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Abstract
Background: Probabilistic models for sequence comparison (such as hidden Markov models and
pair hidden Markov models for proteins and mRNAs, or their context-free grammar counterparts
for structural RNAs) often assume a fixed degree of divergence. Ideally we would like these models
to be conditional on evolutionary divergence time.

Probabilistic models of substitution events are well established, but there has not been a completely
satisfactory theoretical framework for modeling insertion and deletion events.

Results: I have developed a method for extending standard Markov substitution models to include
gap characters, and another method for the evolution of state transition probabilities in a
probabilistic model. These methods use instantaneous rate matrices in a way that is more general
than those used for substitution processes, and are sufficient to provide time-dependent models
for standard linear and affine gap penalties, respectively.

Given a probabilistic model, we can make all of its emission probabilities (including gap characters)
and all its transition probabilities conditional on a chosen divergence time. To do this, we only need
to know the parameters of the model at one particular divergence time instance, as well as the
parameters of the model at the two extremes of zero and infinite divergence.

I have implemented these methods in a new generation of the RNA genefinder QRNA (eQRNA).

Conclusion: These methods can be applied to incorporate evolutionary models of insertions and
deletions into any hidden Markov model or stochastic context-free grammar, in a pair or profile
form, for sequence modeling.

Background
Probabilistic models are widely used for sequence analysis
[1]. Hidden Markov models (HMMs) are a very large class
of probabilistic models used for many problems in bio-
logical sequence analysis such as sequence homology
searches [2-4], sequence alignment [5], or protein gene-
finding [6-8]. Stochastic context-free grammars (SCFGs)

are another class of probabilistic models used for struc-
tural RNAs for problems such as RNA homology searches
[9-13], RNA structure prediction [14,15], and RNA gene-
finding [16].

Sequence similarity methods based on HMMs or SCFGs
can take the form of profile or pair models and are very
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important for comparative genomics. These probabilistic
methods for sequence comparison assume a certain
degree of sequence divergence. For instance, in profile
models (either profile HMMs [2-4] or profile SCFGs
[12,13]) a sequence is compared to a consensus model.
Profile models must allow for the occurrence of insertions
and deletions with respect to the consensus, and they do
so by using state transition probabilities that assign some
position-dependent penalties for modifying the consen-
sus with insertions or deletions. Similarly, in pair proba-
bilistic models [8,16] two related sequences are compared
(aligned and/or scored). Pairwise alignments need to
allow for substitution, insertion and deletion events
between the two related sequences. Substitutions are
taken care of by residue emission probabilities, while
insertion and deletion events are generally taken care of
by state transition probabilities as in the case of profile
HMMs.

In the BLAST programs [17], the score of a pairwise align-
ment is determined using substitution matrices which
measure the degree of similarity between two aligned res-
idues. Similarly, in pair probabilistic models, residue
emission probabilities are based on substitution matrices.
The evolution of substitution matrices has been studied at
large for many different kinds of processes: nucleotides,
amino acids, codons, or RNA basepairs [18-23]. The evo-
lution of emission probabilities using substitution matri-
ces is easily integrated into probabilistic models both for
HMMs [24-29] and for SCFGs [14].

In probabilistic models, insertion and deletion events
(indels) are sometimes described by treating indels as an
additional residue (gap characters) in a substitution
matrix. More often they are described using additional
hidden states, where transition probabilities into those
states represent the cost of gap initiation and transitions
within those states represent the cost of gap extension. If
the cost of gap initiation and gap extension are identical,
it is referred to as a linear gap cost model. Hidden states
allow arbitrary costs for gap initiation and gap extension,
which is traditionally referred to as an affine gap cost
model. Treating gaps as an extra character in a substitution
matrix is equivalent to assuming a linear gap cost model.
The parameters that modulate those processes should be
allowed to change as the divergence time for the
sequences being compared is varied. It has been difficult
to combine probabilistic models such as profile and pair
HMMs or SCFGs with evolutionary models for insertion
and deletions [30-33]. Methods to evolve transition prob-
abilities are not as well developed as those describing sub-
stitution matrices, but significant effort is currently aimed
at this problem [34-41]. Models incorporating the evolu-
tion of insertions and deletions in the context of probabi-
listic models such as profile HMMs or pair models are a

very important goal in order to make those probabilistic
models more realistic.

I encountered this problem in working on QRNA, a com-
putational program to identify noncoding RNA genes de
novo. QRNA uses probabilistic comparative methods to
analyze the pattern of mutation present in a pairwise
alignment in order to decide whether the compared
nucleic acid sequences are more likely to be protein-cod-
ing, structural RNA encoding, or neither. Originally
QRNA was parameterized at a fixed divergence time.
Motivated by the goal of making QRNA a time dependent
parametric family of models, I investigated the possibility
of evolving the transition and emission probabilities asso-
ciated with a given probabilistic model. Since I already
had the model parameterized for a given time, I aimed to
use that model as a generating point of the whole time-
parameterized family of models.

Because QRNA includes both linear and affine gap mod-
els in different places, in this paper I propose algorithms
to describe the evolution of indels as a (N + 1)-th charac-
ter in a substitution matrix, and algorithms to describe the
evolution of the transition probabilities associated with a
probabilistic model.

The purpose of this paper is to describe the general theo-
retical framework behind these methods. A detailed
description of the particular implementation of these
algorithms in QRNA and a discussion of the results
obtained with "evolutionary QRNA" (eQRNA) will
appear in a complementary publication.

Results
Evolutionary models for emission probabilities
The evolution of emission probabilities without gaps
In order to introduce notation, I will start with a brief
review of the current methods for calculating joint proba-
bilities conditional on time, P(i, j|t), where i, j are two res-
idues (for instance, nucleotides, amino acids, RNA
basepairs, or codons). P(i, j|t) gives us the probability that
residues i and j are observed at a homologous site in a
pairwise alignment after a divergence time t. Pairwise
sequence comparison methods score aligned residue pairs
with these joint probabilities either explicitly or implicitly
[17]. In explicit generative pair probabilistic models, like
the pair-HMMs and pair-SCFG in QRNA, the P(i, j|t) terms
are referred to as pair emission probabilities.

The evolution of joint probabilities is usually obtained by
modeling the corresponding conditional probabilities
P(j|i, t)as a substitution process in which residue i has
been substituted by residue j over time t. Probabilistic
models for nucleotide substitutions [18,19,42-44] assume
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that nucleotide substitution follows a model of evolution
that depends on an instantaneous rate matrix,

Qt = etR,  (1)

where t is the divergence time, R is the instantaneous rate
matrix, and Qt is the substitution matrix of conditional
probabilities, that is Qt(ij) ≡ P(j|i, t). This is a reasonable
model used, for instance, to describe nucleotide substitu-
tions in the Jukes-Cantor [42] or Kimura [43] models, or
the more general REV model [44]; this is also the evolu-
tionary model used for amino acid substitutions
[18,19,21,45,46], codon to codon substitutions [20,47],
and RNA basepair to basepair substitutions [14,22,23].

Throughout this paper, I will use the words "divergence
time", "divergence", or "time" equivalently to describe the
amount of dissimilarity between biological sequences
measured as the number of mutations and gaps intro-
duced in the alignment of the sequences. I will never refer
to "time" as representing an actual number of years of
divergence, since this number cannot be determined
intrinsically from sequence data.

Thus, given a rate matrix R, Qt (and therefore the desired
joint emission probabilities) can be inferred for any
desired time using the Taylor expansion for the matrix
exponential,

This Taylor series converges in all cases.

There are several ways in which the rate matrix R can be
determined. One approach is to use analytically inferred
rate matrices that depend on a small number of external
parameters [42-44,48]. For instance, the HKY model for
nucleotide substitutions [48] depends on six parameters:
the four stationary nucleotide frequencies, a rate of transi-
tions, and a rate of transversions, which have to be pro-
vided externally. Another type of approach uses
maximum likelihood methods [21,49,50] in order to esti-
mate a rate matrix numerically from a training set of
sequence alignments.

A third approach arises naturally in cases where suitable
joint probabilities have already been estimated for a pair
model, and we wish to make that model conditional on
evolutionary divergence time. This approach starts from
the assumption that our point estimate represents
sequences at a particular arbitrary divergence time t*. For

example, a similar assumption was taken to construct the
BLOSUM matrices [51], which were obtained as joint
probabilities at discrete point estimates from clusters of
aligned sequences.

In this third approach the parameters at the generating
time t* will be used to construct a rate matrix for the proc-
ess. This approach is motivated by the kind of situation in
which we find ourselves with probabilistic methods based
on homology such as QRNA: a model has been trained in
one kind of data, and the resulting probabilities represent
some effective but fixed divergence time, and we wish to
extend that model to a time-dependent parameterization.

For residue substitution processes, the rate matrix R and
Q*, defined as the substitution matrix at the generating
time t* [Q* ≡ Qt*

], convey exactly the same information.
More explicitly, assuming the evolutionary model given in
equation (1) we can calculate the rate matrix of the proc-
ess as a function of Q* as

Kishino et al [52] introduced the idea of calculating the
rate matrix starting from a given substitution matrix using
equation (3) and an eigenvalue decomposition of Q*. It is
worth noting that the matrix equation for the rate R can
be expressed as a Taylor expansion of the form

which allows for a direct numerical calculation of the rate
matrix. The convergence of this series requires only that
for every (real or complex) eigenvalue λ of matrix Q*, then
|λ - 1| < 1. In addition, for any valid substitution matrix
the eigenvalues have to be real and |λ| ≤ 1 (see Appendix
A). Under these two conditions, the above Taylor series
converges so long as the eigenvalues of Q* are positive.
Therefore the three properties required of Q* in order to be
able to obtain a rate matrix using the Taylor expansion in
equation (4) are that its eigenvalues are all smaller than
one (but one that is strictly one), real, and positive. Com-
plex or negative eigenvalues would correspond to oscilla-
tory behaviors, which do not seem to reflect the biology.
All the substitution processes I have tested so far for nucle-
otides, amino acids, and RNA basepairs correspond to real
and positive eigenvalues for which the above method is
applicable.

It is relevant to compare instantaneous rate matrix
approaches to the approach used in the PAM amino-acid
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substitution matrices [53]. The PAM matrices were not
generated by calculating a rate matrix, but by estimating
from a collection of highly similar sequences the substitu-
tion matrix for the time of one substitution per site 
≡ Qt = 0.01, and then calculating Qt at any other (integer t)
time by multiplication. This is a discrete approximation
that converges to the same answer given by the rate
method for very small time units. PAM matrices have been
criticized for not being able to capture the substitutions
that are observed for more dissimilar sequences. BLOSUM
matrices empirically outperform PAM in sequence
homology searches, presumably because sequences at
larger divergence times were used to calculate the BLO-
SUM matrices. However, the BLOSUM method is not a
time dependent continuous model but a very coarse-
grained discretization. There are ways of combining the
best of both approaches (more divergent sequence for
training and a continuous-time model) to generate rate
matrices, for instance by using the resolvent method [54],
or using maximum likelihood methods as in the WAG
matrices [21]. However, it is also possible to take a dis-
crete BLOSUM matrix, for instance BLOSUM62, and con-
vert it to an underlying rate matrix. The BLOSUM62-
generated rate matrix obtained using equation (4) is
shown in Figure 1.

A rate matrix can also be derived from the PAM data

 by various methods. One exact method is to do an
eigenvalue decomposition as presented in [52]. Recently,

other methods have been proposed to calculate a rate
matrix from the Dayhoff data [55]. These methods still

assume that R ≈ (  - I) which corresponds to taking
only the first term in the Taylor series for the logarithm in
equation (4). This assumption is good only for very
closely related sequences. Using the Taylor series allows
one to estimate, using the same input data and avoiding
the calculation of eigenvalues, the rate matrix to any
desired level of precision, independent of the degree of
similarity in the training set.

Notice that the rate matrix obtained using BLOSUM62
(Figure 1) has two off-diagonal negative entries (and if we
use more divergent BLOSUM matrices we have more neg-
ative off-diagonals). Off-diagonal entries of the rate
matrix have to be positive so that I + δtR can be interpreted
as a substitution matrix for very small times δt. This prob-
lem is not unique to sequence data. The construction of
rate matrices for a Markov process from empirical data
using a generating time is also used in mathematical mod-
eling of financial processes such as credit risk modeling
[56,57]. In the world of mathematical finances the prob-
lem is referred to as the regularization problem. I will use
one of following regularization algorithms presented in
[57]. The QOG algorithm (quasi-optimization of the gen-
erator) regularizes the rate matrix. The QOM algorithm
(quasi-optimization of the root matrix) leaves the rate
matrix unchanged and regularizes the conditional matrix
at a given time if any negative probability appears. Using

Rate matrix generated from BLOSUM62Figure 1
Rate matrix generated from BLOSUM62. Rate matrix obtained from the amino-acid substitution matrix BLOSUM62, 
rescaled to have an average number of one substitution per amino acid. Notice in bold the two off diagonal negative entries.

R =




A C D E F G H I K L M N P Q R S T V W Y
− .029 .019 .056 .022 .106 .011 .032 .049 .088 .020 .005 .045 .037 .055 .238 .089 .138 .003 .016

.142 − .021 .001 .024 .020 .008 .056 .017 .089 .028 .013 .016 .012 .018 .077 .058 .060 .008 .019

.026 .006 − .233 .014 .052 .015 .024 .034 .006 .005 .100 .038 .048 .013 .102 .045 .014 .002 .007

.061 .000 .189 − .011 .023 .030 .009 .136 .018 .006 .049 .035 .181 .061 .096 .040 .040 .003 .013

.045 .010 .022 .021 − .027 .019 .111 .017 .150 .051 .013 .008 .006 .017 .049 .033 .039 .027 .209

.113 .004 .042 .023 .014 − .010 .005 .024 .011 .007 .061 .022 .017 .025 .102 .020 .020 .007 .009

.037 .006 .039 .093 .031 .032 − .018 .039 .022 .014 .114 .025 .063 .084 .060 .023 .014 .005 .125

.044 .015 .024 .012 .074 .006 .007 − .002 .465 .054 .016 .011 − .002 .017 .050 .032 .692 .002 .023

.059 .004 .030 .150 .010 .027 .014 .002 − .049 .025 .059 .040 .100 .222 .113 .041 .041 .003 .015

.072 .015 .004 .014 .060 .008 .005 .282 .033 − .138 .012 .013 .021 .031 .030 .053 .113 .006 .025

.069 .019 .012 .020 .084 .022 .014 .135 .070 .566 − .026 .033 .127 .070 .101 .050 .239 .015 .026

.008 .004 .115 .069 .010 .088 .053 .018 .076 .022 .012 − .018 .055 .075 .191 .082 .012 .001 .014

.065 .005 .041 .046 .005 .031 .011 .012 .048 .024 .014 .017 − .034 .022 .057 .047 .037 .002 .009

.068 .005 .065 .307 .006 .030 .035 −.002 .153 .048 .070 .066 .043 − .153 .124 .046 .040 .008 .037

.085 .005 .015 .086 .013 .036 .038 .020 .282 .058 .032 .075 .023 .127 − .050 .059 .003 .004 .017

.233 .015 .074 .087 .024 .094 .018 .036 .092 .036 .030 .121 .039 .066 .032 − .164 .005 .003 .014

.113 .015 .043 .046 .021 .024 .009 .030 .043 .081 .019 .067 .041 .032 .049 .212 − .126 .007 .014

.161 .014 .012 .043 .022 .022 .005 .595 .040 .161 .083 .009 .029 .025 .002 .006 .116 − .003 .031

.020 .009 .008 .018 .077 .037 .008 .009 .017 .043 .026 .004 .008 .024 .016 .018 .033 .014 − .094

.037 .009 .012 .029 .241 .019 .088 .040 .030 .071 .018 .021 .015 .047 .026 .034 .027 .063 .037 −




Q*
PAM

Q*
PAM

Q*
PAM
Page 4 of 30
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:63 http://www.biomedcentral.com/1471-2105/6/63
the QOG algorithm we obtain a regularized version of the
rate matrix using BLOSUM62, which is given in Figure 2.

Regularization algorithms
Here I reproduce the QOG and QOM regularization algo-
rithms. The proofs for these algorithms can be found in
[57]. The QOG algorithm regularizes each row of a rate
matrix independently. Given a row in a rate matrix R,

r = (r1,...,rn) ≡ (R(i, 1) ..., R(i, n)),  (5)

the QOG algorithm solves the problem of finding the vec-
tor at the minimal Euclidean distance from r such that the
sum of all its elements is zero, and all elements but one
are positive.

The steps of the QOG algorithm are:

1. Permute the row vector so that r1 = R(i, i).

2. Construct the vector w, such that wi = ri - λ, where

.

3. Obtain the permutation , such that

.

4. Construct , for

k = 2, ..., n - 1.

5. Calculate kmin = mink = 2, ..., n - 1 {k such that Ck ≤ 0}.

6. Construct the vector

7. The regularized row is given by r ← P-1 ( ). Finally
reverse the permutation of step (1).

The QOM algorithm regularizes each row of a conditional
matrix independently. Given a row in a conditional
matrix Qt

r = (r1,..., rn) ≡ (Qt(i, 1),..., Qt(i, n)),  (6)

Regularized rate matrix generated from BLOSUM62Figure 2
Regularized rate matrix generated from BLOSUM62 Regularized rate matrix generated from BLOSUM62 after the 
QOG algorithm has been applied. The matrix has been rescaled to have an average number of one substitution per amino acid. 
In this simple case in which there was at most one negative off-diagonal entry per row, the regularization process requires the 
negative off-diagonal value to be set to zero (represented in bold in this Figure), and to shift the rest of the elements in that 
row by the corresponding amount so that the sum of all elements is zero. Rows without any off-diagonal negative values 
remain unchanged from the values obtained in Figure 1.

R =




A C D E F G H I K L M N P Q R S T V W Y
− .029 .019 .056 .022 .106 .011 .032 .049 .088 .020 .005 .045 .037 .055 .238 .089 .138 .003 .016

.142 − .021 .001 .024 .020 .008 .056 .017 .089 .028 .013 .016 .012 .018 .077 .058 .060 .008 .019

.026 .006 − .233 .014 .052 .015 .024 .034 .006 .005 .100 .038 .048 .013 .102 .045 .014 .002 .007

.061 .000 .189 − .011 .023 .030 .009 .136 .018 .006 .049 .035 .181 .061 .096 .040 .040 .003 .013

.045 .010 .022 .021 − .027 .019 .111 .017 .150 .051 .013 .008 .006 .017 .049 .033 .039 .027 .209

.113 .004 .042 .023 .014 − .010 .005 .024 .011 .007 .061 .022 .017 .025 .102 .020 .020 .007 .009

.037 .006 .039 .093 .031 .032 − .018 .039 .022 .014 .114 .025 .063 .084 .060 .023 .014 .005 .125

.044 .015 .024 .011 .074 .006 .007 − .002 .465 .054 .015 .011 .000 .017 .049 .032 .692 .002 .023

.059 .004 .030 .150 .010 .027 .014 .002 − .049 .025 .059 .040 .100 .222 .113 .041 .041 .003 .015

.072 .015 .004 .014 .060 .008 .005 .282 .033 − .138 .012 .013 .021 .031 .030 .053 .113 .006 .025

.069 .019 .012 .020 .084 .022 .014 .135 .070 .566 − .026 .033 .127 .070 .101 .050 .239 .015 .026

.008 .004 .115 .069 .010 .088 .053 .018 .076 .022 .012 − .018 .055 .075 .191 .082 .012 .001 .014

.065 .005 .041 .046 .005 .031 .011 .012 .048 .024 .014 .017 − .034 .022 .057 .047 .037 .002 .009

.067 .004 .065 .307 .006 .030 .035 .000 .153 .048 .070 .066 .043 − .153 .124 .046 .040 .007 .037

.085 .005 .015 .086 .013 .036 .038 .020 .282 .058 .032 .075 .023 .127 − .050 .059 .003 .004 .017

.233 .015 .074 .087 .024 .094 .018 .036 .092 .036 .030 .121 .039 .066 .032 − .164 .005 .003 .014

.113 .015 .043 .046 .021 .024 .009 .030 .043 .081 .019 .067 .041 .032 .049 .212 − .126 .007 .014

.161 .014 .012 .043 .022 .022 .005 .595 .040 .161 .083 .009 .029 .025 .002 .006 .116 − .003 .031

.020 .009 .008 .018 .077 .037 .008 .009 .017 .043 .026 .004 .008 .024 .016 .018 .033 .014 − .094

.037 .009 .012 .029 .241 .019 .088 .040 .030 .071 .018 .021 .015 .047 .026 .034 .027 .063 .037 −




λ = =∑1
1n
rii

n

w P wp = ( )

w wi
p

i
p≤ +1

C w w n k wk
p

n i
p

i
n k

k
p= + − − +−=

− −
+∑1 0

1
11( )

r̂

i k

w
n k

w wi
i
p p

j
p

j k
n=

≤ ≤

−
− +

+{ }



= +∑
0 2

1
1 1 1

if

otherwise

min

min min





r̂

Page 5 of 30
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:63 http://www.biomedcentral.com/1471-2105/6/63
the QOM algorithm solves the problem of finding the vec-
tor at the minimal Euclidean distance from r such that the
sum of all its elements is one, and all elements are
positive.

The steps of the QOM algorithm are:

1. Construct the vector w, such that wi = ri - λ, where

.

2. If all wi are non negative, r ← w is the new regularized
row.

3. Otherwise, obtain the permutation , such

that .

4. Construct , for k = 1,..., n.

5. Calculate kmax = maxk = 1,..., n {k such that Ck ≤ 1}.

6. Construct the vector

7. The regularized row is given by r ← P-1 ( ).

A 4 × 4 example starting from joint probabilities at a given 
generating time
As an review of these techniques, I will use a set of 4 × 4
single-nucleotide joint probabilities P(i, j|t*) for i, j = {a,
c, g, t} at a particular generating time t* to construct the
corresponding rate matrix.

In this example, the joint probabilities at the generating
time using the matrix notation P*(ij) ≡ P(i, j|t*) are given
by,

These 4 × 4 pair-nucleotide probabilities are taken from
the program QRNA. They were calculated according to
[16] by marginalizing codon-codon joint probabilities
which were constructed from the BLOSUM62 matrix of

amino acid substitutions. These 4 × 4 probabilities can be
viewed as a particular example of the REV model [44].
Note that the sum of all elements of P* adds up to one,
and the matrix is symmetric.

The marginal probabilities defined as pi = ∑j P(i, j|t*) can
be calculated from the joint probabilities to be,

p = (pa, pc, pg, pt) = (0.2836, 0.2311, 0.2531, 0.2322).  (8)

Similarly, the conditional probabilities P(j|i, t*) can be
calculated from the previous joint and marginal probabil-
ities using the relationship P(i, j|t*) = P(j|i, t*) pi. Using the
matrix representation Q*(ij) ≡ P(j|i, t*) we have,

Notice how the sum of the elements in each row adds up
to one. Notice also how Q* is quite different from the
identity matrix, which means that we have started with a
quite divergent generating time.

If we assume a homogeneous Markov substitution proc-
ess, we can interpret the conditional probabilities Q* as
the matrix of substitution probabilities at the generating
time. Thus, we can characterize the underlying evolution-
ary process by its instantaneous rate of evolution, which
can be calculated from Q* using equation (4). The result-
ing rate matrix R (up to an arbitrary scaling factor t*) is
given by,

This rate matrix has all the good properties: (i)"Normali-
zation": the sum of the elements of each row is zero. (ii)
"Reversibility": pi Rij = pj Rji. The process is reversible by
construction because we started with symmetric joint
probabilities. (iii) "Saturation". The rate matrix converges
at time infinity to the given marginal probabilities in
equation (8). We can test saturation by using equation (2)
and calculating the substitution matrix for a very large
time. For instance, for t = 10t* we have
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Saturation (or stationarity) of a Markov process is a neces-
sary consequence of (i) normalization and (ii) reversibil-
ity. Appendix A shows a derivation of the previous
statement which was useful for me (and hopefully for
some readers) when studying the behavior at t = ∞ of
more complicated evolutionary models. Therefore, start-
ing from joint probabilities as in this example, we can
always interpret the marginal probabilities as the station-
ary probabilities of the evolutionary process.

In summary, starting with a single set of joint probabilities
at one particular generating divergence time t*, we calcu-
late the joint probabilities at any other arbitrary time,
assuming an exponential model of evolution. To that
effect, given the particular set of joint probabilities (7) we
have calculated the corresponding rate matrix (10) by Tay-
lor expansion. Thus we can estimate the substitution
matrix/conditional probabilities at any other arbitrary
time, simply using equation (2), and reconstruct the joint
probabilities at any other arbitrary time. For instance, for
t = 0.3t* we obtain,

This method allows us to evolve pair emission probabili-
ties corresponding to different processes (in addition to
the 4 × 4 nucleotide emissions) for instance 20 × 20
amino acid-to-amino acid joint emission probabilities, 64
× 64 codon-to-codon joint emission probabilities, or 16 ×
16 RNA basepair-to-basepair joint emission probabilities.
Thus, this method is useful to be applied in combination
with pair HMMs or pair SCFGs already parameterized at
one fixed divergence time to make their emission proba-
bilities a time-dependent family.

The evolution of emission probabilities with indels treated as an extra 
character
Substitution processes (even if describing multi-nucle-
otide events such as codon evolution or RNA basepair
evolution) are not enough to describe the full evolution-
ary relationship between two biological sequences. We
also need to consider indels, for which we need to intro-
duce more complicated models of evolution than the one
described so far.

Indels have traditionally been a problem for phylogenetic
methods. Programs to construct phylogenetic trees from
data such as PHYLIP [58], PAUP* [59], and other phylog-
eny packages [60-64] treat gaps as missing data. The theo-
retical description of the evolution of gaps in a
probabilistic fashion reached a landmark with the
Thorne/Kishino/Felsenstein (TKF) model [30,31]. The

TKF model however is hard to implement in combination
with a probabilistic model such as an HMM, although an
active area of research exists in that direction [36,39,40].
A more direct attack to the problem of introducing phyl-
ogeny into existing probabilistic models originated with
the concept of tree HMMs [34,35]. The tree HMM method
models the evolution of the parsing of different sequences
through an HMM. This approach is more related with the
evolution of transition probabilities, and I will discuss it
later on in this paper.

Here I am going to describe a method for the evolution of
indels under the assumption that they behave like an
additional residue added to a N × N residue substitution
matrix. This is a simplification of the problem because it
forces indels to have linear penalties (that is, the cost of
opening an indel in an alignment or the cost of extending
it with one more indel character is the same) and to
behave independently of each other (that is, successive
indel characters in one sequence will be treated as inde-
pendent events, rather than as a single indel of n residues
long). Despite its apparent simplicity, this approach poses
interesting problems in parameterizing evolution.

Let us review some of the implications of insertion and
deletion processes. The treatment that pair models give to
pairwise alignments can be interpreted (if we assume
reversibility, as is the case here) with all generality as if
one of the sequences is the ancestor of the other one. For
any two aligned residues we assume that they can be
related by a substitution process. For a residue aligned to
a gap we assume that either a residue in the ancestor was
deleted in the descendent sequence, or that a residue not
present in the ancestor appeared in the descendent
sequence.

An stochastic insertion–deletion process also involves
insertions followed by subsequent deletions. These events
leave no trace in pairwise alignments because alignments
usually do not retain gaps aligned to gaps. However, when
we are treating indels as an extra character, we have to
account for such events.

If we were given ideal alignments with all their gap-to-gap
aligned columns we could estimate from data the (N + 1)
× (N + 1) extended joint probabilities at a generating time,

. Because that is not the case, we need to make some

inference about . Let us represent with ∆, such that 0 ≤
∆ ≤ 1/2, the expected frequency of observed gaps with
respect to the total number of residues in pairwise align-
ments at a particular time t*. The parameter ∆, can be esti-
mated from data, or it could be estimated according to the
TKF model [30] as

P t0 3

0 2089 0 0249 0 0303 0 0195

0 0249 0 1615 0 0208 0 0239

0 0. *

. . . .

. . . .

.
=

3303 0 0208 0 1864 0 0156

0 0195 0 0239 0 0156 0 1731

. . .

. . . .
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if we knew the values for the rate of insertions λ and the
rate of deletions µ, such that 0 <λ <µ.

Let us represent with ∆' the expected frequency of missing
gap-to-gap aligned columns in a pairwise alignment at a
particular time t*. One can estimate ∆' as the expected
length of insertions that were later deleted without leaving
any trace in current sequences. The probability of a stretch
of l gap-to-gap characters is given by the geometric distri-
bution density ρ(l) = (1 - ∆2) ∆2l. Therefore ∆' is given by,

Using these two parameters and the joint probabilities in

the absence of gaps at the generating time P*( ) we can
construct the set of (N + 1) × (N + 1) extended joint prob-
abilities at t* as

where we have assumed independence for the joint prob-
ability of a residue and a gap. The normalization factor Ω
= 1/(1 + 2∆ + ∆') represents the fact that the observed ∆ is
different from the value we would have obtained had we
known the complete alignment.

Another implication of insertion and deletions appears in
the behavior of the marginal probabilities of single resi-
dues and indels. At t = 0 when sequences have not yet
diverged, the marginal probability of finding a gap in an
alignment should be zero. In the limit t = ∞, the pairwise
alignment of two finite-length sequences is going to be
dominated by gap-to-gap alignments, which implies that
as the divergence time increases the marginal probability
of a residue becomes negligible, while the marginal prob-
ability of a gap becomes one in the limit t = ∞. Our evolu-
tionary model has to be able to accommodate such
saturation frequencies.

A step-by-step description of the algorithm for the evolution of gaps 
as an extra residue
I will start by describing the steps to implement the
method before explaining how to derive those steps. This
method can be applied starting from two different situa-
tions: starting from a N × N set of joint probabilities at a
generating time that need to be extended to allow indel
characters and evolved with time; or starting from a given
N × N rate matrix that needs to be extended to allow indel
characters.

Suppose we start with a N × N set of joint probabilities P*
at a generating time t*, where p stands for the marginal
probabilities and Q* represents the set of conditional
probabilities associated with P*.

1. Extend the joint probabilities at the generating time t*

to a (N + 1) × (N + 1) matrix of joint probabilities  of
the form,

where ∆ is a parameter which represents the expected fre-
quency of gaps with respect to the total number of resi-
dues in an pairwise alignment at t*, and which satisfies the
condition 0 ≤ ∆ ≤ 1/2. The parameter ∆' is given in terms

of ∆ as , and the normalization constant is

given by Ω = 1/(1 + 2∆ + ∆'). The indices with hats ( )
stand for the N residues, and exclude the gap character,
which I represent with the symbol -.

The (N + 1) × (N + 1) extended conditional probabilities

at the generating time  are given by,

2. Construct the (N + 1) × (N + 1) extended rate matrix Rε

as

where

3. Calculate the exponential of the rate matrix  using
the Taylor expansion,

∆ = −
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4. Construct the extended matrix of conditional probabil-

ities at arbitrary time  as

where the matrix Q0 is given by

where  are the original marginal probabilities of P*, and

the probability 0 <q0 ≤ 1 is given by . The

function δ(ij) is a Kronecker delta which takes value one
for i = j and zero otherwise. The case q0 = 1 corresponds to
the extreme case in which the N + 1 gap residue does not
evolve.

5. Construct the extended marginal probabilities  as

where the probability of a gap at time t is given by,

I call this process "quasi-stationary" because the back-

ground frequencies  ( ) at any finite time are always
proportional to the original N-dimensional background

frequencies . This result is a concequence of the fact that
the first N elements of the last row of Q0 are proportional

to the N stationary frequencies . On the other hand,
while remaining "quasi-stationary" the background fre-

quencies evolve from ( , 0) at time zero towards "all
gaps" at time infinity, i.e. limt → ∞ Λt = 1. This behaviour at
time infinity is the consequence of the particular value of
q0 selected in the previous step.

6. Finally, construct the evolved (N + 1) × (N + 1) joint

probabilities at arbitrary time  as

The expression for Λt in equation (24) guarantees reversi-

bility, that is, that the extended  constructed according
to the above expression are symmetric.

For the other starting situation, in which we have a N × N
rate marix R, the procedure to generate a (N + 1) × (N + 1)
quasi-stationary reversible evolutionary model is the
following:

1. Construct the (N + 1) × (N + 1) extended rate matrix Rε

as

where we have extended the N × N rate matrix R with the
parameter β > 0.

The instantaneous rate is given by,

Thus β is the instantaneous rate of deletion of a character,

while -β(1 - q0)  is the rate of insertion of character .
(More complicated models in which the rate of deletion is
different for different characters are also possible.) Notice
that q0 = 1 corresponds to the case in which the rate of
insertions is zero.

2. Find  analytically, if an analytic expression for Rε is

given by solving the differential equation d ( ) / dt = Rε

, or numerically, proceeding as in step (3) of the pre-
vious procedure.

3. Proceed as in steps (4)-(6) of the previous procedure.

A 5 × 5 example starting from joint probabilities at a given 
generating time
We start with the generating joint probabilities P* in the 4
× 4 example in equation (7), which we want to extend to
a 5 × 5 matrix by adding a gap character. For this example,
I have selected the arbitrary value for the gap parameter ∆
= 0.18.
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The 4 × 4 joint probabilities in equation (7) augmented to

a 5 × 5 matrix  using the gap parameter ∆ = 0.18 (which

implies that ∆' = ∆2/(1 - ∆2) = 0.0335) is given by,

The conditional probabilities  (ij) = Pε (j|i, t*) are given
by,

The extended marginal probabilities at the particular time
instance t* are given by,

 = (pa, pc, pg, pt, p-) = (0.2402, 0.1957, 0.2143, 0.1966,

0.1532),  (30)

which are quasi-stationary with respect to the 4 × 4 sta-
tionary probabilities p = (0.2836, 0.2311, 0.2532, 0.2322)
we started with in equation (8).

The matrix of conditional probabilities at time zero using
expression (22) is given by,

The rate matrix for this example, calculated using the Tay-
lor expansion described in equation (18) takes the value,

One should not be concerned to see a whole row of zeros
for this rate matrix. For this generalized model the instan-
taneous rate of evolution is not directly given by the rate

matrix; instead, the instantaneous rate of evolution is
given by,

In this example, the instantaneous rate of evolution takes
the form,

One should not be concerned either by having some neg-
ative off diagonal components. For small times δt, the
conditional matrix is given by,

Therefore, in order to have a proper matrix of conditional
probabilities for sufficiently small δt, it is necessary to sat-
isfy the following condition for each pair of indices i, j,

if Q0(ij) = 0 then (Q0Rε)(ij) > 0.  (36)

In this case, the off-diagonal components of the last row
of Q0 are non-zero, which allows us to have negative off-
diagonal elements for that row in the instantaneous rate
matrix Q0Rε.

With the 5 × 5 rate matrix in hand, we can apply steps (3)
and (4) to obtain the conditional probabilities at any arbi-

trary time . For instance for t = 0.3t* we obtain the fol-
lowing evolved conditional probabilities:

The quasi-stationary marginal probabilities are con-

structed using the result  = 0.0487, and the 4 × 4 sta-

tionary probabilities p = (0.2836, 0.2311, 0.2532,
0.2322), following step (5) of the algorithm as,

Finally, using equation (25), for t = 0.3t*, we obtain the
following evolved joint probabilities
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Notice that this matrix is symmetric, which is the result of
having imposed reversibility for any arbitrary divergence
time.

We can also see by calculating the conditional probabili-
ties at large divergence times how these probabilities
evolve towards their saturation values given by (0, 0, 0, 0,
1). For instance, for t = 30t* we have,

An example starting from a rate matrix: The Jukes-Cantor model 
extended to gaps
As an example of a situation in which we start with a rate
matrix, let us consider the generalization of the Jukes-Can-
tor model [42] to a 5 × 5 evolutionary model with a gap
character. The original Jukes-Cantor model assumes that
all nucleotides mutate at the same rate α > 0 which is rep-
resented by the rate matrix

In this simple case the conditional matrix Qt = etR can be
found analytically by solving the matrix differential equa-

tion . Because of the symmetries of the problem
we can write

with the condition rt + 3st = 1. We then obtain the follow-
ing differential equations

and the solutions are,

By taking the limit t = ∞ in the previous two equations,
one can see that the saturation frequencies of the Jukes-
Cantor model are pi = 0.25 for i = a, c, g, t.

The 5 × 5 extended Jukes-Cantor rate matrix Rε is con-
structed by adding a rate of mutation to a gap represented
by the quantity β ≥ 0 which in principle we will assume is
different from the rate of substitutions α,

We also introduce the matrix at time zero Q0 which
depends on the probability parameter 1 ≥ q0 > 0,

where the particular case q0 = 1 is only allowed if simulta-
neously β = 0, and corresponds to a trivial extension of the
original Jukes-Cantor model in which the gap character
does not evolve.

The conditional matrix at arbitrary time is given by  =

Q0 . The symmetries of the problem in this case allow

us to parameterize  as

with the conditions rt + 3st + γt = 1 and 4ξt + σt = 1.

Introducing the matrix Mt ≡ , we can parameterize

P t0 3
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. . . .
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which implies that

σt = (1 - q0) γt + q0.  (52)

The differential equation to calculate Mt takes the form

 = Rε Mt, which translates into the differential
equations,

Which are satisfied by

γt = 1 - e-βt.  (58)

And in addition we have

σt = 1 - (1 - q0) e-βt.  (60)

In the limit case β = 0, the solutions for rt and st reduce to
those of the original Jukes-Cantor model with the trivial
additions of σt = 1, ξt = 0 and γt = 0, after setting q0 = 1.

The extended Jukes-Cantor model depends on three
parameters: the rate of nucleotide substitution α > 0, the
rate of nucleotide deletion β ≥ 0, and the parameter 1 ≥ q0
> 0. What is the meaning of q0 ? q0 controls the saturation
frequencies (i.e. the background frequencies at time infin-
ity), as well as the background frequencies at any other
finite time. For β > 0 and 1 >q0 > 0, taking the limit t = ∞
in equations (56)-(60), one can see that the saturation

probabilities are given by (0, 0, 0, 0, 1). At any other finite
time, the background frequencies of the model are quasi-
stationary with respect to the background frequencies of
the original Jukes-Cantor model, and are given by

pt (-) = Λt.  (62)

Imposing the reversibility condition  in partic-
ular we obtain (1 - Λt)γt + Λtσt = Λt which implies,

Therefore q0 controls how fast the background frequencies
approach the saturation probabilities (0, 0, 0, 0, 1)
through the factor Λt. For a given β, the larger q0, the faster
Λt approaches one. (Note that Λt always approaches one
as t goes to infinity.)

At first glance, it looks like q0 could take any value includ-
ing one in the solution for the extended Jukes-Cantor
model. q0 = 1 would result in fixed background frequen-
cies of the form (0, 0, 0, 0, 1), which is an undesirable
result, and the value q0 = 1 would have to be excluded
when β > 0. In fact, the limit to the ungapped Jukes-Can-
tor model has to be taken by setting β = 0 first, and then
q0 = 1. In that way, Λt = 0 for all times, which is the correct
result for the original Jukes-Cantor model.

Derivation of the algorithm for a (N + 1) × (N + 1) quasi-stationary 
and reversible evolutionary process
Unlike the ungapped N × N case in which the marginal
probabilities are time independent, in the presence of
gaps the marginal probabilities have to evolve with time.
In fact, as I discussed earlier, the marginal probability of a

gap  (-) has to evolve from zero at time zero to one at
time infinity. As a result of that observation, probabilistic
evolutionary models with Q0 ≠ I are necessary in the pres-
ence of gaps in order to maintain reversibility. The reason
for this requirement is the following: for an evolutionary
model of the form etR, reversibility implies that there is
some p* such that p*Q* = p* [see Appendix B, equation
(202)]; it follows then that p*R = 0, and therefore p*etR = p*

for arbitrary time t. Thus, under a reversible model of the
form Qt = etR, marginal probabilities do not evolve with
time. On the other hand, if Q0 ≠ I then the condition p*Q*

= p* does not imply p*R = 0 for the rate matrix R, and there-
fore it does not impose p* as the marginal probabilities for
arbitrary t. (See appendix B for more details on this point.)
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Therefore, to model the evolution of gaps we need to gen-
eralize the evolutionary model to have the following form

 = Q0 .  (64)

The matrix Q0 can be parameterized in following form,

This matrix depends on one additional parameter q0. The

particular dependency Q0(-, ) ∝  , is necessary to
obtain quasi-stationary reversibility of the marginal
probablilities.

The rate matrix is now a function of Q0 and ,

and takes the form

where the matrix  has the form,

where

Notice that Q0 may be inverted as long as 0 <q0 ≤ 1.

With respect to the marginal probabilities we have that at
the generating time t* because of the way the extended
probabilities P* were constructed we imposed a quasi-sta-
tionary behavior of the form,

where

The generalized conditional matrix in (64) also saturates
at very large times, and the saturation probabilities (i.e.
the marginal probabilities at infinity) are given by those of

the rate matrix, that is limt→∞  = limt→∞  (see Cor-
ollary A.1). Because of the relationship in equation (66)

between the rate matrix and the matrix , the satu-

ration probabilities  are given by the condition (see
Appendix B),
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A pair-HMM modelFigure 3
A pair-HMM model. Description of a pair-HMM model. 
The three states: Emit-a-pair (XY), Emit-X (X), and Emit-Y 
(Y) have four possible transitions each, which we are going to 
make time-dependent functions. This a geometric model, in 
which the expected length is given by 1/τ. In order to gener-
ate alignments with the same expected length at all times, we 
will leave the parameter τ (the transition of each of the three 
states into the exit state) unchanged with time. The figure 
shows the transition probabilities having the following prop-

erties: , , 

, . These properties guar-
antee that the model is reversible.
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Then using equation (71) we can see that the saturation
probabilities maintain the quasi-stationary property that
was imposed at the time instance t*, and are given by,

where

As I discussed before, it is reasonable to impose that at
infinity all we find is gaps, i.e Λ∞ = 1.0, which implies η =
1 and

Notice that because the relationship given in equation
(14) between ∆' and ∆, then 0 <q0 < 1.

For an arbitrary time we have the reversibility relationship

This equation is satisfied by construction in the N × N
subspace. By inspecting the implications of the above
equation for the gap index, we obtain an expression of Λt
(the marginal probability of a gap) at arbitrary time that
allows us to have quasi-stationary reversible evolution.
The function Λt is given by,

Evolutionary model for transition probabilities
The standard way in which comparative probabilistic
models allow for insertions and deletions is by introduc-
ing several additional states with their corresponding tran-
sition probabilities. For instance, in a pair-HMM for
sequence alignment (Figure 3) the presence of gaps
requires the introduction of two states ("X" and "Y")
which emit a nucleotide in only one of the two sequences.
The probabilities associated with transitioning in and out
of those states control the "gappiness" of the alignment.
Therefore the evolution of these parameters with time is
necessary in order to model different degrees of sequence
divergence.

There has been a continued effort on improving the accu-
racy of the evolution of emission probabilities (i.e. substi-
tution matrices) such as allowing correlations between the
rates at different sites [65,66], improvements in the deri-

vation of rate matrices from sequence data [23,67], or esti-
mating multiple nucleotide changes [68]. In comparison,
the ideas to describe the evolution of transition parame-
ters in probabilistic models are much less standardized
[34-40].

The goal of this section is to describe the evolution of tran-
sition probabilities. For instance, in the pair-HMM of Fig-
ure 3 the transition probabilities from the "XY" state to the
"X" or "Y" states describe the introduction of gaps in one
of the two aligned sequences, using an affine penalty.
These transitions should be zero when the sequences have
not yet diverged (time zero), but they should be maximal
at infinite divergence. In between these two extremes, it is
desirable to model the transition probabilities changing
with divergence time. These methods are termed "evolu-
tionary" because the transition probabilities will be
parameterized with time, using functions that are general-
izations of the Markov process that probabilistic evolu-
tionary models assume for substitutions. Unlike the TKF
model [30,31] and other related evolutionary models
[32,33,41], the approach presented here will not describe
the actual underlying evolutionary process that may have
generated one sequence from another.

The tree-HMM method [34,35,37] is possibly the method
closest to what I develop here. A tree HMM tries to model
the phylogenetic relationship between related sequences
by modeling the parsings of different sequences through
the model. In a tree HMM it is not the actual transition
probabilities of the HMM, but the parsing of the different
sequences through the models that are evolved using rate
matrices that resemble the diagonal rate matrices intro-
duced in the first of the methods described below. Here I
want to generate pair or profile probabilistic models that
when comparing two related sequences are able to accom-
modate to the degree of divergence observed between the
two sequences, and I intend to do that in a continuous-in-
time and probabilistic fashion, using the smallest possible
number of free parameters. No evolutionary history of
individual insertion/deletion events will be generated;
only a posteriori would an evolutionary history be estab-
lished by comparing sequences (in the case of a profile
model) or alignments (in the case of pair models) gener-
ated by the model at different times.

I present two methods to evolve transition probabilities.
One of the methods considers the evolution of a vector of
transition probabilities. In this method, the value of the
transition probabilities at time zero and time infinity are
input parameters, which gives a relatively large number of
free parameters. In the second, more restrictive, method
the transitions associated with several states are assumed
to evolve under the same evolutionary process. This con-
dition constrains some of the free parameters, but does
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not fix them all completely. When the more restrictive
conditions are used, both algorithms give the same
results. These two algorithms are applicable to most pair
and profile probabilistic models, be they HMMs or
SCFGs, generalized or not. I present an example of the
evolution of a vector probability vector for a pair HMM,
and an example of the evolution of a matrix of transition
substitutions for a profile HMM.

Evolution of a vector of transition probabilities
A step-by-step description of the algorithm
Let us start by providing the recipe to apply the algorithm:

1. Given a transition probability vector

2. Assume its set of values is known at the three particular
time instances of t = 0, t = t*, and t = ∞, named q0, q*, and
q∞. Assume each component i in these probability vectors
satisfies one of the following three conditions,

q0(i) <q*(i) <q∞(i) or q0(i) >q*(i) >q∞(i) or q0(i) = q*(i) =
q∞(i), for all i.  (78)

3. If the three input vectors satisfy the condition,

where r > 0 is a real number independent of i, then calcu-
late qt at an arbitrary time t (0 <t <t∞) as

Normalization of the vector qt is guaranteed by equation
(79).

4. Otherwise qt is given by the following expression

where the function wt is given by

An example: evolution of the transition probabilities of a pair-HMM 
"XY" state
Consider the transition probability vector associated to
the "XY" state of the pair-HMM given in Figure 3,

which describe the four possible transitions from a corre-
lated emission of two nucleotides to another correlated

emission in both sequences ( ); to a gap in

sequence Y ( ); to a gap in sequence X ( );

or to end the alignment ( ).

Below are some arbitrary values for the transition vector at
divergence times: t = 0, t = t*, and t = ∞ associated with
state "XY", qXY,

The transition TXY→E = τ is related to the expected length of
the alignments generated using the model. We typically
want to keep that transition invariant through time, and
correlated with the alignment length L: τ = 1/L. (This pair
HMM produces sequences with a geometric length distri-
bution of mean 1/τ.) The other three transitions change
with time from a situation of no gaps at time zero, to a sit-
uation at time infinity in which all there is present is gaps,
because no residue in either sequence has a homologous
residue in the other.

Transition probabilities at t = 0 and t = ∞ can be stated
from first principles. Transitions at the generating time t*,
are estimated from data, at the same time that emission
probabilities are estimated. The transition probabilities at
any other time are given by applying the algorithm. Using
equation (81) we obtain,

Similarly to this "XY" state case, all the other transition
probabilities that appear in the pair model of Figure 3
could be continuously parameterized with the divergence
time of the alignment being scored. This algorithm can be
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applied to any full set of transition probabilities emerging
from a particular state in a given probabilistic model that
must evolve with time.

Connection with a tree-HMM 2×2 match-transition matrix
In the original representation of a tree-HMM [35] the idea
of a match-transition matrix is introduced. If one parse
through the HMM generated a Match to Match (MM)
transition, while another parse through the model gener-
ated a Match-to-Delete (MD) transition, one can consider
the substitution of MM by MD similarly to a substitution
of residues by the conditional probability P(MD|MM, t).
This leads to the concept of a 2 × 2 match-transition
matrix given by,

which in [35] is parameterized with two real numbers r ≥
0, and 0 ≤ a ≤ 1 as

Tree-HMMs model the evolution of paths though the
HMM. In contrast, the method proposed here models the
evolution of the transition probabilities of the model
themselves. However, one can see that the match-transi-
tion matrix is closely related in form to the model we have
proposed here. Introduce the probability vectors,

For t = 0 and t = ∞ they have the following values,

It is easy to see that the match-transition matrix given in
equation (87) can be rewritten as,

for a diagonal rate matrix . Such diagonal

rate matrix does not require additional normalization

because it corresponds to the case described in equation
(80).

Derivation of the algorithm to evolve a vector of transition 
probabilities
To describe the evolution of transition probabilities, the
simple exponential models used for substitution matrices
are not sufficient. I propose to adopt a generalization of
the exponential model of the form,

where I is the n × n identity matrix, r is a vector still to be
identify, and a R is a n × n rate matrix.

This model simply adds to the exponential term a time
independent vector a,

Because qt=0 = q0, then it is necessary that a = q0 - r, thus giv-
ing the expression in equation (92). Note that this is the
most general solution of a differential equation of the

form  ∝  (qt - a). Until now it was always assumed that
the constant term was zero, that is r = q0. The freedom
added by including a term constant in time is that, while
before the behavior at t = ∞ was solely controlled by etR,
now the additional term also contributes to that limit.

An immediate consequence of this generalization is that
the rate matrix is not now sufficient to determine the
whole evolutionary process. In addition to the rate matrix,
the probability vector must also be specified at time zero
(no divergence) and at time infinity (all mutations have
saturated) such that,

The exponential of the rate matrix R has the general form,

for some real eigenvalues . If conditions are
restricted to the case in which ki > 0, ∀ i, the immediate
consequence of working with positive eigenvalues is that,

MM MD

MM

MD

P MM MM t

P MM MD t

P MD MM t

P MD MD t

( | , )

( | , )

( | , )

( | , )

, (









86))

MM MD

MM

MD

a a e

a ae

a e

a ae

rt

rt

rt

rt

+ −

−







− −

− +







−

−

−

−

( ) ( )( ) . (1 1 1

1

887)

q
P MM MM t

P MD MM t
q

P MM MD t

P MD MD tt
MM

t
MD=









 =

( | , )

( | , )
,

( | , )

( | , )





 . ( )88

q q q q
a

a
MM MD MM MD
0 0

1

0

0

1 1
89=









 =









 = =

−








∞ ∞, , . ( )

q q e q qt
MM MM tR MM MM= + −∞ ∞( ), ( )0 90

q q e q qt
MD MD tR MD MD= + −∞ ∞( ), ( )0 91

R
r

r
=

−
−











0

0

q q r e It
T T T tR= + −0 92( ), ( )

q a r et
T T T tR= + . ( )93

qt

q q r e IT
o
T T

t

tR
∞

→∞
= + −





lim . ( )94

e t U

k

k

U

U

e

e

tR

n

k t

k tn

= −
































=











−

−

−

exp
1

1

1







−U 1 95, ( )

{ }ki i
n
=1
Page 16 of 30
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:63 http://www.biomedcentral.com/1471-2105/6/63
There is then a simple relationship between the vector r
and the values of the probabilities at time zero and
saturation,

q∞ = q0 - r.  (97)

Therefore, we can write with all generality

However, for the given information (q0, q*, q∞), the time-
parameterized vector qt in (98) is still underdetermined.

In order to reduce the amount of freedom, I assume that
etR is diagonal (i.e. U = I). Diagonal rate matrices have
been used in other contexts of generalized evolution such
as the tree-HMM model [34,35]. Then we have,

At this time the known probabilities at the generating
time t*, q*, have not yet been used. These are,

Thus we obtain

which can be solved for ki,

The condition ki > 0 translates into 0 <  < 1, or

This condition has two solutions:

q0(i) <q*(i) <q∞ (i) or q0 (i) >q* (i) >q∞ (i).  (104)

Even though this model was derived under the conditions
of equation (104), it also extends to the degenerate case
where for some i we have

q0(i) = q*(i) = q∞(i),  (105)

since this simply corresponds to these parameters under-
going no evolution at all.

Therefore if the input column vectors satisfy one of the
three previous conditions for each one of their elements,
the parametric expression is

A normalization condition has not yet been imposed.
Using the unity vector uT = (1,..., 1), normalization
requires that

For an evolutionary model of the form qt ∝  etR normaliza-
tion requires that etRu = u for arbitrary times. I refer to this
property as the strong normalization condition. The nor-
malization of a generalized evolutionary model of the

form  requires the weaker condi-

tion (q0 - q∞)TetRu = 0. This property is always true for a rate
matrix that satisfies the strong normalization condition. I
refer to this property as the weak normalization
condition.

In order to obtain the strong normalization condition
automatically it is necessary to have a rate matrix of the
form R = U diag (0, - λ2,..., -λn) U-1 (see Appendix A, equa-
tion (193)). Such a type of rate matrix is not appropriate
to describe the evolution of a probability vector, since
such rate matrix cannot be uniquely inferred from the
three input probability vectors q0, q*, q∞. For that reason, I
have explored the use of rate matrices of the diagonal
form R = diag (-k1,..., -kn), which can be inferred from the
three input probability vectors q0, q*, q∞ using expression
(102). Such diagonal rate matrices, however, in general do
not satisfy the strong normalization condition, thus the
weak normalization normalization condition must be
obtained by other means.
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If the input vectors satisfy the condition for all i,

for some real number r > 0, then the rate matrix has the
particular form R = diag(-r,..., -r), the function wt = 0 for
arbitrary times, and the weak normalization condition is
satisfied automatically.

The previous condition is in general too restrictive. If the
previous condition is not satisfied, by construction wt is
zero at t = 0, t = t* and t = t∞, but in general wt ≠ 0 for n >
2. Normalization is then achieved (107) by modifying our
definition of qt to

The final expression is

Evolution of a matrix of transition probabilities
In some cases, several states of a model correspond to a
particular evolutionary event, and it seems natural to
expect that their transitions would evolve under the con-
trol of the same rate matrix. For instance, in a profile
HMM (Figure 4) I will consider the joint evolution of the
transitions of three states associated with a given consen-
sus position: Match (M), Insert (I), and Delete (D).

For a collection of m states S = {S1,..., Sm} that transition
into a collection of n states E = {E1,..., En}, consider the set
of all transition probabilities emerging from the m origi-
nating states S and ending in the n states E,

The set of S and E states do not have to be mutually exclu-
sive, and some E states can also be part of the S set. The set
of E states also has to be complete, in the sense that

On the other hand, not all E states need to be reached by

a given  state; some transitions may be forbidden by

design. For instance, for the states associated with a con-
sensus position in a profile HMM the set of originating
states is S = {M, D, I}, and the set of ending states is E =
{M', D', I}, where the prime index indicates the next posi-
tion in the profile. The condition m ≤ n can be imposed
with all generality.

w q q e u

q i q i t t
q i q i

q i q

t
T tR≡ −

= − −
−

∞

∞
∞

( )

[ ( ) ( )]exp / log(
( ) ( )

( )*
*

0

0
0 ∞∞=









∑ ( )

) . ( )
ii

n

1

108

q i q i

q i q i
r*( ) ( )

( ) ( )
, ( )

−
−

= −∞

∞0
109

q
q

wt
t

t
←

+1

q
q

w

q q

w

t t
q q

q q

t
T

T

t

T

t
=

+
+

−
+

−
−

∞ ∞

∞

∞

1 1

1 1

1 1
0

0
( )

exp[ / log(
( ) ( )

( ) ( )*
* ))]

exp[ / log(
( ) ( )

( ) ( )
)]

. (

*
*t t

q n q n

q n q n

−
−























∞

∞0

1110)

T i m i nS Ei i→ = =, ,..., , ,..., . ( )for and1 1 111

T SS E

i

n

i
i i→

=
∑ =

1

1 112. . ( )for all

Si

Part of a profile HMM modelFigure 4
Part of a profile HMM model. For a profile HMM we 
depict the transition probabilities associated with the states 
of a given consensus position in the profile: Match (M), Insert 
(I), and Delete (D). The three states corresponding to the 
next position in the profile are referred to with primes. The 
Match state has three transitions (into I, M', and D'), while 
the Insert and Delete states have two transitions each (into I 
and M', and into D' and M' respectively).

I
����� ��

��
�

��
��

������

T I→M′

��
��

��
��

��
��

����

T M→I

��
��

��
��

��
��

T I→I

��

M
T M→M′

��

T M→D′

��
��

��
��

��
��

��
��

��
M′

��������D
T D→D′

��

T D→M′

������������������ ��������D′
Page 18 of 30
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:63 http://www.biomedcentral.com/1471-2105/6/63
We want to describe the evolution with time of the transi-
tion probabilities. For that purpose, I will use the m × n
matrix of transitions Qt such that,

Note that an evolutionary model of the form Qt = Q0etR,
like that used for evolving gaps as extra characters, is not
sufficient. A model of the form Qt = Q0etR in the limit of
infinite divergence would necessarily result in transitions
that for a given end state are all identical and independent
of the previous state. That is clearly too restrictive for most
models, for instance in a profile HMM, in which some of
the transitions are not evolved and are set to zero.

In order to allow for more general saturation properties of
the transition probabilities, I propose the following
model for the evolution of the matrix of transition
probabilities,

Qt = Q0 + K (etR - I),  (114)

where R is the n × n rate matrix, and the m × n matrix K is
still to be determined. This extension (as in the vector
model proposed before) corresponds to adding a constant
term A = Q0 - K, and it is is the more general solution of a

differential equation of the form  ∝  (Qt - A).

We will see that K(etR - I) = (Q0 - Q∞)(etR - I), thus

Qt = Q0 + (Q0 - Q∞) (etR - In × n),  (115)

= Q∞ + (Q0 - Q∞) etR.  (116)

As in the previous case, a freedom provided by the addi-
tional constant-in-time term is that while the saturation
behavior of Q0etR is controlled by the saturation probabil-
ities of etR, the model given by equation (116) is inde-
pendent of those saturation probabilities so that the
probabilities at infinity can be set arbitrarily. That is,
assuming that ψ is the n dimensional vector of saturation
probabilities of etR,

Notice that while Qt, Q0, Q∞ and K are m × n matrices oper-
ating in the S × E space, the matrices R and etR are square
n × n matrices operating in the E × E space. In fact, etR

determines the change in time that a transition probabil-
ity into one of the E states experiences and in which

fashion that change is absorbed by the transition proba-
bilities into any other E state.

A step-by-step description of the algorithm
The recipe to implement the algorithm is as follows:

1. Assume we know the m × n (m ≤ n) matrices of transi-
tion probabilities at time zero Q0 and at time infinity Q∞,
such that the rank of Q0 - Q∞ is m.

2. If an analytic n × n rate matrix R is given, one can find
the analytic expression for etR by solving the differential
equation d(etR)/dt = RetR, and jump to step (6). For a
numerical solution jump to step (5).

3. If the information given is the set of transition proba-
bilities at a generating time t*, calculate the rate matrix R
as,

The n × m matrix O is obtained by solving the set of linear
equations

-(Q∞ - Q0) O + umvT = Im × m,  (120)

where um is the m dimensional unity vector [i.e.

], and v is a m dimensional vector uniquely
determined by the set of m independent linear equations,

vT (Q∞ - Q0) = 0,  (121)

vT um = 1.  (122)

The solution of equation (120) is not unique. In fact,
equation (120) determines the matrix O up to a n dimen-
sional probability vector ψ that satisfies the conditions ψT

O = 0. This probability vector corresponds to the satura-
tion probabilities of the matrix etR. While the rate matrix R
and the matrix etR depend on the choice of the saturation
probabilities ψ, the asymptotic behaviour of the matrix of
transition probabilities is independent of ψ, as was shown
in equation (118).

4. Impose the condition,

vT (Q* - Q0) = 0.  (123)

This condition [necessary so that ψT R = 0] imposes con-
straints between the set of probabilities at time zero, at
time t*, and at time infinity.
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5. Calculate the exponential of the rate matrix etR using the
corresponding Taylor expansion.

6. Finally, calculate the set of evolved transition probabil-
ities as,

Qt = Q0 - (Q∞ - Q0)(etR - In × n)  (124)

or

Qt = Q∞ + (Q0 - Q∞) etR.  (125)

An example: Evolution of the transitions of a profile HMM given a 
rate matrix
To illustrate this method, consider the case of a profile
HMM (Figure 4). There are three states associated with a
given consensus position in the profile: the Match state
(M), the Insert state (I) and the Delete state (D). These
three states transition into states M' (the Match state at the
next position in the profile), D' (the delete state at the next
position in the profile), and I (the insert state between the
two matched positions), therefore in this example m = 3
and n = 3.

Consider the following the transition matrix

This transition matrix, like a nucleotide substitution
matrix, adds up to one by rows. We assume as in HMMER
[4] that there are no transitions between the Insert and the
Delete states, but the model could work under more gen-
eral conditions.

The matrix at time zero is given by

The parameter 1/(1 - qI) is the average length of an insert
in between two matched positions at very short times (if
there were no deletions). The parameter 1/(1 - qD) is the
average length of a deletion at very short times (if there
were no insertions, and all position in the profile had the
same parameters at time zero). For instance, one could set
qI very close to zero, which implies that, for very small

times when , the average length of a insertion
would be very close to one.

At time infinity, one can parameterize the transition prob-
abilities as

where mD and mD represent the probabilities of Match to
Delete and Match to Insert at infinity, and dD and iI are the
Delete to Delete and Insert to Insert probabilities at time
infinity, (0 ≤ mD, mI, dD, iI ≤ 1).

Let us assume that the rate matrix is given by

for some parameter α > 0. This rate matrix assumes that
the rate of change in the occurrence of state M' is similar
to that of state D' and that of state I, and that this change
reverts equally into the other two states. More realistic sit-
uations can be achieved using rate matrices depending on
more parameters.

The instantaneous rate of transition change is given by,

This matrix gives the instantaneous change that a transi-
tion probability experiences under this model and
describes how that change is transferred to the other
allowed transition probabilities.

The matrix etR can be obtained analytically by solving the
differential equation d(etR)/dt = RetR. This is a 3-dimen-
sional Jukes-Cantor model which has as its solution,
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Putting all together, we obtain the following evolved tran-
sition probabilities for a profile HMM under a Jukes-Can-
tor like assumption for the rate matrix:

Substituting the values for st given in equation (133), we
have the following evolved transition probabilities for a
profile HMM,

The evolution of different paths through the HMM
In a tree-HMM one assumes that the different paths
through the model are the objects that are subject to evo-
lution [34]. Here we have directly modeled the evolution
of the transition probabilities of the HMM. We can get an
intuition for the meaning of these evolved transition
probabilities by estimating how these evolved transition
probabilities induce the evolution of different paths
through the model. A process that is similarly to that
modeled by a one-branch tree-HMM.

Suppose that at time zero, we emitted residue a from state
M, and residue b from state M'. The model assigns to such
sequence a probability given by,

where pM(a) and pM'(b) represent the emission probabili-
ties associated to the M and M' states respectively. Now
suppose that at time t there has been an insertion of n res-

idues in between the two matches a and b; the model
assigns to such sequence a probability given by,

where pI(ii) represent the emission probabilities associ-
ated to the Insert state.

We can interpret that in time t the path through the model
that generated ab has evolved into the path through the
model that generated ai1...inb with probability given by

To get a better intuition of what this means, take as an
example the case in which the time interval t is very small.

Then the probability that a path between two matches in
the HMM inserts n residues in time t ≈ 0 is

This probability is proportional to 3αmI the rate of substi-
tuting a Match-to-Match transition for a Match-to-Insert

transition, and to  (1 - qI), which is the geometric fac-
tor associated to an insert of length n at time zero.

An example: Evolution of the transitions of a profile HMM given the 
transitions at a generating time
In this case, we maintain the same values for the transition
probabilities at time zero Q0 and at time infinity Q∞, but
the rate matrix will be obtained from a generating time for
which we know the transition probabilities.

The set of linear equations in step (3) of this algorithm
that determine the vector vT = (v1, v2, v3) are

mDv1 + (dD - qD)v2 = 0,  (146)

mIv1 + (iI - qI)v3 = 0,  (147)

v1 + v2 + v3 = 1.  (148)

The solution of these linear equations is

v1 = (dD - qD)(iI - qI)/d,  (149)

v2 = -mD(iI - qI)/d,  (150)

v3 = -mI (dD - qD)/d,  (151)

where d ≡ (dD - qD)(iI - qI) - mD(iI - qI) - mI(dD - qD).

Parameterize the matrix O in the form
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with each row adding to zero. The set of linear equations
in step (3) that determine the matrix O are

(dD - qD)(M1 - D1) + v1 = 0, (iI - qI)(M1 - I1) + v1 = 0,  (153)

(dD - qD)(M2 - D2) + v2 = 1, (iI - qI)(M2 - I2) + v2 = 0,  (154)

(dD - qD)(M3 - D3) + v3 = 0, (iI - qI)(M3 - I3) + v3 = 1.  (155)

Solving Mi and Ii in terms of Di we have,

The matrix O is therefore determined up to the unitary
vector (D1,D2, D3). The saturation probabilities ψT = (ψM',
ψD', ψI')(ψTR = 0) are defined by the equations ψTO = 0,
which imply

Substituting vector D with vector ψ we finally obtain the
following expression for the matrix O in terms of the sat-
uration probabilities ψ:

The condition in step (4) of the algorithm translates in
this case into the following relationship of parameters,

This is an additional set of constraints that the "vector"
algorithm does not impose.

To test the algorithm I have made up a toy HMM consen-
sus state, which at the generating time t* is given by the
matrix of transitions,

Selecting the particular values qD = qI = 0.1 and dD = iI = 0.6,
using the constraints of equations (161) implies that mD =
0.33 and mI = 0.25. Using these values and the arbitrary
values for the saturation probabilities ψ = (1/3, 1/3, 1/3),
we obtain the following O matrix:

The rate matrix R constructed using equation (119) is
given by

and an instantaneous rate matrix -(Q∞ - Q0)R is given by,

The evolved set transition probabilities at time t = 0.3 is
given by,

Using the "vector" method, in which transition probabil-
ity vectors evolve independently with the same set of
parameters, we would have obtained the identical result,

The normalization function wt given in equation (82) is
different from zero only for dimensions larger than two.
The second and third row effectively have dimension two
(since one of the elements is always zero), and do not
require normalization. For the first row the normalization
function takes the value w0.3 = 0.0020.

The vector method allows us to use more unrestricted sets
of parameters than the matrix method since the condi-
tions in equation (78) are independent for each row. In
principle, however, the conditions in equation (161)
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seem to allow behaviors that the vector model does not

allow such as  >mD ≡  as long as, simultane-

ously,  >dD ≡ . In practice when I have tested
that kind of situation, the rate matrices obtained are
always not real, and therefore they lack any biological
interpretation.

Derivation of the algorithm to evolve a matrix of transition 
probabilities
We start with a model of the general form

Qt = Q0 + K (etR - In×n),  (168)

where Q0 is the known m × n matrix of probabilities at
time zero, and the m × n matrix K must still be
determined.

Assume that we know the transition probabilities at time
infinity, which we represent by the m × n matrix Q∞. Then,
because of the asymptotic behavior of the exponential
family etR, limt→∞etR = unψT for some n dimensional
saturation probabilities, where ψT = (ψi,...,ψn), and the n

dimensional unity vector  = (1, ..., 1), we have

Q∞ = Q0 + K (unψT - In×n).  (169)

This equation implies that

K = -(Q∞ - Q0)+ ψT,  (170)

where  is a m dimensional vector that represents the

sums by rows of K, i.e. ∑jK(i, j) =  which we impose to
be different from zero.

Because for the exponential family etR we have the reversi-
bility condition ψTetR = ψT for arbitrary time, introducing
the expression for K in equation (170) in the equation
(114) we have the general result,

Qt = Q0 - (Q∞ - Q0)(etR - In×n).  (171)

This result proves point (6) of the previous algorithm
description.

Therefore if given Q0, Q∞ and a n × n rate matrix R, which
satisfy the reversibility conditions ψTR = 0, we can calcu-
late the evolved transition probabilities using the equa-
tion (171).

In the case in which the information given is the set of
transition probabilities at a generating time t*, designated

by Q*, the calculation of the rate matrix R involves the fol-
lowing steps:

(a) The m × n matrix K is by construction invertible

because we have imposed  ≠ 0, for all rows i.

A little aside with respect to matrix inversions is in order
here. The (unique) inverse of a matrix is defined only for
square matrices. One can introduce a inverse-like matrix
for a non-square matrix; these are called pseudoinverses
[69]. The pseudoinverse of a non-square matrix is not
unique and many pseudoinverses can be defined; one of
the best known is the Moore-Penrose matrix inverse [70].
We will see how despite the fact that the pseudoinverse of
K is not unique, we can still define Qt uniquely.

Therefore solving for R in equation (114) at the particular
time t* we have

where K-1 is the n × m pseudoinverse of K defined by the
conditions KK-1 = Im×m and K-1K = In×n.

(b) Because the final result for Qt in equation (116) does

not depend on the values  we can set them with all gen-

erality to the form  = ρ ≠ 0. Therefore we have

K = -(Q∞ - Q0) + ρum ψT.  (173)

Because K-1Kun = un and Kun = ρum, then we need that K-1um
= ρ-1un. Therefore we propose that the n × m pseudoin-
verse matrix K-1 has the following form,

where the n × m matrix O, and the m dimensional vector
v satisfy the conditions,

O um = 0,  (175)

vTum = 1.  (176)

(c) In order to satisfy K-1K = In×n we need to have,

vT(Q∞ - Q0) = 0,  (177)

-O(Q∞ - Q0) + unψT = In×n.  (178)
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Equation (177) is a set of homogeneous linear equations
that together with the normalization conditions in equa-
tion (176) uniquely determine the vector v.

On the other hand, in order to satisfy KK-1 = Im×m, the fol-
lowing must apply:

ψTO = 0,  (179)

-(Q∞ - Q0)O + umvT = Im×m.  (180)

Equation (180) is a set of linear equations which deter-
mines O aside from a dependence on an arbitrary proba-
bility vector. In particular we can find the expression of
matrix O in terms of the vector ψ as we did in equation
(160).

Once the matrix O has been obtained using equation
(180) as a function of the vector ψ, one can verify that the
set of equations describe by (178) is automatically
satisfied for any vector ψ as long as it satisfies the condi-
tion ψTO = 0. This is the result presented in step (4) of the
algorithm.

(d) Because ψ corresponds to the saturation probabilities
of etR, then it is necessary that ψTR = 0. This condition is
satisfied if,

Therefore it implies that,

vT(Q* - Q0) = 0,  (182)

which is the condition imposed in step (4) of the algo-
rithm. Under those conditions, it results for the rate
matrix R,

Notice that the parameter ρ ≠ 0, which is necessary to be
able to invert the matrix K to calculate the rate R, does not
appear anywhere in the final result, either in the evolved
transitions Qt or in the value of R. This results from the fact
that in either equation the only relevant component is the
projection of K (or K-1) into (etR - I). The same projection
is what makes the vector ψ that appears in the pseudoin-
verse K-1 irrelevant. Even though limt→∞etR = uψT, it is also
true that limt→∞ (Q∞ - Q0)etR = 0, so that the dependence
on ψ disappears from the final expression of Q∞.

Reversibility and multiplicativity
For a given probabilistic model, imposing reversibility has
different implications for its emission and transition
probabilities. In pair models, we assume that the emission
probabilities are reversible by imposing P(at, bt+t') =
P(at+t',bt), which corresponds to using symmetric joint
probabilities represented by the shorthand notation P(a,
b|t'). If the emissions do not involve gaps, the marginal
probabilities do not evolve, and the evolved joint proba-
bilities are obtained from the evolved conditionals and
the saturation probabilities. In the presence of gaps, I have
described how to construct the evolved conditionals and
the corresponding evolved marginals in a way that main-
tains reversibility for any arbitrary time, so that we can
construct evolved symmetric joint probabilities.

For transition probabilities the situation is different.
Mathematically, a matrix of transition probabilities is like
a substitution matrix (i.e. conditional probabilities) but
there is not the equivalent of "joint" probabilities for tran-
sitions. To maintain reversibility for the transitions of a
probabilistic model, one has to build reversibility in the
design of the model. In particular, one needs to be sure
that the transition probabilities that involve gaps lack any
directionality. For instance, in the pair-HMM of Figure 3

we need to impose that  for arbitrary
times. That is achieved by making sure that the input tran-
sition probabilities at time t*, zero and infinity do lack
directionality.

Another property of probabilistic models of evolution for
residue substitutions is multiplicativity. Multiplicativity is
an immediate property for evolutionary models of the
form etR. For residue-substitution evolutionary processes,
multiplicativity implies that the transition from one given
event (say residue a) to another event (say residue b) in a
finite time, if it goes through any intermediate state, has
to be of the form of any other possible substitution. In
mathematical terms,

However, when allowing gaps, any intermediate evolu-
tionary step can go through processes of deletions or
insertions in addition to substitutions; therefore multipli-
cativity as described in the previous equation does not
hold anymore. There is a natural explanation of why "sub-
stitutions-only multiplicativity" is modified when consid-
ering insertion and deletion events. Consider the
evolution of gaps as single characters, which was intro-
duced previously in this paper. The substitution matrix

with gaps  satisfies the relationship
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Analyzing this matrix equation by components and using
the expression for Q0 given in equation (22), the substitu-
tion of residue a into residue b in finite time t + t' has the
following terms:

The first term corresponds to pure substitution events of

the form , and it is identical to equation
(184). The second term modulated by the coefficient 1/q0

(introduced in equation (65), which is part of the non
trivial matrix Q0) represents the event in which

. The third term (preceded by coeffi-
cient (1 - 1/q0)) represents the event in which

. Note that this model would align at
time t + t' residues which could have been derived by a gap
intermediate. This is usually discouraged by evolutionary
models that describe the evolutionary history of inser-
tions and deletions, in which such event would be repre-

sented as . For the model at hand, the fact that a gap

can revert into a residue is a consequence of treating gaps
as an additional residue in a substitution matrix.

For the particular case of the generalized Jukes-Cantor
model introduced before, it turns out that the two extra
terms in equation (186) are independent of the particular
substitutions and cancel, such that

Therefore the generalized Jukes-Cantor model preserves
multiplicativity. This results from the extreme simplicity
of the model and is not true for more complicated mod-
els. For instance, for the rate matrix created from a partic-
ular Q* in the other example presented in this paper
(which is a particular case of the REV model [44]), the two
extra terms in equation (186) are different for the differ-
ent nucleotide substitutions, and do not cancel out.

A more complicated situation appears for probabilistic
models that introduce gaps in an affine manner. A given
residue-to-residue substitution process that occurred in a

finite time could have appeared from a very large number
of intermediate situations in which stretches of other
nucleotides could have been added or removed. The sim-
ple one-to-one correspondence that models of substitu-
tions maintain through evolution does not exist in the
presence of insertion and deletion events. This does not
mean that evolutionary models with gaps are inconsist-
ent, however some traditional properties of phylogenetic
trees of single residue evolution such as the pulley princi-
ple [71] cannot be applied under the transition probabil-
ity evolution models.

Conclusion
Motivated by the goal of making QRNA (a comparative
probabilistic method for RNA genefinding) an evolution-
ary model, I have introduced several probabilistic meth-
ods to describe the evolution of insertion and deletion
events. The methods introduced here have a larger scope
than this program alone, and they can be applied to other
pair probabilistic models and to profile HMMs and SCFGs
as well.

I described an algorithm which addresses the evolution of
gaps as an extra residue in a (N + 1) × (N + 1) substitution
matrix. This method can be applied to the joint emission
probabilities of pair models. This method allows us to
maintain a stationary N-dimensional background distri-
bution, while the actual (N + 1)-dimensional background
frequencies evolve towards all gaps at time infinity. I call
this process quasi-stationary. As an example, I showed an
analytic solution for the Jukes-Cantor model extended to
gaps.

I also presented two methods for the evolution of transi-
tion probabilities in a profile or pair HMM or SCFG, that
are applicable to any probabilistic model that uses transi-
tions between states to model insertions and deletions. In
the first algorithm, the transition probabilities associated
with one state in the model are evolved as a vector inde-
pendently of the transition probabilities associated to any
other state in the model. I also presented a second algo-
rithm in which the transition probabilities associated with
a given set of states co-evolve under the control of a single
rate matrix. I presented an example of the application of
these methods to a pair-HMM and to a profile HMM.

I have applied these methods to the program QRNA,
which was the motivation for the development of the
algorithms in the first place. QRNA contains three proba-
bilistic models (the oth, cod, and rna models) that ana-
lyze the pattern of mutation of a given pairwise alignment
to decide which of the three models best classifies the
alignment. These models are a combination of general-
ized pair-HMMs and a pair-SCFG. Originally, this pro-
gram assumed a fixed divergence time, and all the
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emission probabilities of the different models were tied to
those of BLOSUM62. That produced a QRNA parameter-
ized for highly diverse sequences, which in turn produced
a large number of false positives for highly similar
sequences. In the new program eQRNA, all emission and
transition probabilities are a continuous time-dependent
family able to match any possible degree of sequence
divergence.

The three models of QRNA (the OTH, COD, and RNA
models) need to be at approximately the same evolution-
ary distance, so that when a pairwise alignment is ana-
lyzed, the differences in scores of the models result from
observing a different pattern of mutations (coding, RNA,
or none in particular) rather than because one model
favors more closely related sequences than the other. This
model synchronization requires a number of QRNA-spe-
cific design elements which are tangential to the imple-
mentation of the evolutionary models for indels and
transition probabilities presented in this paper. For rea-
sons of clarity, I leave for another paper a detailed descrip-
tion of the particular implementation designs that went
into eQRNA in order to make it fully evolutionary. In a
nutshell, the transition probabilities of the OTH and COD
models are evolved according to the algorithm to evolve
vectors of transition probabilities, while the emission
probabilities of those two models were evolved using the
original QRNA parameters as the generating time of the
respective rate matrix. In the RNA model, for the context-
free grammar component of the model, the transitions are
fixed, and the evolution of gaps is accommodated by
treating gaps as extra characters according to the method
presented here for that purpose. The HMM component of
the RNA model is parameterized with time similarly to the
OTH and COD models. Preliminary results show an
important improvement compared with the previous
fixed-time implementation. The application of these evo-
lutionary methods for other probabilistic models for
sequence comparison beyond eQRNA should be
tractable.

So far the methods presented here have been introduced
only in profile and pair models. They could also be
applied to probabilistic models where, instead of aligning
two contemporary sequences, one aligns a sequence to an
ancestor. The only difference with respect to an evolution-
ary pair model is that, in this case, the emission probabil-
ities will be the substitution (conditional) matrices
themselves instead of joint conditional-on-time probabil-
ities. One important limitation of the methods presented
here is that, in general, they lack the property of multipli-
cativity. In consequence, in order to extend the methods
presented here to more than two sequences related by a
phylogenetic tree, one would have to work with rooted
trees. A future challenge is to incorporate these evolution-

ary methods into multiple sequence probabilistic models
that explicitly describe the phylogenetic relationship
between the sequences.

Availability
The different models presented in this paper have been
implemented in several small ANSI C programs. These are
not fully developed software applications, but demonstra-
tions (for those who want to avoid the mathematical
descriptions) of how the different algorithms work. The
programs are freely available at http://selab.wustl.edu/
publications/Rivas05/evolve.tar.gz.

Methods
Appendix A. Conditions for the saturation of a generalized 
substitution matrix
In this appendix I provide the conditions for saturation of
a generalized evolutionary model of the form Qt = Q0etR.
Saturation can be described as

for the unitary vector u, and a set of saturation frequencies

at time infinity denoted by q∞, such that .

Here I show that saturation of Qt = Q0etR is a necessary
condition of two properties of the matrix Q = {Q(ij)},
normalization and positivity. I also show that the satura-
tion probabilities of Qt are the same as those of etR.

Proposition A.1. Consider first the simplest case Qt = etR.
Normalization, i.e. ∑jQ(ij) = 1, together with positivity,
i.e. Q(ij) > 0 ∀ i, j, imply that a substitution matrix of the
form Qt = etR saturates to a set of probabilities at time
infinity.

Proof. Normalization of the rate matrix, ∑j Q(ij) = 1
implies that

That is, λ = 1 is an eigenvalue of Q. It also has implications
for the norm of Q, defined as the largest row sum of abso-
lute values
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Therefore, because of the spectral theorem [72], the spec-
tral radius σ(Q), defined as the largest absolute value of
any eigenvalue of Q, is bounded by,

σ(Q) ≤ ||Q|| = 1.  (191)

On the other hand there is an eigenvalue λ = 1 therefore

σ(Q) = 1.  (192)

In consequence, Q has one eigenvalue, λ = 1, and all other
eigenvalues are smaller than one.

Therefore because the substitution matrix is of the form Qt
= etR, it implies that the instantaneous rate matrix R has
one null eigenvalue, and all the other are negative. If we
assume that the null eigenvalue is not degenerate and that
the negative eigenvalues are real, we can write with all
generality,

for some matrix U, and such that λi > 0 for i = 2, ..., n.

Therefore Qt = etR can be cast into the form,

In the limit,

for  = (1, 0, ..., 0).

On the other hand using equation (194) we obtain

which implies that UΨ0 is the eigenvector of Q corre-
sponding to the eigenvalue λ = 1. According to (189) that
is,

Substituting in equation (195) we finally obtain,

This is the saturation condition (188) for some saturation

probabilities defined by q∞ = U-1.

Corollary A.1. For a generalized evolutionary model of
the form Qt = Q0etR, Qt also saturates at infinity, and the
saturation probabilities of Qt are given by those of etR, that
is,

Proof. Note that by construction Q0 has to have the same
normalization and positivity conditions as Qt. It can be

shown that under those conditions, Qt = etR also has
to add up to one, summing by rows, and all its elements
have to be positive. Therefore, using the result of Proposi-
tion A.1,

Therefore

which proves saturation for an evolutionary probabilistic
process of the form Qt = Q0 etR.

Appendix B. Implications of reversibility on a generalized 
evolutionary process
In this appendix I discuss the implications that reversibil-
ity imposes on a generalized evolutionary model. I show
that for an evolutionary model of the form Qt = etR, the
marginal probabilities with respect to which Qt is reversi-
ble have to be stationary, and therefore coincide with the
saturation probabilities. I also show that for an evolution-
ary model of the general form Qt = Q0etR, the marginal
probabilities with respect to which Qt is reversible can
change with time. In this way we decouple the "reversibil-
ity" frequencies from the saturation frequencies. I also
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demonstrate how to calculate the saturation probabilities,
given Q0 and Q* at one particular time t*. This system sets
the ground for the quasi-stationary model of evolution
with gaps as an extra indel.

Lemma B.1. Consider a given matrix of conditional prob-
abilities Q*, [∑j Q*(ij) = 1 ∀ i] which is reversible with
respect to a set of marginal probabilities p*,

p*(i)Q*(ij) = p*(j)Q*(ji).  (202)

Then one can see that reversibility implies

Proof. Summing one of the indices in the reversibility con-
ditions and taking into account the normalization condi-
tion for the Q* matrix results in,

which in vectorial notation takes the form

Lemma B.2. If R = log Q* then the reversibility condition
(202) for Q* implies that

Proof. If R = log Q* then because of the Taylor series we
have

Because of the reversibility condition for Q* (202) it is
also true that

p*(i) (Q* - I)n (ij) = p*(j)(Q* - I)n (ji),  (207)

for n ≥ 1. Therefore it follows that

p*(i) R(ij) = p*(j)R(ji).  (208)

In addition we can also see by inspecting equation (206)
that the normalization condition for Q* translates into ∑j
R(ij) = 0 ∀ i, which implies that

Lemma B.3. If Q* is a conditional matrix that satisfies the
reversibility condition (202) and R = log Q* then the sat-
uration probabilities of R are given by the p* vector in
(202), that is,

Proof. Taking from Lemma B.2., we have ; there-

fore  for n ≥ 0, and because of the relationship

it results that

for arbitrary t. Therefore, it also holds in the limit of very
large time that

Additionally, Appendix A shows that .
Combining those two equations together we have

This proves that the saturation probabilities are p*.

Proposition B.1. For a reversible evolutionary model of
the form Qt = etR, it results that the associated marginal
probabilities with respect to which the parametric family
Qt is reversible have to be stationary (i.e. time
independent).

Proof. From the parametric family Qt select one particular

instance t*, and consider . Suppose that the

marginal probabilities at this time are given by p*, that is:

. Because of the relationship R = log Q*, it fol-

lows from Lemma B.3 that the whole parametric family etR

has p* as the corresponding marginal probabilities, there-
fore the marginal probabilities do not evolve with time
(stationary).

Proposition B.2. For a reversible generalized evolutionary
model of the form Qt = Q0etR, the associated marginal
probabilities with respect of which Qt is reversible can be
evolved with time.
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proof. In order to prove that this is the case, we just need to
find an example in which that statement is true. Consider

again one particular instance  with its corre-

sponding marginal probabilities p*. Because the model is
reversible for arbitrary divergence times, in particular
there should be some p0 probabilities such that

. For this generalized model, the rate matrix is

given by . Therefore it follow by Lemma
B.3 that the saturation probabilities of R are given by the
condition

Therefore the saturation probabilities p∞ are different from
p* as long as p0 ≠ p*.

Therefore, we have constructed a parametric family, Qt =
Q0etR, in which the marginal probabilities for reversibility
are p0 at time zero, p* at t*, and p∞ at time infinity, with p0
≠ p* ≠ p∞. Therefore if there is reversibility at arbitrary time,
the marginals have to be time dependent,

pt (i)Qt(ij) = pt(j)Qt (ji).  (216)

In particular in the Section "The evolution of emission
probabilities with indels treated as an extra character" we
have constructed a system in which the time-dependent
reversibility condition (216) is satisfied by marginal prob-
abilities that are quasi-stationary with respect to some (n
- 1) p0 probabilities,

pt(i) = p0(i) (1 - Λt), for i = 1,...n - 1  (217)

pt(n) = Λt.  (218)
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