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Most associative learning studies describe the salience of stimuli as a fixed learning-rate

parameter. Presumptive saliency signals, however, have also been linked to motivational

and attentional processes. An interesting possibility, therefore, is that discriminative

stimuli could also acquire salience as they become powerful predictors of outcomes.

To explore this idea, we first characterized and extracted the learning curves from mice

trained with discriminative images offering varying degrees of structural similarity. Next,

we fitted a linear model of associative learning coupled to a series of mathematical

representations for stimulus salience. We found that the best prediction, from the set of

tested models, was one in which the visual salience depended on stimulus similarity and

a non-linear function of the associative strength. Therefore, these analytic results support

the idea that the net salience of a stimulus depends both on the items’ effective salience

and the motivational state of the subject that learns about it. Moreover, this dual salience

model can explain why learning about a stimulus not only depends on the effective

salience during acquisition but also on the specific learning trajectory that was used to

reach this state. Our mathematical description could be instrumental for understanding

aberrant salience acquisition under stressful situations and in neuropsychiatric disorders

like schizophrenia, obsessive-compulsive disorder, and addiction.

Keywords: effective salience, acquired salience, acquired predictiveness, visual discrimination, associative

learning

INTRODUCTION

In nature, visual stimuli are organized in complex combinations. Animals must focus their visual
system on salient objects from visual scenes to extract relevant information for guiding their
behavior. The physical properties of the stimuli (v.gr. their structure or intensity) contribute to
establishing how salient or conspicuous they are (Itti and Koch, 2001; Pearce and Bouton, 2001).
Such effective salience specifies the relative capacity of a stimulus to stand out among other items
in the visual scene. Consequently, salient stimuli attract attention and increase the rate of learning
about them as well as other similar visual objects (Rescorla andWagner, 1972;Mackintosh, 1975; Le
Pelley, 2004; Treviño et al., 2013). From both behavioral and neurobiological perspectives, salience
is a fundamental stimulus-specific learning rate parameter.

Associative learning theories propose that the increments of associative strength decrease
linearly as a function of that value (Bush and Mosteller, 1951). Many models propose that the
rate of conditioning also depends on stimulus salience, but they generally represent it as a fixed
quantity that depends on the physical attributes of the stimulus (Rescorla and Wagner, 1972).
Thus, from this point of view, the contribution of discriminative stimuli to learning would be fixed
and determined, exclusively, by their effective salience. There is a body of literature, however, that
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reveals that this notion is incomplete. For example, learning
about an item depends on the amount of visual attention
that is paid to it (McFarland, 1971; Mackintosh, 1975; Ahissar
and Hochstein, 1993; Jiang and Chun, 2001; Baker et al.,
2004; Harris, 2006; Griffiths and Mitchell, 2008; Gutnisky,
2009; Roelfsema et al., 2010) and, also, pre-exposure to stimuli
uncorrelated with reinforcement reduces their associability
(Lubow and Moore, 1959). Thus, an interesting possibility would
be that discrimination learning also involves dynamic changes in
stimulus salience. Salience changes could be related to processes
such as motivation, attention, and arousal (Mackintosh, 1975;
Koch and Ullman, 1985; Desimone and Duncan, 1995; Kustov
and Robinson, 1996; Reynolds et al., 2000). Indeed, some theories
of selective attention propose that the salience of a stimulus
is not only a fixed consequence of its effective salience, but
it also varies with the subject’s experience with it and other
stimuli (i.e., acquired salience). Esber and Haselgrove (2011)
proposed that the net salience of a stimulus can be represented
by the sum of effective plus acquired components. From this
perspective, the total salience would initially depend on the
physical properties of the stimulus, but it would then also
vary with experience affecting the way subjects direct their
attention toward sensory stimuli (Mackintosh, 1975; Pearce and
Hall, 1980; Le Pelley, 2004; Esber and Haselgrove, 2011). There
are two main possibilities about how stimulus salience could
evolve with learning. One option is that salience would increase
if the stimulus “predicts reinforcement more accurately than
other stimuli present in the situation” but it would decrease
“if it predicts reinforcement less accurately” (Mackintosh,
1975). Alternatively, training stimuli could lose salience as they
become better predictors of a consequence (Pearce and Hall,
1980).

We have explored and characterized recently some of the
visual learning capacities of adult mice. We trained freely moving
animals to learn to discriminate between one conditioned
(CS+) and multiple non-conditioned (CS−i ) visual stimuli (i.e.,
images), which offered different degrees of structural similarity
(SSIM) with respect to the CS+ Wang et al., 2004; Treviño
et al., 2013. We’ve found that the sign and slope of the
SSIM gradients led to markedly different learning curves. More
precisely, training with negative similarity gradients led to a
faster learning rate and a higher (but less precise) average
choice performance than with positive gradients (Treviño et al.,
2013). Yet, although we made a detailed characterization of both
discrete and continuous behavioral measures during learning
(Treviño et al., 2013), we didn’t explore whether and how
the empirical learning curves could be described from the
perspective of associative learning theories. Motivated by this
question, we here tested a series of mathematical models aiming
to predict the empirical learning curves from the mice trained
with varying stimulus similarity (Treviño et al., 2013). We
adapted a basic differential equation for associative learning
coupled to an operator that defined stimulus salience in various
relevant ways. Notably, from the set of tested models, we found
that the best predictor was one in which we represented the
net salience as the sum of effective plus acquired components,
as previously suggested (Esber and Haselgrove, 2011). Thus,

our analytic results strongly support the idea that the net
stimulus salience can indeed vary as a function of the associative
history of discriminative stimuli (Mackintosh, 1975; Pearce
and Hall, 1980; Esber and Haselgrove, 2011; Treviño et al.,
2013). One implication of this interpretation is that learning
about discriminative stimuli depends on the specific effective
salience trajectory used to learn about them. We thus propose
that, at any given time, the external (effective) and internal
(acquired) salience elements determine which predictive value
will be assigned to conditioned stimuli (Treviño et al., 2011).
Understanding how exactly the brain processes salience is
a fundamental step to advance current associative learning
theories. Verifiable predictive models could become crucial to
understanding aberrant salience acquisition in stressful situations
and pathological states like schizophrenia, obsessive-compulsive
disorder, and addiction.

MATERIALS AND METHODS

Animals
We trained behaviorally naïve wild-type male mice (C57BL/6,
n = 88, P40-50, Charles River) in a dichotomic visual
discrimination task (Figure 1A). Mice were housed individually
under a 12/12 h light/dark cycle with free access to food and
water. Groups of 4–6 mice were trained during the light phase,
5 days a week. All animal experiments were carried out following
the animal welfare guidelines of the Max Planck Society (G-
171/10) and the Universidad de Guadalajara (SAGARPA, NOM-
062-ZOO-1999), in accordance with the NIH’s Guide for the Care
and Use of Laboratory Animals. The experimental protocol was
approved by the ethics comitee of the Instituto de Neurociencias,
Universidad de Guadalajara, Mexico.

Visual Discrimination Training
We trained the mice using a forced choice, swimming
discrimination task in which the mice controlled their decision
time autonomously (Treviño et al., 2013). We illustrate a
schematic view of the visual swimming task in Figure 1A.
In this task, the animals learned to associate that swimming
toward a conditioned stimulus (CS+) and reaching a transparent
submerged platform was rewarded with escape from water,
whereas swimming toward a non-conditioned stimulus (CS−)
was not. For every trial, we displayed the CS+ in a different arm
of the pool according to a Gellerman-like schedule (Treviño et al.,
2011; Herrera and Trevino, 2015). Choices were considered as
made, once the animals crossed an imaginary line that outlined
a decision area with visual access to both CS+ and CS− images
(Treviño et al., 2012). The animals were allowed to escape from
water 30 s after reaching the submerged platform. We repeated
the error trials until the animal made a correct choice (max.
five error repetitions). These sets of swims, ranging from 1 to
6, constituted a “training unit,” and they involved the same pair
of CS+/CS−i images (Figure 1B). The water temperature (21 ±

1◦C) and room illumination were kept constant throughout the
experiments, and the pool was wiped down daily with ∼70%
ethanol. A detailed description of other crucial elements of
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the task have been published previously (Treviño et al., 2013;
Treviño, 2014).

To create the training stimuli, we downloaded >1000 pictures
from the internet and digitally transformed and scaled them
to produce black-and-white, equiluminant (∼85 lux) images
with different irregularities in shape (Treviño et al., 2013). The
resulting images where white shapes on a black background, or
vice versa (i.e., the shape was the only relevant “feature”). We
further standardized these images by using a symmetric Gaussian
low-pass filter (60 pixel size, 30 pixel standard deviation; ∼0.30
cycles per degree [c/d]) to remove all the structural components
that surpassed a mouse’s visual acuity of ∼0.48 c/d (Treviño
et al., 2012). We illustrate examples of the resulting stimuli in
Figure 1B. We next used the structural similarity index (Wang
et al., 2004; Treviño et al., 2013; SSIM) to compare the similarity
across all combinations of image pairs (Figure 1B), and selected
an eccentric CS+ that had one of the highest standard deviations
of SSIM values against the rest of the CS− images (Treviño et al.,
2013).

We next sorted selected CS− with increasing (blue dots)
and decreasing (red dots) SSIM values relative to the CS+

(Figure 1C); this constituted the stimulus timeline for visual
discrimination training. We also created training programs
with increasing and decreasing inter-training unit gradients
of CS+/CS−i similarity (1SSIM). With these oscillating SSIM
gradients, we investigated how variations in discrimination
difficulty, imposed at the beginning or at the end of training
influenced learning. Altogether, we formed nine groups of mice
and trained them to discriminate images with either varying
(Groups 1–6) or fixed (Groups 7–9) SSIM (Table 1).

The panels in Figures 1C,D are labeled with encircled
numbers according to the “IDs” of the groups used in this table.
We calculated the average probability of making correct choices
(%correct ± %S.E.M) for each trial, and extracted the learning
curves of the different groups by using a moving average filter

TABLE 1 | Groups of mice trained with varying or fixed stimulus similarity

conditions.

ID Name Mice Training

condition

SSIM range

1 SSIMinc,wide 9 Increasing SSIM SSIM from

−0.07 to 1

2 SSIMdec,wide 9 Decreasing

SSIM

SSIM from

−0.07 to 1

3 SSIMinc,narrow 10 Increasing SSIM SSIM from 0.04

to 0.39

4 SSIMdec,narrow 10 Decreasing

SSIM

SSIM from 0.04

to 0.39

5 1SSIMinc,narrow 10 Increasing

1SSIM

SSIM from 0.04

to 0.39

6 1SSIMdec,narrow 10 Decreasing

1SSIM

SSIM from 0.04

to 0.39

7 SSIM0.04 10 Fixed SSIM SSIM = 0.04

8 SSIM0.32 10 Fixed SSIM SSIM = 0.32

9 SSIM1 10 Fixed SSIM SSIM = 1

(span = 30 trials, degree = 1; Figure 1D). The data in Figure 1

were published previously (Treviño et al., 2013) and constitute
the empirical reference for the mathematical analyses that we
developed throughout this work.

Model Fit and Parameter Estimation
To predict the visual discrimination learning curves, we
adapted a basic linear operator model of associative learning
(Bush and Mosteller, 1951; Rescorla and Wagner, 1972). The
model included a minimum salience threshold for learning, as
follows:

dV (t)

dt
=

{

α (t) β [λ (α) − V (t)] for α (t) ≥ αmin
−k1V (t) for α (t) < αmin&V (t) ≥ Vmin

0 for α (t) < αmin&V (t) < Vmin
(1)

whereV(t) is the cumulative amount of learning (i.e., the strength
of the [CS+/CS−i ]-unconditioned stimulus association); α(t) is
the net stimulus salience (related to the CS+/CS−i SSIM, see
below); β corresponds to the US salience (0 < β < 1; associated
with the intensity of the US), and λ(α) is the asymptote of
learning (i.e., maximum retention level). The core model for
the net salience during training was represented as the sum of
effective (φ) plus acquired (ε) salience components (Esber and
Haselgrove, 2011):

α(t) = φ(SSIM)+ ε(t) (2)

We defined φ and ε as either linear or a non-linear functions
of stimulus similarity (SSIM) and the associative strength
[V(t)], respectively. We tested for the following salience
formulations:

Model Nr. Total salience Effective + Acquired
salience(φ) salience(ε(t))

Model 1 (Equation 3): α (t) = c1
Model 2 (Equation 4): α (t) = c1 (1− SSIM)

Model 3 (Equation 5): α (t) = c1 (1− SSIM)n1

Model 4 (Equation 6): α (t) = c1 (1− SSIM)n1 + c2V (t)n2

Model 5 (Equation 7): α (t) = c1 (1− SSIM)n1 + c2 (λmax − V (t))n2

Model 6 (Equation 8): α (t) = c1 (1− SSIM)n1 + c2 (|λmax − V (t)|)n2

where c1, c2, n1, and n2 are constants. Also, we defined λ

as a sliding logistic function of the net salience, because we
assumed that the quality of sensory representation would degrade
gradually as salience reached αmin, compromising discrimination
and learning (Treviño et al., 2011):

λ (α) =
λmax

1+e−s(α(t)−αmin)
(9)

where s corresponds to the steepness of the sigmoid and α(t)
is the net salience of the stimulus. With this core model,
we assumed that maximum discrimination performance drops
toward zero when α ≤ αmin, but tends toward λmax for high α

values and when k2 → ∞ (i.e., λ(α) → λmax) (Rescorla and
Wagner, 1972). Also, we assumed that the effective salience of
a given stimulus equals that of any other stimulus multiplied
by their similarity [φi(t) = φj(t)

∗SSIMi, j] (Mackintosh, 1975;
Shepard, 1987; Pearce, 1994; Treviño et al., 2011).

To solve how the associative learning model would fit the
experimental learning curves from the mice, we implemented
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nonlinear programming routines using standard optimization
tools from MATLAB (The MathWorks, Inc., USA). With this
approach, we aimed finding the best model parameters that
produced learning curves that mimicked the empirical correct
choice records from the trained mice. Thus, we employed the
2nd order Runge-Kutta method to solve Equation (1) at discrete
intervals. Next, to find the model parameters that minimized
the residual sum of squares (RSS) between experimental data
and the model fit, we applied a generic nonlinear multivariable
optimization algorithm (sequential quadratic programming,
SQP).We used a step-size= 1 and initialized c1 and c2 with a zero
value for all groups. Importantly, β , c1, n1, k2, and φmin adopted
identical optimized values for all groups. We illustrate some of
the predicted learning curves in Figure 2.

To compare the “goodness of fit” among the different models,
we adopted the Akaike Information Criterion [AIC (Burnham
and Anderson, 2002)]. The AIC is a metric that seeks a model
with a high-quality fit to the observed values, yet with as
few free parameters as possible. The second order AIC (AICc)
compensates for sample size by increasing the relative penalty for
fits with small data sets:

AICC = n · ln

(

RSS

n

)

+2K +
2K (K+1)

(n− K − 1)
(10)

where RSS is the residual sum of squares between the model
and the empirical data, n is the number of observations (i.e.,
sample size), and K is the number of free parameters. We ranked
all models by taking the best approximation with the lowest
(most negative) AICC value. Next, we calculated the 1AICc as
the difference between the best model (smallest AICc) and the
AICC for each model (i.e., the best model has a 1AICC of zero).
Finally, to calculate the Akaike weights (wi), we took the relative
likelihood of each prediction and divided it by the sum of these
values across all models, as follows:

wi =
e−0.5·△AICC

∑R
r=1 e

−0.5·△AICC,r
(11)

These weights had a normalized value falling between 0 and 1,
corresponding to the probability that a given model becomes
the best approximation and with the sum of all weights being 1.
Overall, these coefficients take into account how well the model
fits the data (using the RSS), favoring descriptions with fewer free
parameters, as it penalizes the number of fitted parameters (K).

We displayed results as averages ± S.E.M and employed
parametric and non-parametric statistical tests with a significance
set at p < 0.05.

RESULTS

Learning Curves for Mice Trained with
Varying Similarity
We trained mice to learn to discriminate combinations of
CS+/CS− images (Figure 1A). The stimuli offered varying
degrees of structural similarity (SSIM; Wang et al., 2004; Treviño
et al., 2013; Figure 1B). The CS−i stimuli were either exchanged

on every trial or remained fixed during acquisition (Figure 1C).
The first two experimental groups were trained with stimuli
sorted with increasing (SSIMinc,wide; Figure 1C1, blue dots) or
decreasing (SSIMdec,wide; Figure 1C2, red dots) similarity values.
That is, this training consisted of sustained positive or negative
SSIM gradients ranging from −0.07 to 1. The SSIMinc,wide

group displayed an initial growth in its average correct choice
level, peaking at 88.5 ± 9.3% around the middle of training
and then decreasing when SSIM > 0.30 (Figure 1D1). By
contrast, the decreasing similarity group (SSIMdec,wide) displayed
a slower onset of correct choice behavior and higher maximal
performance of 98.7± 9.2% (Figure 1D2).

We next trained two additional groups of mice
(SSIMinc,narrow: Figure 1C3 and SSIMdec,narrow: Figure 1C4)
in which the maximum similarity was kept below SSIM =

0.39. This training ensured that CS+/CS− discriminability
remained fully uncompromised during acquisition (Treviño
et al., 2013). The correct choice level reached a plateau at
maximal performance in the SSIMinc,narrow group (Figure 1D3)
while the SSIMdec,narrow group displayed a slower onset for
correct choice and a higher average peak performance at the
end of training (Figure 1D4). We also tested training mice

with increasing (1SSIMinc,narrow: Figure 1C5) or decreasing
(1SSIMdec,narrow: Figure 1C6) oscillating gradients in similarity.
Both 1SSIM groups displayed similar learning rates and
maximum performance (Figure 1D5,6).

Finally, we trained mice with a fixed similarity of SSIM0.04 =

0.04 (Figure 1C7), SSIM0.32 = 0.32 (Figure 1C8), and SSIM1 =

1 (Figure 1C9). These groups allowed us to investigate how
different, but fixed similarities, led to specific learning rates and
peak discrimination performances (Rescorla and Wagner, 1972).
As expected, the SSIM1 mice failed to learn to discriminate
(Figure 1D9), but the other two groups showed increasing
learning rates when trained with SSIM0.32 (Figure 1D8) and
SSIM0.04 (Figure 1D7), respectively. Therefore, the learning rate
increased by lowering stimulus similarity whereas shape and
maximum retention level of the learning curves were determined
by the sign and slope of the SSIM gradients during training
(Treviño et al., 2013). Also, the changes in choice performance
through learning were slow and retained across daily sessions
(Karni and Sagi, 1993). The learning curves illustrated in
Figure 1D were described in detail previously (Treviño et al.,
2013) and serve as the empirical reference or “ground truth” for
the mathematical analyses performed in the following sections.

Testing Multiple Representations for
Stimulus Salience
We aimed to explore how the changes in stimulus similarity
during acquisition could explain the empirically observed
learning curves (Figure 1D). We used a simple linear operator
model of associative learning aiming to predict the evolution of
the associative strength (V(t); Bush andMosteller, 1951; Rescorla
and Wagner, 1972; Treviño et al., 2011). Our adaptation of
this core predictive model includes important considerations. It
assumes that the discrimination process does not lead to learning
when stimulus salience is below a minimum effective salience
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FIGURE 1 | Training paradigms and visual discrimination learning with heterogeneous stimulus similarity. (A) Drawing of the visual discrimination task

where two monitors are facing the ends of the arms of a Y-watermaze. They simultaneously display the conditioned (CS+) and non-reinforced (CS−) equiluminant

stimuli (100% contrast). A submerged transparent platform below the CS+ serves as the unconditioned stimulus (US). The position of both the CS+ and the platform

varies randomly on every trial. We placed the mice inside a release chute, and they learned to swim toward the CS+ because of the transparent platform positioned

below it. (B) Sample CS+ stimulus with different CS− stimuli during training trials. The difficulty of the discrimination task depends on the degree of structural similarity

(SSIM) between images, indicated on the top. (C) CS− stimuli can be arranged by increasing (blue dots), decreasing (red dots), or constant (black lines) similarity with

respect to the CS+. (D) Corresponding empirical learning curves for the nine groups of mice trained with the corresponding SSIM programs.

threshold [α(t) ≤ αmin, V(t) < Vmin]. Yet, it will produce
learning when α(t) > αmin. Also, we defined the asymptote of
learning (λ) as a sliding logistic function of α (see Materials
and Methods), as proposed previously (Treviño et al., 2011).
We did so because we reasoned that the quality of sensory
representation should degrade gradually as the salience reaches
αmin, compromising discrimination and learning (Treviño et al.,
2011, 2013). The resulting equations predict that, at any given
trial, the change in V(t) will be proportional to the product
of the CS+/CS− and the US saliencies acting linearly on the
difference between the asymptote of learning [λ(α)] andV(t) (see
Materials andMethods). In the simplest case, if α were a constant,
V(t) would increase in a negatively accelerated manner, as V(t)
approached λ(α) (Rescorla and Wagner, 1972).

One remarkable feature of our experimental data set is the
fact that we changed the stimulus similarity during training

(Groups 1–6; Figure 1C). In the next sections, we will illustrate
how we explored the predictive power of different mathematical
representations for stimulus salience. More concretely: our
main hypothesis was that the net stimulus salience could
be represented as the sum of effective (φ) plus acquired (ε)
components (Esber and Haselgrove, 2011). In the equations we
used, the effective salience (φ) derived explicitly from the visual
properties of the stimulus (i.e., a function of SSIM) whereas the
acquired salience [ε(t)] depended on the reinforcement history
(Mackintosh, 1975; Pearce and Hall, 1980).

We tested and compared the predictive power of six models
that represented stimulus salience with different equations (see
Materials and Methods). For the first three models, we defined
the net salience as an effective salience component only [i.e.,
α(t) = φ(SSIM)]. We set such effective salience as being either
a simple constant (Model 1; Rescorla and Wagner, 1972), or
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FIGURE 2 | Predicted learning curves using different parameterizations for stimulus salience. Predicted learning curves (red lines) fitted to the empirical

average choice records from mice trained with varying and constant stimulus similarity. Salience was represented as either a simple constant (A), as a linear (B), or

non-linear (C) function of stimulus similarity (SSIM), or as the sum of two non-linear functions, one dependent on stimulus similarity, and the other on V (t) (D).

Color-maps display the sum of squares (6RSS) for all nine experimental groups (same color scale for all cases). In (C) we mapped for different values of n1 (n1 ≥

0:0.1:6, y-axis), whereas in (D) we mapped for n1 (y-axis) and n2 (n2 = 0:0.1:6; x-axis). Common to all groups: β, c1, k2, and αmin. In (D), the red and green lines

correspond to the best “unbound” (0 > φ ≥ ∞;0 > ε ≥ ∞) and “bound” (0 > φ ≥ 1;0 > ε ≥ 1) solutions, respectively. The best parameter fits for the unbound

solution were β = 0.0154; k1 = 0.0014; Vmin = 0.55; λmax = [1, 0.97, 0.77, 0.95, 0.84, 0.85, 0.70, 0.90, 0.93]; s = 80; αmin = 0.25; c1 = 0.3827; n1 = 1.5; c2 =

[0.31, 4.01, 12.91, 2.15, 2.92, 1.41, 0.00, 3.36, 9.56]; n2 = 6, whereas those for the bound solution were β = 0.0140; k1 = 0.0014; Vmin =0.55; λmax = [1, 0.95,

0.77, 0.95, 0.85, 0.86, 0.70, 0.90, 0.93]; s = 80; αmin = 0.25; c1 = 0.6762; n1 = 2.7; c2 = [0.27, 4.57, 10.88, 2.30, 2.64, 1.08, 0.00, 3.63, 7.11]; n2 = 5.6. The

arrangement of the panels with the learning curves is identical to the one described for Figures 1C,D.
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as a constant that depended linearly (Model 2), or non-linearly
(Model 3) on stimulus similarity (SSIM; Mackintosh, 1975;
Pearce and Hall, 1980; Le Pelley, 2004). This description for
effective salience (φ) constitutes an objective approach to quantify
the structural differences among visual stimuli (Wang et al.,
2004; Treviño et al., 2013), and it is consistent with the fact
that it should be positively correlated with α (Mackintosh, 1975).
For the last three salience formulations, we added a second
component representing the acquired salience (ε). Model 4
involved a linear (n2 = 1) or a non-linear (n2 6= 1) function of
the amount of learning [V(t)], allowing ε to grow monotonically
with learning. Formally, this model implied that the ε would
grow as a stimulus became a better predictor of an outcome
(i.e., leading to a smaller prediction-error; Mackintosh, 1975). In
contrast, for models 5 and 6, we defined ε in such a way that it
would decrease with learning [because V(t) tends toward λmax

with training repetitions]. These two last models implied that the
acquired salience would decrease with learning as the outcome of
a trained stimulus became predictable (Pearce and Hall, 1980).

We employed non-linear programming techniques to fit all
the models to the experimental data (seeMaterials andMethods).
This approximation aimed to find those model parameters
that minimized the residual sum of squares (RSS) between
the experimental data and the model fits. We quantified the
“goodness of fit” by applying the solver to the empirical learning
curves from the nine experimental groups and then calculating
the sum of RSS (6RSS) using different saliency descriptions
(Figure 2). The color maps in Figure 2 illustrate the 6RSS values
mapped for different λ(α) slopes and αmin values. In some cases,
we tested for various n1 values (Model 3; n1 = 0:0.1:6; Figure 2C)
or the combination of multiple n1 (y-axis) and n2 values (x-axis;
Model 4; n1 = 0:0.1:6, n2 = 0:0.1:6; Figure 2D). To enable valid
comparisons, we applied the same color scale for all panels. The
predicted learning curves (in red) correspond to the solutions
that produced lowest 6RSS for each model using “unbound”
salience ranges (0 > φ ≥ ∞; 0 > ε ≥ ∞). The green dotted
line in Figure 2D corresponds to the solution to Model 4 with
‘bound’ salience conditions (i.e., 0 > φ ≥ 1; 0 > ε ≥ 1). We
provide the optimized parameters for the two best solutions in
the legend of Figure 2. The predicted learning curves for salience
models 5 and 6 are not illustrated.

A Model with Effective Plus Acquired
Salience Predicts the Learning Curves
We used the second order Akaike Information Criterion (AICc)
to compare and select the best description, from the models
tested, for stimulus salience. Using an information theory
approach (Burnham and Anderson, 2002), we seeked a model
that presented a good fit to the observed data (Figure 3A),
yet with as few free parameters as possible. This method
also takes into account sample size by increasing the penalty
for small data sets (see Materials and Methods). Finally, we
calculated the Akaike weights (wi) for each model (Table 2 and
Figure 3B). Individual weights had a value between 0 and 1,
corresponding to the probability that a given model constitutes
the best approximation (6w = 1), which thus provides a
quantitative estimation of the relevance of the models under
consideration. The saliency models 1, 2, 3, and 6 had minor
Akaike weights (<1%). However, the fourth salience model
captured the strongest weights with 27 ± 15% with unbound
conditions and 56± 19% with bound conditions. The fifth model
captured 16 ± 12% of the total weight (paired t-tests against
models 1,2,3, and 6, ∗p < 0.05, ∗∗p < 0.01; Figure 3B).
Therefore, the Model 4 (“bound” conditions) provided the best
approximation from all models tested (One-way ANOVA multi-
comparison test; F(6, 55) = 4.80, p < 0.001).

We next solved lambda (Equation 9) by using the best
parameter fits with the best model (model 4, bound conditions).
The obtained relationship between lambda and alpha resembled
a Heaviside step function indicating that these two variables
are independent from each other (Figure 3C). Therefore, this
means that we can treat lambda as a constant, yet this does not
impair our conclusions because the equations we used to describe
lambda covered this scenario (λ(α)→ λmax when s→ ∞).

Evolution of Acquired Salience with
Learning
The previous results revealed that a salience representation using
effective plus acquired salience provided a better description
of the learning curves compared to models considering the
effective salience only. Yet, how does the acquired salience evolve
with acquisition? Salience could increase or decrease depending

TABLE 2 | Comparison of model fits with different free parameters.

Group averaged values

Model K RSS AICC 1i wi

1 4 2.82±0.64 −1353.40± 120.76 475.91± 109.06 0.00±0.00

2 5 1.33±0.16 −1516.20± 83.19 313.11± 111.33 0.01±0.01

3 6 1.28±0.15 −1523.42± 84.11 305.88± 108.78 0.00±0.00

4 7 1.04±0.12 −1583.89± 92.83 245.42± 101.92 0.27±0.15

5 7 1.09±0.33 −1734.10± 191.00 95.21± 47.82 0.56±0.19

6 7 0.95±0.10 −1604.58± 95.61 224.72± 96.45 0.16±0.12

7 7 1.13±0.14 −1560.93± 91.53 268.38± 101.30 0.00±0.00

We arranged in columns (from left to right): Model number, number of free parameters, the 6RSS (sum of residual sum of squares), the second order Akaike coefficients, the difference

between model with lowest AICC (1i ) and Akaike weights (wi ).
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FIGURE 3 | Best model selection. The bar plots display the group average residual sum of squares (A) and the Akaike weights (B) for the saliency models tested

(Average ± S.E.M). (C) Plot of lambda vs. alpha using the best parameter fits described in Figure 2 (“bound” conditions). The pattern resembles a Heaviside step

function suggesting that lambda does not depend on alpha.

on how good or bad a stimulus predicts its consequences
(Mackintosh, 1975). Alternatively, the salience could decrease (or
increase) as the stimulus becomes a better (or worse) predictor
of its consequences (Pearce and Hall, 1980). To distinguish
these two possible scenarios in our data, we solved the salience
equations employing the best parameter fits with the best
predictive model. In Figure 4, we illustrate the numeric solutions
for the effective [φ(SSIM); left], acquired [ε(t); middle] and
total salience [α(t) = φ(SSIM) +ε(t); right] with “unbound”
(upper row; Figure 4A) and “bound” (lower row; Figure 4B)
conditions. The trajectories for these saliency variables were quite
similar for both solutions. As expected, the effective salience
φ varied with an opposite slope with respect to changes in
similarity (SSIM), because it is proportional to 1-SSIM (see
Materials and Methods). The acquired salience, on the other
hand, increased monotonically for all training programs except
SSIMinc,wide (Mackintosh, 1975). For this group, the acquired
salience had a region of negative slope linked to the systematic
drop in effective salience and the decay of V(t) (green arrow,
Figures 4A,B, middle). As a result, almost for all groups, the
total salience grew slowly (on average) because it consisted of
the sum of effective plus acquired salience. Only the SSIMinc,wide

group had a minor portion with monotonic reduction in net
salience, because it combined the decay for both the effective and
the acquired salience. These results are consistent with the idea
that the acquired salience grows as a stimulus becomes a better
predictor of an outcome (Mackintosh, 1975).

The Learning Trajectory Determines the
Maximum Acquired Salience
In this last section, we explored some of the possible predictions
derived from the dual salience model. To do so, we defined
a virtual training program based on two epochs. For the first
epoch (trials 1–300), we used linear arrays of SSIM changing
through discrete training steps (step-size = 1). These numbers
represented training stimuli with different similarities yet the
programs consisted of the same stimuli, sorted in ascending
(blue), or descending (red) order, respectively. Note that
subtracting these two scenarios maximizes the relative difference

in SSIM between training programs. The second epoch (trials
301–600), consisted of training with constant SSIM ensuring a
total salience above αmin. To simulate the discriminative learning,
we took the virtual SSIM programs described above (Figure 5A)
and, using the optimized parameters from the best predictive
model (i.e., model 4 “bound” conditions), we solved Equation
(1) by using the Runge-Kutta method with discretized time-steps
(seeMaterials andMethods).We then extracted the values for the
effective (Figure 5B), acquired (Figure 5C), and net (Figure 5D)
saliencies, and also for the associative strength (Figure 5E). As
expected, the temporal arrangement of SSIM determined the
shape of the learning curves. When stimuli had a total salience
below αmin, they were undetectable, V(t) did not increase, and
the learning curves decayed toward chance level due to the lack
of reinforcement [0 ≤ V(t) ≤ 1]. Notably, when similarity was
held constant during the second epoch, the group trained with
positive SSIM changes always performed below the group trained
with negative SSIM gradients (Figure 5E). To further explore
these differences, we took the peak values for the acquired and
net saliencies observed during the first 300 trials (shaded region
in the panels) and plotted them against the SSIM slope during
training. Interestingly, although the maximum acquired salience
was similar for the groups trained with positive and negative
SSIM slopes (Figure 5F), the peak net salience was always bigger
for negative (red lines) than for positive (blue lines) SSIM
gradients (Figure 5G). This demonstrates that the differences in
the trajectories in associative strength were due to the different
arrangements of effective salience during training leading to a
bigger net saliencies for the group trained with negative SSIM.
Such differences in net salience provide a satisfactory explanation
as to why the temporal arrangement of stimuli with the same
effective salience can produce profoundly different learning
curves (Treviño et al., 2013).

DISCUSSION

We adapted a mathematical model in order to predict the choice
records from nine groups of mice trained with heterogeneous
visual stimuli (Treviño et al., 2013). Specifically, we compared
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FIGURE 4 | Changes in effective and acquired salience through training. Dynamic changes in effective (blue lines), acquired (green lines), and total (black lines)

salience for the best predictive model parameters using “unbound” (0 > φ ≥ ∞;0 > ε ≥ ∞; A) and “bound” (0 > φ ≥ 1;0 > ε ≥ 1; B) salience conditions. The gray

lines on the right panels correspond to the predicted associative strength curves.

the predictive power of a simple associative learning rule coupled
to six different saliency descriptions with the idea of gaining
insight into the salience mechanisms involved in the learning
process. Several studies have assumed that the contribution
of the conditioned stimuli to learning is fixed (Bush and
Mosteller, 1951; Rescorla and Wagner, 1972). Here, we explored
a complementary view: we tested whether our empirical data
could be explained by learning rules that involved a more flexible

representation for stimulus associability, as suggested by other
authors (Mackintosh, 1975; Pearce and Bouton, 2001; Le Pelley,
2004; Esber and Haselgrove, 2011). Indeed, we coupled our
learning model to functions that allowed us to represent the
stimulus salience in different relevant ways. By using the Akaike
Information Criterion (AIC), we found that the best predictive
model was one in which we defined the total salience as the sum
of effective plus acquired components. The effective salience was
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FIGURE 5 | Differences in peak salience for training programs with identical stimuli. (A) Synthetic creation of SSIM training programs consisting of a variable

SSIM epoch followed by a constant one. The first, “variable” epoch (from trial 1 to 300) was created using linear ramps with positive (blue) and negative (red) SSIM

slopes. (B) These arrangements consist of the same stimuli, sorted in ascending (blue) or descending (red) order, respectively. The second, “constant” epoch (trials

301–600) consisted of training with the same constant SSIM, one that led to a net salience α(SSIM) > αmin. Solving Equation (7) (see Materials and Methods) we

display the effective (B), acquired (C), and net (D) salience. To simulate discriminative training, we took the optimized parameters from the best predictive model

displayed in Figure 2D (“bound” salience; green dotted line) and numerically solved Equation (1) (see Materials and Methods). We illustrate the predicted learning

curves in panel (E). The overall differences in the learning curves can be explained by the differences in net (G) but not in acquired (F) peak salience during training.

a fixed quantity that depended only on the physical attributes
of the stimuli whereas the acquired salience depended on how
the associative strength changed during acquisition. This second
component allowed the net salience to change as a result of
learning about the outcome of the trained stimuli (Lawrence,
1949, 1950; Mackintosh, 1975; Esber and Haselgrove, 2011).

The exact definitions for effective and acquired saliencies were
relatively unimportant to us because there are multiple other
ways in which they could be formulated. Yet, we avoided some
specific combinations of variables due to analytical reasons.
For example, variables that are introduced into formulas as
multiplicative factors are not structurally identifiable. This
is because there is an infinite number of possible values
that such variables could adopt to solve the mathematical
problem: “a change in one parameter can be compensated by a
proportional shift in the other one, still producing a satisfying fit
between experimental data andmodel predictions” (Dochain and
Vanrolleghem, 2001).

The structural similarity index (SSIM; Wang et al., 2004)
constitutes a useful quantitative tool for assessing perceptual
similarity both in humans (Wang et al., 2004) and mice

(Treviño et al., 2013). We used this index to compare the
similarity among images and defined the effective salience as
a non-linear function of it. Moreover, we assumed that the
effective salience of a stimulus could be represented by the
salience of any other stimulus times the similarity between
them (Mackintosh, 1975; Pearce, 1994; Treviño et al., 2011).
This notion implied that the changes in associative strength
were extracted through generalizations across stimuli (Lawrence,
1952; Shepard, 1987; Dosher and Lu, 2007; Cleland et al., 2009).
Behavioral generalization is a process in which similar stimuli
become associated with the same contingency and has been
used to assess perceptual similarity in diverse animal models
(Lawrence, 1949, 1952; Pearce, 1987; Shepard, 1987; Dosher
and Lu, 2007). The psychometric function that describes how
different stimuli group together is called generalization gradient
and decreases with perceptual similarity distance (Shepard,
1987). It would be of particular interest to explore how the
changes in effective salience during training influence the shape
of the generalization gradient.

Many learning models propose that conditioned stimuli are
processed with constant salience (v.gr. Rescorla and Wagner,
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1972). In nature, however, salience is variable because context
and experience change dynamically. Indeed, there is ample
evidence that saliency signals depend on prior experience as
they can be acquired via contiguity (Lawrence, 1949; Sutherland
and Mackintosh, 1971). Recently, Esber and Haselgrove (2011)
developed an attentional model based on effective (i.e., stimulus-
driven) plus acquired salience. Inspired by their model, we
defined our equations in such a way that the acquired salience
would evolve with the associative history of trained stimuli
(Mackintosh, 1975; Pearce, 2008; Esber and Haselgrove, 2011).
This formulation allowed the net stimulus salience to grow or
decay slowly, depending on how the subjects learned about
the predictive power of the stimuli (i.e., the learning trajectory;
Mackintosh, 1975). Our analytical results revealed that, as
suggested previously, training with a fixed stimulus increased
the acquired salience through learning (Mackintosh, 1975). One
important implication of this explanatory frame is that stimuli
with the same effective salience (i.e., identical stimuli) can have
different net saliencies and vice versa (i.e., different stimuli having
the same net salience).

Theories of selective attention propose that learning about a
stimulus requires attending to that particular stimulus on the first
place. They also claim that a spatial “saliency map” can describe
the salience of an entire visual scene, allowing the detection of
locations with distinctive visual attributes (Gottlieb et al., 1998;
Itti and Koch, 2001). The activity of some neurons in the visual
cortex is involved in the computation of elementary features
of the stimulus including a “preliminary” saliency map (Itti
and Koch, 2001; Li, 2002). Such an initial salience computation
in the visual cortex is a “bottom-up”, stimulus-driven signal
that contains information about how different is a stimulus
from its surroundings (Koch and Ullman, 1985; Ahissar and
Hochstein, 1993; Desimone and Duncan, 1995; Reynolds et al.,
2000; Li, 2002; Baker et al., 2004; Gutnisky, 2009). Our results
support this view that, indeed, the physical properties of a
stimulus determine its initial salience, but then, along longer time
scales, the stimulus salience will also evolve with experience. We
propose that the effective stimulus salience is thus a perceptual
consequence of a complex interaction of the target stimulus with
other surrounding stimuli. This information is then processed by
cortical sensory neurons, which change their response properties
based on prior experience (Gilbert et al., 2009; Sasaki et al.,
2010). Other brain areas involved in processing salience signals
include the ventral visual pathway (Mazer and Gallant, 2003;
Serences and Yantis, 2007), the frontal eye fields (FEF; Thompson
and Bichot, 2005; Serences and Yantis, 2007), the orbitofrontal
cortex (Lucantonio et al., 2012; Ogawa et al., 2013) and some
subcortical structures such as the superior colliculus (SC; Kustov
and Robinson, 1996) and the pulvinar (Robinson and Petersen,
1992).

Amultitude of factors can trigger changes in stimulus salience.
Rescorla and Wagner (1972) acknowledged the fact that the
salience of a stimulus could decrease through pre-exposure to the
stimulus. This pre-exposure effect to the CS+ is generally referred
to as “latent inhibition” (LI) and has been demonstrated in a
number of animal species (Lubow and Moore, 1959; Le Pelley,
2004). One common interpretation for LI is that it arises from
a reduced stimulus salience as a result of an experience with

the stimulus without consequence in the non-reinforced “pre-
exposure” phase (Lubow and Moore, 1959). Such a reduction in
the learning rate produced by LI could reflect the capacity of
individuals not to attend to, or to ignore, stimuli that predict
no significant consequences (Weiner, 2003). Interestingly, LI
is disrupted in rodents injected with amphetamines (which
promote dopamine [DA] release) leading to psychotic symptoms,
and this is reversed by treatment with antipsychotic drugs (which
potentiate LI). Pharmacological disruption LI is thus considered
to provide an animal model of some of the symptoms of
schizophrenia (Weiner, 2003).

To make optimal decisions, animals must integrate
information about their previous actions and compare them
with their current needs (Lucantonio et al., 2012). They are
particularly receptive to events that violate their expectations,
which in turn facilitate associative learning (Mackintosh, 1975;
Pearce and Bouton, 2001). Such a mismatch between expectancy
and experience constitutes a prediction-error, driving learning
through the allocation of attention to specific stimuli in the
environment (Rescorla and Wagner, 1972; Mackintosh, 1975).
Prediction errors and expectancies of reward are represented by
midbrain DA neurons (Schultz, 2013) which send projections
to the prefrontal and orbitofrontal cortices (Gottfried et al.,
2003; Corlett et al., 2007; Mainen and Kepecs, 2009). A current
proposal is that a dysregulated, hyperdopaminergic state in
patients with psychiatric disorders like schizophrenia (and
also in drug addiction), leads to disrupted prediction-error
processing and aberrant assignment of salience. From this
point of view, psychotic states are preceded by an exaggerated
release of DA providing motivational significance to irrelevant
stimuli (Kapur, 2003; Corlett et al., 2007; Lucantonio et al.,
2012). Notably, psychostimulant agents that trigger DA release
(v.gr. amphetamines) are associated with de novo psychosis,
whereas antipsychotics that reduce DA transmission, assist in
the resolution of the symptoms (Kapur, 2003; Weiner, 2003).
For these reasons, we believe that understanding how salience
is acquired will be a fundamental step to understand sensory
information processing in normal and pathological conditions.
The analytical tools that we developed in this work could enable
the characterization of aberrant salience acquisition in animal
models of schizophrenia.
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