatly enhanced within the
same 24-h period. However, after an additional 36 h, the
diazinon degradation efficiency became almost constant.
These results are similar to those of Cai et al.’s (2013),
who found that exogenously supplied glucose promoted
the degradation of piperazine. Wen et al. (2010) and Wang
et al. (2012) demonstrated the opposite effect: the addition
of a low concentration of glucose could slightly enhance
the biodegradation efficiency, but higher concentrations of
added glucose delayed biodegradation, thereby decreasing
efficiency (Wen et al., 2010; Wang et al., 2012). Based on these
studies, it appears that the addition of certain amounts of an
extra carbon source can sometimes enhance biodegradation
of toxic compounds, with this effect dependent on both
the specific compound being degraded and the bacterial
species utilized.

Identification of metabolites during
diazinon biodegradation

Gas chromatography/mass spectrometry analysis of
the combined extracts as described above indicated that,
during diazinon degradation, many different peaks are
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FIGURE 4

Effect of addition of different concentrations of glucose as
co-substrate on the biodegradation of diazinon by DI-6. Error
bars, mean ± SD of three replicates. Each symbol represents the
concentration of added glucose, Square: control indicates no
added glucose; Circle: 100 mg L−1 of glucose was added; Upper
triangle: 250 mg L−1 of glucose was added; Lower triangle: 500
mg L−1 of glucose was added; Left triangle: 1000 mg L−1 of
glucose was added.

recorded, indicating a diversity of diazinon metabolites. In
a standard MS analysis (Figure 5A), prominent protonated
molecular ions occur at m/z = 288 M+, m/z = 318 M+,
m/z = 302 M+, m/z = 306 M+, m/z = 304 M+, m/z = 264
M+, m/z = 206 M+, and compounds corresponding
to the protonated molecular ions are designated as
compounds A, B, C, D, E, F, and G. Their retention
times were 7.901, 13.489, 12.246, 9.961, 7.849, 8.301, and
5.468 min, respectively.

In addition, another metabolite was found—a compound
with a retention time of 19.146 min—that did not match
any compound in the National Institute of Standards and
Technology (NIST) library, and it was, therefore, designated as
an unknown compound. The seven degradation products (A-
G) identified for diazinon degradation in liquid culture and
their fragment ions and retention times are summarized in
Table 1.

Molecular ion (M+) peak of compound A was found to
be diazoxon (Figure 5B). The molecular ion (M+) peak of
compound A (RT = 7.901 min) was 288 m/z with characteristic
ions at 264 m/z—(M+-CH2CH3), 151 m/z—[M+-O-PO-
2(OCH2CH3)], 138 m/z—[M+-O-PO-2(OCH2CH3)-CH3],
125 m/z—[M+-O-PO-2(OCH2CH3)-2(CH3)], and 111 m/z—
[M+-O-PO-2(OCH2CH3)-CH(CH3)2]. Additionally, the
fragment ions at 264 m/z were produced by the loss of
an ethyl group from the molecular ion. The fragment
ion at 151 m/z corresponded to the pyrimidine moiety of
diazoxon, and the ions at 138 and 125 m/z were related
to the loss of a methyl group from the fragment ion

at 151 m/z. The ion at 111 m/z was produced through
the removal of a propyl group from the fragment ion at
151 m/z.

The (M+) peak of compound B (RT = 13.489 min)
was 318 m/z, with characteristic ions at 302 m/z—(M+-
H), 287 m/z—(M+-H-CH3), 259 m/z—(M+-H-CH2CH3),
245 m/z—[M+-H-CH3-(CH2CH3)], 151 m/z—[M+-O-PO-
2(OCH2CH3)], and 135m/z—[M+-CH3-O-PO-2 (OCH2CH3)]
(Figure 5C). According to these results, compound B was
identified as diazinon aldehyde. Through oxidation, the
fragment ion at 302 m/z was produced by replacing a P=S bond
with the P=O bond of compound B. The fragment ions at 287
and 259 m/z were related to the loss of a methyl group or
ethyl group, respectively, from the fragment ion at 302 m/z.
The fragment ion at 245 m/z was produced by the loss of a
methyl group from the fragment ion at 259 m/z. Similarly, the
fragment ion at 151 m/z corresponded to the pyrimidine moiety
of diazinon aldehyde, and the ion at 111 m/z was produced
through the removal of a methyl group from the fragment ion
at 151 m/z.

Compound C (RT=12.246 min) was identified as an
isopropenyl derivative of diazinon [O,O-diethyl O-(2-
isopropenyl-6-methylpyrimidin-4-yl) thiophosphate]. The
(M+) peak of compound D was 302 m/z, with characteristic
ions at 287 m/z—(M+-CH3), 274 m/z—(M+-CH2 CH3),
259 m/z—[M+-CH3-(CH2CH3)], 245 m/z—[M+-2(CH2CH3)],
and 153 m/z—[M+-O-PO- 2(OCH2 CH3)] (Figure 5D). The
fragment ions at 287 and 274 m/z were formed by the
loss of one methyl or ethyl group from the molecular ion,
respectively. The fragment ion at 259 m/z was produced
by removal of one methyl and one ethyl group from the
molecular ion, respectively; additionally, the fragment
ion at 245 m/z was formed through the loss of an ethyl
group, two times. Additionally, the fragment ion at 153 m/z
corresponded to the pyrimidine moiety of the isopropenyl
derivative of diazinon.

Compound D (RT=9.961 min) exhibited a prominent
protonated molecular ion at m/z = 306 (M+) in standard
MS, with characteristic fragment ion at m/z = 294—(M+-
OH), m/z = 280—(M+-CH2CH3),252[(M+-2(CH2CH3)],
m/z = 185—(M+-CH2CH3-H), and m/z = 139—[M+-CH3-
O-PS-(OC2H5)2] (Figure 5E). Therefore, it was identified
as a hydroxyethyl derivative of diazinon {O,O-diethyl O-[2-
(1-hydroxyethyl)-6-methyl pyrimidin-4-yl] thiophosphate}.
The fragment ions at 280 and 252 m/z resulted from the loss
of an ethyl group from the molecular ion. The formation of
ions at 185 m/z resulted from the α-cleavage of the molecular
ion, with the migration of the ethyl group and the loss of
hydrogen. The loss of a hydroxyl group from the molecular ion
resulted in the ions at 294 m/z. The fragment ion at 137 m/z
was characteristic of the pyrimidine structure, which was
supported by the MS/MS analysis reported by Kouloumbos
et al. (2003).
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FIGURE 5

Gas chromatography/mass spectrometry (GC–MS) analysis of the diazinon intermediates transformed by Sphingobium sp. DI-6: (A) Gas
chromatography profiles for main intermediates (A–G). The retention times of the compounds were 7.901, 13.489, 12.246, 9.961, 7.849, 8.301,
and 5.468, respectively. (B–H) The characteristic ions of compounds (A–G) in GC–MS. They were identified as diazoxon, diazinon aldehyde,
isopropenyl derivative of diazinon, hydroxyethyl derivative of diazinon, diazinon methyl ketone, O-[2-(1-hydroxyethyl)-6-methyl pyrimidin-4-yl]
O-methyl O-hydrogen phosphorothioate, and O-(6-methyl pyrimidin-4-yl) O,O-dihydrogen phosphorothioate, respectively.

TABLE 1 Diazinon metabolites identified by gas chromatography/mass spectrometry (GC–MS).

Compound Chemical name RT (min) Characteristic ions in GC–MS
(m/z)

A diazoxon 7.901 111,125,138,151,264,288

B diazinon aldehyde 13.489 135,151,245,259,287,302,318

C isopropenyl derivative of diazinon 12.246 153,245,259,274,287,302

D hydroxyethyl derivative of diazinon 9.961 139,185,252,280,294,306

E diazinon methyl ketone 7.849 124,137,152,248,276,304

F O-[2-(1-hydroxyethyl)-6-methyl
pyrimidin-4-yl] O-methyl O-hydrogen
Phosphorothioate

8.301 119,135,153,246,264

G O-(6-methyl pyrimidin-4-yl) O,O-dihydrogen
phosphorothioate

5.468 175,191,206
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FIGURE 6

Scheme of the proposed degradation pathway of diazinon in liquid cultures: (A) diazoxon; (B) diazinon aldehyde; (C) isopropenyl derivative of
diazinon; (D) hydroxyethyl derivative of diazinon; (E) diazinon methyl ketone; (F) O-[2-(1-hydroxye thyl)-6-methyl pyrimidin-4-yl] O-methyl
O-hydrogen phosphorothioate; (G) O-(6-methyl pyrimidin-4-yl) O,O-dihydrogen phosphorothioate; B1: 2-hydroxydiazinon
{O,O-diethyl-O-[2-(1-hydroxypropan-2-yl)-6-methylpyrimidin-4-yl] phosphorothiotae}; B2: hydroxy diazinon {O,O-diethyl
O-[2-(2-hydroxypropan-2-yl)-6-methylpyrimidin-4-yl] phosphorothiotae}.
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Compound E (RT = 7.849 min) was identified as diazinon
methyl ketone [O,O-diethyl O-(2-acetyl-6-methylpyrimidin-4-
yl) thiophosphate], by comparing the mass spectrum with
a previously reported mass spectrum of the intermediate
during photocatalytic degradation of diazinon (Kouloumbos
et al., 2003). Its characteristic fragment ions are found at
m/z = 276—(M+-CH2CH3), m/z = 248—{M+-2(CH2CH3),
m/z = 152—[M+-O-PO-2(OCH2CH3)], m/z = 137—[M+-O-
PO-2(OCH2CH3)-CH3], and m/z = 124—[M+-O-PO-2(OCH2

CH3)-(CH3)2] (Figure 5F). It exhibited a peak at 304 m/z
corresponding to the molecular ion, and the characteristic ions
at 276 and 248 m/z resulting from the loss of one or two
ethyl groups from the molecular ion, respectively. The ion at
179 m/z was formed through the α-cleavage of the molecular
ion, accompanied by ethyl migration; and the ion at 152 m/z
structurally corresponded to pyrimidine structures. The ions at
137 and 124 m/z were related to the loss of a methyl group from
the fragment ion at 152 m/z.

Compound F (RT = 8.301 min) was identified as O-
[2-(1-hydroxyethyl)-6-methyl pyrimidin-4-yl] O-methyl
O-hydrogen phosphorothioate. Its characteristic fragment ions
are found at m/z = 246—(M+-CH3), m/z = 153—[M+-O-PO-
2(OCH2CH3)], m/z = 135—[M+-O-PO-2(OCH2CH3)-H2O],
and m/z = 119—[M+-O-PO-2(OCH2 CH3)-H2O-CH3]
(Figure 5G). The ion at 264 m/z was formed through the
loss of a methyl group from the molecular ion. Similarly,
the fragment ion at 153 m/z corresponded to the pyrimidine
moiety of compound F, and the ion at 135 m/z was produced by
dehydration of the fragment ion at 153 m/z. Furthermore, the
ion at 119 m/z was formed by demethylation of the fragment
ion at 135 m/z.

Finally, compound G (RT = 5.468 min) was identified as O-
(6-methyl pyrimidin-4-yl) O,O-dihydrogen phosphorothioate.
Its characteristic fragment ions are found at m/z = 191—(M+-
CH3) and m/z = 175—(M+-CH3-H) (Figure 5H). It exhibited
an ion at 191 m/z, as the base peak, and a molecular ion at
306 m/z. The formation of the ion at 191 m/z resulted from
demethylation of the molecular ion. The fragment ion at 175m/z
was produced by replacing the P=S bond with a P=O bond in the
fragment ion at 191 m/z.

Based on the identification of degradation products,
Figure 6 postulates a degradation pathway for diazinon
in liquid cultures. Hydrolysis of the ester moiety,
oxidation, hydroxylation, dehydration, demethylation, and
decarboxylation are all chemical processes that occur during the
degradation of diazinon.

First, the formation of diazoxon (compound A) resulted
from the substitution of sulfur by oxygen on the P=S bond
through oxidation. In addition, it was inferred that diazinon was
transformed to 2-hydroxydiazinon (compound B1) and hydroxy
diazinon (compound B2), both of which were not detected,
due to hydroxylation at the primary and tertiary carbon atoms
of the isopropyl group, respectively. Such a hydroxylation

reaction had also been reported during the degradation of
contaminants under ultrasonic treatment (Rehorek et al., 2004;
Torres et al., 2008). In addition, compound B1 might be
transformed into compound B by reduction, removing two
hydrogens. Subsequently, via dehydration occurring on the
1-hydroxyisopropyl group, hydroxydiazinon (compound B2)
would lead to the formation of the isopropenyl derivative
of diazinon (compound C). Following this, compound C
would be further converted into the hydroxyethyl derivative
of diazinon (compound D), probably through oxidation plus
decarboxylation, as reported by Miyazaki et al. (1970) in
researching the metabolism of diazinon in animals and
plants. Furthermore, the hydroxyl group of compound D
would be oxidized into a carbonyl group, yielding diazinon
methyl ketone (compound E). Compound D could then
be transformed into F, possibly through the removal of
one ethyl and one methyl group, respectively. Moreover,
compound F might become compound G, through the single
removal of a hydroxy group and the removal of two methyl
groups.

Because IMHP, diethyl phosphate, or diethyl
thiophosphate—hydrolysis products of diazinon or diazoxon—
were not detected in this study, probably, they could not be
easily recovered from extracts of DI-6 diazinon metabolism.
Therefore, further research is needed to establish a more
thorough identification of these metabolites.

Conclusion

In this study, strain DI-6 identified as Sphingobium
sp., isolated from long-term diazinon-contaminated soil, was
shown to be capable of diazinon degradation. In MSM
medium, DI-6 was able to degrade 91.8% of 100 mg L−1

diazinon within 60 h in liquid culture under optimal
conditions (pH 7.0, 30◦C). The initial concentration of
diazinon as well as the presence of a second carbon
source (glucose) had a marked effect on the degradation
of diazinon. The rate of degradation increased with lower
initial diazinon concentrations and with glucose addition,
respectively. Seven diazinon-degradation products of strain DI-
6’s degradative metabolism have been identified through GC–
MS analysis, and four major metabolic pathways including
hydrolysis of the ester moiety, oxidation, hydroxylation,
dehydration, demethylation, and decarboxylation are proposed,
and two novel metabolic products have been identified, not
heretofore described. This study offers clarification regarding
microorganismal biodegradation of diazinon, including the
chemical mechanisms by which biodegradation is accomplished.
Further studies will be needed to investigate the potential
application of strain DI-6 to the bioremediation of diazinon-
contaminated environments.
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