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Investigation of the effects of 
electromagnetic field treatment of 
hot spring water for scale inhibition 
using a fibre optic sensor
takuya okazaki  1, senshin Umeki2, tatsuya Orii3, Ryusuke Ikeya3, Aya sakaguchi3, 
Takamichi Yamamoto3, Tomoaki Watanabe1, Akira Ueda3 & Hideki Kuramitz3

Treatment with an electromagnetic field, one of the potential techniques to inhibit scale deposition 
from water, has the advantage of not requiring the addition of any chemicals. Field tests using a 
fibre optic sensor were conducted to evaluate the effect that the treatment of hot spring water in 
Matsushiro, Japan with an electromagnetic field had on calcium carbonate scale formation. The optical 
response to scale deposition recorded by the fibre optic sensor decreased as a consequence of the 
application of an electromagnetic field, and the effectiveness of scale formation inhibition depended 
on the frequency of the electromagnetic field. This evidence was compared with results from changes 
in scale mass measured using the quartz crystal microbalance (QCM) method. Mass increases of the 
scale formed on the quartz crystal surface in hot spring water were inhibited by electromagnetic field 
treatment. These results were verified performing a column flow test, whereby the flow rate of hot 
spring water through a column was measured.

One of the serious problems associated with the utilisation of geothermal brine is the scale formation from inor-
ganic salts, such as CaCO3, silica or CaSO4. Changes in pressure and temperature disturb the solution equilibrium 
and induce the formation of scale on the surface of production and reinjection wells, brine pipelines, valves, 
turbines and vapour–brine separators1. Such scale formation results in the gradual decrease of the brine flow rate 
and of the efficiency of heat-exchangers. In turn, these modifications result in exorbitant costs associated with 
equipment maintenance, replacement of unrecoverable parts and scale removal. The overall cost of scaling in the 
industrialised world is estimated to be 26,850 million USD2,3.

Various methods have been reported for the prevention of CaCO3 scale formation, such as use of pH mod-
ifiers, the addition of chemical inhibitors, including polyelectrolytes, metal ions, ethylenediaminetetraacetate, 
organophosphates or nanoparticles, and approaches involving the modification of the surface of the equipment2–9. 
Among these techniques, the addition of chemical inhibitors is the one most commonly utilised, due to the ease of 
its implementation. However, this approach necessitates the continuous addition of chemicals to a large amount 
of brine, which is expensive to do. In addition, there is concern about the environmental consequences of this 
approach, in particular with respect to groundwater and river water, of releasing, after completion of the heat uti-
lisation process, large amounts of brine containing the chemical inhibitor, which may result in organic pollution 
and acidification.

Use of an electromagnetic field is another technique to prevent scale formation. This approach is based on the 
generation of electromagnetic fields within water conduits10–12. With respect to the technique based on chemical 
inhibitors, this method has the advantages of low cost and not requiring large amounts of chemicals, injection 
equipment and a chemical tank. Moreover, it does not cause pollution of the water environment. This has been 
used for more than a century, and a number of patents for magnetic scale treatment devices have been issued. 
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However, the mechanisms and effects of electromagnetic fields as they relate to scale deposition prevention have 
not been identified.

Umeki et al. have investigated the effect of applying a weak alternating current electromagnetic field (mag-
netic flux density: ~150 µT) on the zeta potential of CaCO3 particles in water13,14. The zeta potential of CaCO3 
particles dispersed in water changed as a result of the application of an electromagnetic field, and the magnitude 
of the change depended on the frequency of the electromagnetic field. When an electromagnetic field of 1–5 kHz 
frequency was applied, the zeta potential of CaCO3 particles was positive. When the frequency ranged between 6 
and 10 kHz, the zeta potential changed from positive to negative. They suggested that one of reasons that electro-
magnetic fields inhibit scale formation has to do with the electrostatic repulsion between the negatively charged 
surface of CaCO3 particles and the negatively charged surface of vessels or pipes.

Several techniques have been used to evaluate scale formation, such as a direct visual inspection, weighing and 
monitoring the water flow rate through a column15–18. However, these methods to detect changes in the amount 
of deposited scale are time-consuming, taking a few days to months to be performed. Previously, we proposed 
the use of a fibre optic sensor that relies on an exposed fibre core, halogen light and a spectrometer to monitor 
scale formation in geothermal brines19–22. The ability of the fibre optic sensor to detect the presence of scale was 
based on the percentage of total internal reflection within the fibre optic core, which is influenced by the high 
refractive index of the scale formed on the surface of an exposed fibre core. The advantages of using this type of 
sensor include high sensitivity, real-time remote monitoring, heat resistance, small size, ease of handling and 
cost-effectiveness. This analytical method is suitable for use in a geothermal field to monitor scale formation and 
to determine the inhibition of scale formation within just a few hours.

In this study, field tests were conducted on water from a hot spring in Matsushiro, Nagano, Japan. The objec-
tive was to rapidly determine the effectiveness of electromagnetic treatment as a way to inhibit CaCO3 scale 
formation by the fibre optic sensor. The results obtained employing the fibre optic sensor were compared with 
the scale mass change measured by applying the quartz crystal microbalance (QCM) method. A typical column 
test was then conducted to verify the effect of the treatment on the flow properties of the water; in particular, the 
flow rate of hot spring water subjected to electromagnetic treatment was measured as it passed through a column 
packed with zirconia beads.

To the best of our knowledge, this report is the first published evaluation of the effectiveness of electromag-
netic treatment for scale formation inhibition by rapid, real-time sensing carried out in a geothermal field. 
Notably, the results were carefully confirmed by comparison with those from QCM measurements and column 
flow tests. This study contributes to the understanding the mechanisms and effects of electromagnetic fields as 
they relate to scale deposition prevention.

Results
Sensor field test in 2015. A field test was performed in the hot spring in Matsushiro, Nagano, Japan on 
water characterised by high concentrations of calcium, carbonate, iron, sodium and chloride ions (Table 1). 
Figure 1 shows the transmittance responses at 1300 nm of a fibre optic sensor after the sensor was immersed in 
hot spring water subjected or not subjected to electromagnetic field treatment. The transmittance change was 
recorded in the 400–1600 nm range using a spectroscopic detector. Previously, we reported that the sensitivity 
of the fibre optic sensor for scale formation depended on the detection wavelength19. However, the relation-
ship between these transmittance changes was the same at any detection wavelength employed in the field tests. 
Therefore, the wavelength of 1300 nm were selected in this study.

As can be evinced from the results reported in Fig. 1, under conditions of no applied electromagnetic field, 
the transmittance of the fibre optic sensor started to decrease immediately, and reached a value that was about 
10% of the initial transmittance within 50 min, as a consequence of the deposition of scale on the surface of the 
fibre optic core. When an electromagnetic field was applied, the rate and degree of decrease in transmittance were 
smaller than the corresponding parameters measured in the ‘no-electromagnetic-field’ case. These results show 
that hot spring water treatment with an electromagnetic field effectively inhibited CaCO3 scale formation. In 
addition, the effectiveness of this approach to the inhibition of scale formation was successfully monitored with 
the fibre optic sensor.

14/11/201319 17/11/2015 9/11/2016

Temperature (°C) 44.0 48.2 48.5

pH 6.65 6.62 6.80

Na (mg/L) 4,500 4,500 4600

K (mg/L) 480 530 510

Ca (mg/L) 1,100 1,000 760

Mg (mg/L) 310 300 300

Cl (mg/L) 8,600 8,700 8700

SO4 (mg/L) 200 200 210

HCO3 (mg/L) 2,300 2,300 1500

SiO2 (mg/L) 170 150 170

Fe (mg/L) 19 18 16

Table 1. Chemical composition of hot spring water samples collected in Matsushiro, Nagano, Japan in different 
years.
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QCM test in 2015. QCM tests allow for the measurement of the mass change per unit area by detecting the 
change in frequency of a quartz crystal resonator resulting from the piezoelectric effect. QCM can detect mass 
changes at ng level. In the field test in 2015, the effectiveness of the electromagnetic treatment was also deter-
mined by QCM, which allowed the mass of the scale formed in hot spring water to be quantified. In particular, 
the increase in the mass of the scale deposited on the quartz crystal placed in the hot spring water sampled into a 
QCM cell could be measured directly. Figure 2 reports the change in mass of the scale formed on a quartz crystal 
surface in hot spring water either subjected or not subjected to electromagnetic treatment. The differences in 
mass change between treated and untreated water samples observed by QCM were smaller than those measured 
using the fibre optic sensor. However, a trend was apparent in the results of both sets of experiments, whereby 
electromagnetic treatment inhibited scale formation. Notably, water treatment with an electromagnetic field of 
8 kHz frequency was observed to be as effective in inhibiting scale formation when measured by QCM as when it 
was done by fibre optic sensing.

Column flow test in 2015. Column flow tests enable researchers to directly measure the effect that scale 
formation has on the flow properties of a water sample. In fact, by performing these tests, the continuous moni-
toring of the flow rate, and hence the extent of scale formation in a column, can be achieved. Column flow tests 
were thus carried out to measure the effectiveness of the inhibition of scale formation achieved by the electromag-
netic treatment of water samples. The values thus obtained were then compared with their counterparts measured 

Figure 1. Transmittance response monitored using a fibre optic sensor at 1300 nm as a function of time after 
sensor immersion in hot spring water subjected (4 kHz 5 mT, 8 kHz 5 mT and 16 kHz 5 mT) or not subjected 
(No treatment) to treatment with an electromagnetic field. Tests were performed in 2015 on water samples from 
the hot spring of Matsushiro, Nagano.

Figure 2. Mass change of the scale deposited on a quartz cell placed in hot spring water subjected (4 kHz 5 
mT and 8 kHz 5 mT) or not subjected (No treatment) to electromagnetic field treatment as monitored by the 
quartz crystal microbalance analyser. Tests were conducted in 2015 on water samples from the hot spring in 
Matsushiro, Nagano.
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via the fibre optic sensor test. Hot spring water samples subjected or not subjected to treatment with an electro-
magnetic field at 8 kHz frequency and 5 mT magnetic flux density flowed into the column. The flow rate of the hot 
spring water flowing out from the drain port was measured. The time-dependent changes in the flow rate of water 
samples subjected or not subjected to electromagnetic treatment are reported in Fig. 3. The flow rate decreased as 
a consequence of the formation of carbonate scale within the column. The effect on the flow rate of the treatment 
with an electromagnetic field of 8 kHz frequency and 5 mT magnetic flux density was clearly visible after 13 h.

Field test in 2016. A field test was conducted again in 2016 in Matsushiro to verify the effect that water 
electromagnetic field treatment had on scale formation. In the experiments in 2016, the transmittance change 
associated with scale formation varied greatly in measurements performed on water samples not subjected to 
electromagnetic treatment. In 2016, the concentrations of Ca2+ and HCO3

− were lower than observed values 
in 2013 and 2015 (Table 1). In addition, Ca2+ concentration varied during the time in which the field test was 
conducted in 2016. The hot spring water in Matsushiro sources from a mixture of fossil sea water and rain water. 
It is suggested that the hot spring water in 2016 had been highly diluted by rainwater compared to other years. 
Therefore, evidence seems to suggest that the instability of the concentrations of chemicals in the water of the hot 
spring affected the measurements performed with the sensor. Consequently, an optical switch was connected to 
the fibre optic sensor to achieve the multipoint monitoring depicted in Fig. 4. In this system, the transmittance 
responses of water samples subjected and not subjected to electromagnetic treatment could be simultaneously 

Figure 3. Flow rate of hot spring water subjected (8 kHz 5 mT) or not subjected (No treatment) to 
electromagnetic treatment through the column. These experiments were carried in 2015 on water samples from 
the hot spring in Matsushiro, Nagano.

Figure 4. Schematic representation of the experimental setup utilised for the 2016 field test. Two tubes where 
geothermal water subjected and not subjected to electromagnetic treatment, respectively, flowed were located 
far enough from each other.
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monitored in the same experimental conditions. Figure 5 shows the transmittance responses to scale formation 
measured in hot spring water samples subjected and not subjected to treatment with an electromagnetic field of 
8 kHz frequency and 5 mT magnetic flux density. The decrease in transmittance observed in water samples not 
subjected to electromagnetic treatment was smaller than the corresponding parameter measured in 2015. This 
observation may be due to the decrease in the concentrations of Ca2+ and HCO3

− in the hot spring water alluded 
to above. Although the inhibition of scale formation was indeed observed under an applied electromagnetic 
field of 8 kHz frequency and 5 mT magnetic flux density, the observed effect was smaller than that observed in 
2015. The absorbance changes between water samples not subjected and those subjected to electromagnetic field 
treatment are shown in Fig. 5(B). Previously, we reported that the change in absorbance measured by the fibre 
optic sensor was related to the change in mass of the scale deposited on the fibre core22. When the frequencies of 
the applied electromagnetic fields had values of 4 and 6 kHz, the rate of scale formation was enhanced in relation 
to the case where the frequency of the applied electromagnetic field was 8 kHz. This trend was similar to that 
identified based on results from the QCM test in 2016 (Fig. 6). With respect to varying magnetic flux densities, 
electromagnetic fields of 8 kHz frequency and 5 and 7 mT magnetic flux densities demonstrated a tendency to 
inhibit scale formation; however, this tendency was not observed when an 8 kHz electromagnetic field of 3 mT 
magnetic flux density was utilised.

Figure 5. (A) Transmittance response measured using a fibre optic sensor at 1300 nm as a function of 
time after sensor immersion in hot spring water subjected (8 kHz 5 mT) or not subjected (No treatment) to 
electromagnetic field treatment. (B) Absorbance changes as a function of an electromagnetic field frequency 
and magnetic flux density, respectively, of hot spring water samples subjected to electromagnetic field treatment 
with respect to the case where water samples were not subjected to any electromagnetic field treatment; such 
changes were measured with a fibre optic sensor 80 min after electromagnetic field treatment. The relevant 
experiments were carried out in 2016 on water samples from the hot spring in Matsushiro, Nagano.

Figure 6. Mass change as monitored by the quartz crystal microbalance analyser method of scale deposited 
from hot spring water subjected (4 Hz 5 mT, 6 Hz 5 mT and 8 Hz 5 mT) or not subjected (No treatment) to 
electromagnetic field treatment. The relevant experiments were carried out in 2016 on water samples from the 
hot spring in Matsushiro, Nagano.
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Discussion
Based on the results of the sensor field test performed in 2015, the change in transmittance varied depending on 
the frequency of the electromagnetic field applied to the hot spring water. As mentioned above, the zeta poten-
tial of CaCO3 particles present in water depends on the frequency of the electromagnetic field applied to the 
water sample. In previous laboratory experiments, the zeta potential of CaCO3 particles changed from positive 
to negative as a consequence of the application of electromagnetic fields with frequencies above 6 kHz13,14. In the 
field test, the zeta potential of CaCO3 scale formed in the hot spring water might similarly change from positive 
to negative when an electromagnetic field is applied. The inhibition of CaCO3 scale formation resulting from 
electromagnetic field treatment could be due to electrostatic repulsion between the negatively charged surface of 
CaCO3 scale particles and the negatively charged quartz fibre core of the sensor.

In the QCM test, a similar tendency, whereby the electromagnetic treatment of water inhibited scale forma-
tion, was observed. However, the differences in extent of scale formation between water samples subjected to 
electromagnetic field treatment and those not subjected to this treatment were small compared to their coun-
terparts measured in the sensor field test. In QCM experiments, the mass of materials deposited on the crystal 
surface at the bottom of the cell was measured. In the case of field test, the QCM measured not only mass of the 
scale directly formed on the crystal surface, but also that deposited on the crystal surface after being precipitated 
in the hot spring water. Calculations made on the basis of Stokes’ law indicate that calcium carbonate particles 
with weights in the ng–µg range have sufficient settling velocity to be deposited at the bottom of the cell in 
the timescale of this experiment. As gravity will strongly influence the mass change of particles as compared to 
electromagnetic field, the differences in effect of electromagnetic treatment monitored by QCM was not clear 
compared to the sensor operated in flow system. From the result, the effect in electromagnetic treatment can be 
detected slightly as direct mass change by QCM. Moreover, the fibre optic scale sensor that can be used in flow 
systems was more suitable to the evaluation of the effectiveness of electromagnetic treatment for scale formation 
in hot spring water.

In the column flow test in 2015, the effect of the treatment of water with an electromagnetic field was clearly 
observed. Monitoring the water flow rate gives direct information on the amount of scale deposited on the column 
surface. We have carried out column flow tests in various geothermal fields, including that in Matsushiro17,23–27. 
Our results indicate that treatment of water with an electromagnetic field is an effective approach to inhibiting 
scale formation. In addition, the effectiveness of this approach can be easily measured using a fibre optic sensor 
via a protocol that can be completed in 1/30 of the time needed to perform the column test.

In experiments conducted as part of the sensor test performed in 2016, treating water samples with electro-
magnetic fields characterised by frequencies of 4 and 6 kHz slightly enhanced the extent of scale formation with 
respect to the case where no-electromagnetic-field had been applied. Furthermore, the effects of treatment with 
an 8 kHz electromagnetic field seemed to be smaller than those measured in 2015. In laboratory experiments per-
formed previously, the zeta potential of CaCO3 particles increased from ~+8 mV to ~+20 mV as a consequence 
of the application of an electromagnetic field with progressively increasing frequency, from 0 kHz (no applied 
field) to 4 kHz. Between 4 kHz and 10 kHz, the zeta potential of CaCO3 particles decreased, and, between 5 and 
6 kHz, the sign of the zeta potential changed from positive (+6 mV at 5 kHz) to negative (−5 mV at 6 kHz). This 
trend, whereby the value of the zeta potential of CaCO3 particles decreases, after initially increasing, as the fre-
quency of the applied electromagnetic field increases, matches the results obtained in the experiments performed 
using the fibre optic sensor in 2016. Therefore, it is suggested that the electromagnetic field frequency at which 
the zeta potential on the surface of CaCO3 particles assumes a zero value has changed between the field test per-
formed in 2015 and that performed in 2016. When, in experiments conducted in 2016, the frequency of the elec-
tromagnetic field was 4 kHz, scale formation was accelerated with respect to the no-electromagnetic-treatment 
scenario, due to an increase in the (positive) value of the zeta potential of scale particles. When the frequency was 
6 kHz, the zeta potential of the scale particles decreased slightly, leading to a situation whereby the rate of scale 
formation was close to that observed when no-electromagnetic-field treatment had been applied. In the 8 kHz fre-
quency case, the sign of the zeta potential of scale particles had turned to negative, leading to an inhibition of scale 
deposition. Hence, the frequency of the electromagnetic field applied to hot spring water may be insufficient for 
the zeta potential of the scale particle to be the lowest in the field test 2016, as compared with the result in 2015. 
The result according to which scale formation was inhibited by water treatment with an electromagnetic field 
characterised by a frequency of 8 kHz and accelerated by treatment with fields characterised by 4 kHz or 6 kHz 
frequencies was certainly similar to that obtained in the QCM field test performed in 2016. However, the rea-
sons for the shift observed between 2015 and 2016 in the frequency at which the zeta potential of scale particles 
assumes a value of zero remain unclear. One contributing factor (if not the main reason) is likely to be a change 
in the quality of the water from the hot spring. The effects that the calcium carbonate saturation index in the hot 
spring water and the frequency of the applied electromagnetic field have on the zeta potential of precipitated 
CaCO3 particles could be investigated in future studies. If the quality of geothermal water influenced the optimal 
conditions for water treatment with an electromagnetic field, it is important to evaluate easily and simply the scale 
formation by the fibre sensor capable of simultaneous multipoint analysis in geothermal fields.

Magnetic flux density is related to the intensity of the magnetic field. Based on the results of the present study, 
a magnetic flux density of 3 mT for an electromagnetic field of 8 kHz frequency was not high enough for the inhi-
bition of scale formation to be observed in hot spring water. When this parameter assumed values of 5 mT and 7 
mT, on the other hand, scale formation inhibition was indeed observed. However, the absorbance observed with 
an electromagnetic field with a magnetic flux density of 7 mT was slightly smaller than that observed with an elec-
tromagnetic field with a magnetic flux density of 5 mT. This effect should be studied under conditions whereby 
the frequency of the applied electromagnetic field is higher than 8 kHz, so as to maximise scale formation inhi-
bition. In short, the effectiveness of the electromagnetic treatment for scale formation inhibition was affected by 
the values of the magnetic flux density.
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Overall, the effectiveness of the electromagnetic filed treatment of hot spring water at Matsushiro for scale 
formation inhibition was successfully monitored with the fibre optic sensor. The effectiveness of this treatment 
was influenced by the values of the frequency and the magnetic flux density. However, these values should not be 
apply for other geothermal brine or hot spring water because the effectiveness of the electromagnetic filed treat-
ment will be affected by the quality of the water. The optimal conditions with respect to frequency and magnetic 
flux density should be carefully evaluated in geothermal fields via the fibre optic sensor approach.

Methods
Materials. A step-index multimode optical fibre (FT200EMT; Thorlabs, USA) with a 200-μm-diameter fused 
silica core was used. The fibre core has a refractive index of 1.451, and it is surrounded by a TEQSTM polymer 
cladding with a refractive index of 1.392 at 1020 nm. The sensor was fabricated by removing the 16-cm-long 
cladding from the centre of the fibre. The sensor was connected to a white-light source (ELI-050J-OPT3077; 
Mitsubishi Rayon, Japan) and an SA-100VRD visible–near-infrared (Vis–NIR) spectroscopy detector (Lambda 
Vision, Japan). Sensor transmittance values were acquired by recording the light intensity through the fibre before 
the said fibre was exposed to conditions whereby scale would form on its surface (I0) and the light intensity after 
fibre exposure to scale formation (I). Sensor transmittance in the fibre sensor was defined as T (%) = (I/I0) × 100.

A yoke coil for generating electromagnetic fields in the high-frequency range was prepared with a U-shaped 
Mn/Zn ferrite with a 1 mm diameter formal wire wound 24 times (L = 124.5 µH, Z = 6.2598 Ω (at 8 kHz)). The 
two ends of the wire were connected to a high-frequency power supply.

For QCM measurements, a quartz crystal with a gold layer of 100 Å thickness on a titanium adhesive layer 
(BAS, Japan) was used. A Teflon cell attached the quartz crystal was used in a thermostatic Faraday case (TB-1; 
BAS, Japan). A model ALS401C EQCM analyser was used to perform QCM measurements.

Field study in 2015. A field study was carried out from November 16th to November 20th, 2015 using water 
from a hot spring in Matsushiro, Nagano, Japan. The chemical composition of the hot spring water is summarised 
in Table 1. For the fibre optic sensor study, hot spring water was made to flow over the fibre optic sensor fixed 
inside an 11-litre bucket with tension applied to both ends. The coil was attached to the tube that directed hot 
spring water to the sensor.

In the QCM tests, hot spring water treated with an electromagnetic field was filtered through a membrane fil-
ter (pores: 0.22 µm), and 4 ml of the filtered water was transferred to a Teflon cell with a syringe. The mass change 
of the scale deposited on the quartz crystal in the cell was monitored using an EQCM analyser.

The column test was carried out according to the protocol described in previous studies from our group17,23–27. 
The test cell in a stainless-steel column contained Teflon cells inside (30 mm inner diameter × 500 mm length, 
282 mL internal volume). The cell was filled with zirconia beads (1 mm in diameter). Hot spring water treated 
with electromagnetic field flowed into the column. The flow rates (L/min) of hot spring water flowing out from 
the drain port were measured.

Field study in 2016. The second field test was conducted between November 8th and November 11th, 2016. 
In the experiments conducted as part of this test, a 1 × 4 optical switch was connected to the fibre optic sen-
sor, to realise the multipoint monitoring depicted in Fig. 4. Two input ports at the optical switch were used for 
the sensors in conditions whereby water had been subjected or not subjected to electromagnetic treatment. The 
unprocessed fibre was connected to another port and is used as a reference for optical intensity. An output port 
was connected to the spectroscopic detector with a FT200EMT fibre. A computer controlled the switch and the 
detector measured the intensity of the light passing through the fibres. Two tubes where hot spring water sub-
jected and not subjected to electromagnetic field treatment, respectively, flowed were located far enough apart to 
avoid ‘no-electromagnetic-field’ water being influenced. The QCM test was carried out implementing the same 
protocol utilised for the 2015 test.
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