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Biological pathway analysis provides new insights for cell clustering and functional annotation from
single-cell RNA sequencing (scRNA-seq) data. Many pathway analysis algorithms have been developed
to transform gene-level scRNA-seq data into functional gene sets representing pathways or biological
processes. Here, we collected seven widely-used pathway activity transformation algorithms and 32
available datasets based on 16 scRNA-seq techniques. We proposed a comprehensive framework to eval-
uate their accuracy, stability and scalability. The assessment of scRNA-seq preprocessing showed that cell
filtering had the less impact on scRNA-seq pathway analysis, while data normalization of sctransform and
scran had a consistent well impact across all tools. We found that Pagoda2 yielded the best overall per-
formance with the highest accuracy, scalability, and stability. Meanwhile, the tool PLAGE exhibited the
highest stability, as well as moderate accuracy and scalability.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

With the advance of single-cell RNA sequencing (scRNA-seq)
technologies, a growing and large number of studies [1-3] have
been reported for revealing heterogeneity of cellular populations
at unprecedented resolution. scRNA-seq analysis enables research-
ers to uncover more refined and novel cell clusters [4], which have
greatly advanced our understanding of cellular states. There were
many state-of-art computational tools developed for clustering
cells, identifying marker genes, and visualizing scRNA-seq data
[5-7]. However, biological interpretation of the clustering results
remains a big challenge [8,9].

Pathway analysis has been widely used to depict transcriptional
heterogeneity and classify disease subtypes [10,11]. In single-cell
studies, pathway activity scores (PASs) analysis has been applied
to transform the gene-level data into explainable gene sets repre-
senting biological processes or pathways to uncover the potential
mechanism of cell heterogeneity [12-14]. Although GSVA [15]
and ssGSEA [16] were designed for bulk RNA-seq data to estimate
pathway activity variation of a single sample across all samples,
both tools have been extensively applied to perform functional
enrichment analyses for scRNA-seq data [17,18]. Recently, Pagoda2
[19,20] and Vision [21] were developed for parsing single cell tran-
scriptome data to identify potential cell-type-specific heterogene-
ity by incorporating prior information from biological pathways or
functional gene sets. Both bulk-based and single-cell-based path-
way activity transformation algorithms enable to identify func-
tionally analogous cell types [12], stable cell types for
characterizing ovarian cells [22], and a gene-set that potential
drive cellular differentiation heterogeneity of white adipocytes
[14]. Most recently, a web-based platform scTPA (http://sctpa.
bio-data.cn/sctpa) was developed to explore transcriptional
heterogeneity of cell populations integrating these widely applied
PAS analysis tools [23].

A recently published benchmarking study [24] compared the
performance of three transcription factor estimators (DoRothEA
[25], SCENIC/AUCell [26], and metaVIPER [27]) and three pathway
activity estimators (PROGENy [28], GSEA [29,42] and AUCell [26])
on scRNA-seq data, and found transcription factor and pathway
activities effectively preserve cell type-specific variability. To the
best of our knowledge, there were no systematic benchmark stud-
ies to evaluate the performance of unsupervised PAS transforma-
tion algorithms which could enable us to analyze scRNA-seq data
on PASs instead of individual genes expression.
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http://creativecommons.org/licenses/by-nc-nd/4.0/
http://sctpa.bio-data.cn/sctpa
http://sctpa.bio-data.cn/sctpa
https://doi.org/10.1016/j.csbj.2020.10.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sujz@wmu.edu.cn
https://doi.org/10.1016/j.csbj.2020.10.007
http://www.elsevier.com/locate/csbj


Y. Zhang, Y. Ma, Y. Huang et al. Computational and Structural Biotechnology Journal 18 (2020) 2953–2961
To fill this knowledge gap, we systematically evaluated the
accuracy, stability, and scalability of seven widely-used PAS tools
with 32 real scRNA-seq datasets. We concentrated on the perfor-
mance of these tools on their ability to dissect meaningful cellular
heterogeneity which still retain in reduced dimensionality space
and could determine cell types alone through supervised and
unsupervised classification. We hope our study can provide a use-
ful guidance for researchers to choose the appropriate method to
effectively and accurately analyze their scRNA-seq data from a
pathway functional annotation insight.
2. Materials & methods

2.1. Pathway activity score calculation tools

AUCell [26] (Version 1.8.0) is a recovery-based method that
allows identity cells with activity score. This statistical method cal-
culates PAS using an area under the recovery curve (AUC) score
among all ranked genes in a particular cell. The AUC score esti-
mates the proportion of highly expressed genes in each gene set.

Vision [21] (Version 2.1.0) is an annotation toolkit that uses
autocorrelation statistics to identify biological variations across
cells. Vision starts to identify closest K-nearest neighbors of each
cell for generating a cell–cell K-nearest-neighbor (KNN) graph.
PASs in Vision are calculated by averaging expressed genes for each
gene set. To account for the influence of sample-level metrics (the
number of UMIs/reads per cells), PASs are then corrected by their
means and standard deviations. Expression data used in Vision
could be scaled and normalized, but not log-transformed.

Pathway and gene set overdispersion analysis (Pagoda2) (Ver-
sion 0.1.1) [19] is a computational framework that aims to detect
cell heterogeneity from scRNA-seq data. This method fits an error
model for each cell to depict its properties, and residual variance
of each gene in the cell is re-normalized subsequently. Then, the
PAS of each gene set is quantified by its first weighted principal
component.

Gene set variation analysis (GSVA) (Version 1.35.6) [15]
assesses the variation of gene set using the Kolmogorov-Smirnov
(K-S) like random walk statistic. GSVA first estimate kernel-based
cumulative density for each gene, which uses classical maximum
deviation method by default. Then, PASs are calculated from gene
density profile by K-S-like statistic.

Single sample gene set enrichment analysis (ssGSEA) (Version
1.35.6) [16] is an extension method of Gene Set Enrichment Anal-
ysis (GSEA) which could transform gene expression into PAS profile
without phenotype labeling. ssGSEA ranks gene expression within
each cell separately, then the PAS of each pair of cell and gene set is
calculated by an enrichment score using K-S like random walk
statistic.

Combined z-score (z-score) (Version 1.35.6) [30] is a classical
strategy to aggregate expression of several genes. The gene expres-
sion is scaled by mean and standard deviation over cells. Then, the
PASs for each cell are calculated by averaging scaled gene expres-
sion of all genes within each gene set.

Pathway level analysis of gene expression (PLAGE) (Version
1.35.6) [31] captures PASs from singular value decompositions
(SVD) strategy. PLAGE first standardizes gene expression matrix
across cells. For a submatrix which genes in a particular gene set,
the first coefficient of right-singular vector in SVD of this matrix
is extracted as PAS.
2.2. Datasets

We collected 32 data sets containing distinct cell compositions,
which were widely used in benchmark studies on scRNA-seq (Sup-
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plemental Table S1). All data sets were downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/) or hemberg-lab
(https://hemberg-lab.github.io/scRNA.seq.datasets/). These data
sets were derived from six different biological organs of pancreas,
liver, lung, stem cell, peripheral blood, and brain across human and
mouse based on 16 scRNA-seq experimental protocols (Supple-
mental Table S1). Of note, 15 data sets were generated from Unique
Molecule identifier (UMI) -based protocols and the other 17 data
sets were generated without UMI. These collected gene expression
profiles had different matrices including counts data and normal-
ized data (TPM, CPM, or RPM). The mean number of detected genes
of each cell across all data sets ranged from 2,180 to 11,006. The
resource of cell types of each dataset including mixed cell lines,
sorted by fluorescence activated cell sorting (FACS), gathered from
different time points, or clustering were provided by their original
studies. Details for each data set are described in Supplemental
Table S1.

2.3. Accuracy

To evaluate ability of these tools on meaningfully extracting
transcriptional heterogeneity, we assessed that the cell-type-
specific obtained from PAS should be retained in dimensional
reductional space and could assign cells into cell populations
through unsupervised clustering or supervised classification
[20,24,26,32-40]. Therefore, the accuracy of PAS transformation
methods were assessed by three methods of dimensional reduc-
tion, clustering and cell type annotation. The pathway used in eval-
uation of accuracy incorporates 186 KEGG pathways generated
from MSigDB (Version 7.1) (Supplemental Table S3).

2.3.1. Dimensional reduction
We applied the R package Seurat to perform dimensional reduc-

tion on PAS matrix. Two dimensions were achieved by Uniform
Manifold Approximation and Projection (UMAP) with ‘‘method = ‘
umap-learn’” on the first 10 principal component (PCs). We then
used the silhouette function in R package cluster to execute silhou-
ette analysis. Averaged silhouette width across all cells was used to
evaluate the performance of dimensional reduction for each data
set.

2.3.2. Clustering accuracy
We accessed the performance of seven tools on unsupervised

clustering using Louvain clustering which is a hierarchical algo-
rithm in igraph R package. Louvain clustering algorithm executed
on first 10 PCs which was also used in dimensional reduction. In
each data set, the number of predicted clusters were set to the
same number of the known cell types. We used the ad-
justedRandIndex function in mclust package to calculate adjusted
rand index (ARI).

2.3.3. Cell type annotation
We evaluated the utility of PASs using a multinormal logistic

regression model and stratified cross-validation implemented in
the python package scikit-learn. The inverse of regularization
strength of multinormal logistic regression model was set to 1.
The parameter k of cross-validation was set to 5. Before training
and evaluating model, PASs of training set was scaled to acquire
values between 0 and 1, and the parameters of scaler were spread
to test set in the stage of validation.

2.4. Best choice of preprocessing procedure

The impact of preprocessing procedures of PAS transformation
algorithms was assessed by their accuracy. This preprocessing
includes two steps as follow:

https://www.ncbi.nlm.nih.gov/geo/
https://hemberg-lab.github.io/scRNA.seq.datasets/
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(1) Filtering for genes expressed in<5% of cells, as previous
reported methods [41,42].

(2) Three typical methods of normalization:
i) Log: standard log-normalization with subsequent scaling

included in Seurat package (Version 3.1.4) [7];
ii) Scran: a deconvolution strategy implemented by scran pack-

age (Version 1.10.2) [43];
iii) Sctransform: variance-stabilizing transformation wrapper in

Seurat package (Version 3.1.4) [44]. We also investigated
whether the performance of seven tools differed between
the filtering strategies using student’s t test and normaliza-
tions using two-way ANOVA test. For the detailed informa-
tion of these normalization procedures, please refer to
official tutorials and our Github repository (https://
github.com/sulab-wmu/PASBench).

2.5. Stability

2.5.1. Correlation between two matrices
The commonly detected rows and columns among two matrices

were used for computing their Spearman correlation. For each row,
considering the diverse distribution of matrices, the Spearman cor-
relation was calculated. Then, the median of correlation score
across all rows was represented as the correlation score of these
two matrices.

2.5.2. Correlations between runs of drop-out events
We randomly dropped a given percent of expressed genes per

cell and calculated the correlations between PAS matrices gener-
ated from dropped data sets and original data sets. The correlation
between PAS profiles was computed as described in Section 2.6.1.
To eliminate stochastic effects, genes were randomly dropped out
10 times for a given drop-ratio.

2.5.3. Correlations between different sequencing technologies
We assessed the stability of seven tools by calculating the cor-

relations across 13 data sets based on 13 sequencing technologies.
Before calculating correlations between each pair of technologies,
PASs across cells in each cell population were averaged. Then the
correlation between technologies, with the row in pathways and
col in cell clusters, was calculated as described previously (see Sec-
tion 2.6.1). For each tool, the correlation scores across all pairs of
different technologies were averaged as the final correlation score.
In the end, the corrplot package in R (Version 0.84) was used to
visualize the correlations across technologies for seven tools,
respectively.

2.6. Scalability

Total six data sets were randomly sampled from two data sets
generated by UMI-based 10x Genomics protocol and nonUMI-
based Smart-Seq2 protocol. UMI-based data set was collected from
Zheng et al. 68 k data set [45] and nonUMI-based data set was col-
lected from Lei et al. Smart-Seq2 data set [22]. These sampled data
sets included 10 k (k = 1,000) and 20 k genes with 5 k, 10 k and 20 k
cells, which were widely applied in existing scRNA-seq analyses. In
addition, two gene sets collections (Gene set #1, N = 50 pathways,
and Gene set #2, N = 200 pathways) were randomly selected from
chemical and genetic perturbations collection in MSigDB (Version
7.1) [46]. Each task was equally allocated four CPU core of centos.
For each tool, memory usage was measured by maximum
memory-used after every step. Memory consumption information
was captured by the gc() function in R. When calculating running
time, time consuming from data and package loading, pre- and
post-processing steps was excluded. Running time was measured
by the System.time() function in R.
2955
2.7. Overall performance score

The overall performance score was aggregated three different
performance scores yielded from estimating the accuracy, stability
and scalability of each PAS transformation algorithm. For accuracy,
scaled mean silhouette widths, scaled ARI, and scaled classification
accuracy were aggregated to obtain the accuracy score. For stabil-
ity, aggregated score across different runs (dropouts and technolo-
gies) was represented the stability score of each tool. For the
scalability, we first scaled running time and memory usage to
obtain a value between 0 and 1, respectively. Then, we averaged
scaled running time andmemory usage for assessing the scalability
score. Finally, both averaged and median performance scores were
yielded to represent the overall performance of each PAS calcula-
tor, respectively.
3. Results

3.1. Evaluation scheme

The schematic of the benchmarking framework is shown in
Fig. 1. We systematically searched the literature from the PubMed
database to gather all functional analysis tools that could aggre-
gated an ensemble of related genes for scRNA-seq data in an unsu-
pervised manner. By using a reviewing process with appropriate
exclusion criteria, we examined methods with functional analysis
algorithms for possible inclusion. The exclusion criteria used in
the current benchmark study as follows (see Table 1 for details):
(1) superseded by an updated method; (2) running too slow (cost
>2 h for Test Data, see Table 1 for details); (3) not implemented
in R/Python; (4) non-extensible. Therefore, a total of seven state-
of-art methods that could combine gene profiles with pathways
(or gene sets) for calculating pathway activity scores (PAS) were
included. We performed a systematic evaluation and comparison
of their performances from three different aspects: accuracy, sta-
bility, and scalability.
3.2. Impact of RNA-seq data preprocessing

Because of the high abundance of zeros and poor signal-to-
noise ratio in scRNA-seq data, it is in general assumed that pre-
processing including filtering low quality genes and data nor-
malization contribute to uncover cellular identities. Thus, we
determined whether preprocessing before PAS calculation would
improve the performance of PAS tools. We compared the perfor-
mance of seven tools with two filtering strategies and four nor-
malization strategies across all curated data sets. We found
filtering had non-significant impact on the performance of PAS
transformation algorithms (Fig. 2a, all p-values > 0.05). The per-
formance of AUCell, PLAGE and z-score were significantly influ-
enced by different procedures of normalization (Fig. 2b, p-
values = 3.3 � 10�4, 3.1 � 10�6, and 2.8 � 10�4, separately),
while the other four tools showed non-significant differences
among four normalization procedures. Compared with log-
transform and without normalization, the sctransform and scran
normalization yielded better performances across all tools
(Fig. 2b). Furthermore, Pagoda2 and Vision had a potent risk
to report error when using log-transform method to normalize
expression data for calculating PAS. An earlier study mentioned
that sctransform outperformed other normalization tools in
scRNA-seq analysis [47]. Therefore, we examined the perfor-
mance of these PAS tools based on sctransform-normalized data
without gene filtering in this study.

https://github.com/sulab-wmu/PASBench
https://github.com/sulab-wmu/PASBench


Fig. 1. An evaluation framework for benchmarking pathway activity score (PAS) calculators. The seven widely applied PAS inference algorithms were assessed on 32 well-
defined benchmark data sets. These algorithms combined prior knowledge (biological pathways or functional gene sets) with a statistic method to aggregate gene-level
matrix into PAS-level matrix. The accuracy (take into account three downstream applications), stability of results (in the presence of dropout events and across technologies),
and scalability (running time and memory usage) were used to systematically evaluate these algorithms.

Table 1
Overview of available PAS tools included in this benchmarking.

Name Date Platform Description / Exclusion reason Inclusion Reference

PLAGE 2005 R* Singular value decomposition True [31]
z-score 2008 R* Combined z-score True [30]
ssGSEA 2009 R* Kolmogorov-Smirnov-like rank statistic based on gene expression of single sample True [16]
GSVA 2013 R Kolmogorov-Smirnov-like rank statistic based on kernel estimation of the cumulative

density
True [15]

Pagoda2 2017 R First principal component of gene sets True [19]
AUCell 2017 R Area under the ranked gene expression curve True [26]
Vision 2019 R Summarizing the normalized expression of genes in the gene sets True [21]
ROMA 2016 R/Python/

Matlab
Running time is too slow (costs 2.8 h on Test Data* with 4 cores) False [55]

f-scLVM 2017 R Running time is too slow (costs 4.3 h on Test Data*) False [56]
PROGENY 2018 R Non-extensible (This method only inferred pathway activity scores for predefined 14

signaling pathways)
False [28]

Single Cell Signature
Explore

2019 GO not implemented in R/Python False [57]

Note: R*: original article did not have implemented it, cooperated in R package GSVA; Test Data*: 33,694 genes � 10000 cells, combining with KEGG database.

Y. Zhang, Y. Ma, Y. Huang et al. Computational and Structural Biotechnology Journal 18 (2020) 2953–2961
3.3. Evaluation of accuracy of methods

3.3.1. Dimensional reduction
By using the UMAP method to generate two dimensions for

seven tools, we used dimensional reduction (DR) to investigate
the accuracy of these PAS transformation algorithms. We applied
mean silhouette widths, as the metric for assessing the separation
between cell types based on PASs. In all datasets, we found the
Pagoda2 achieved the best performance of DR (DR = 0.82), and
the PLAGE (DR = 0.6), AUCell (DR = 0.59), and Vision (DR = 0.53)
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performed reasonably better than the other three tools (Fig. 3).
Notably, the Pagoda2 remained to be the best one in both UMI-
based datasets (DR = 0.89) and nonUMI-based datasets
(DR = 0.76). Pagoda2, PLAGE, and Vision gained a slightly better
performance in UMI-based dataset than that in nonUMI-based
datasets, while AUCell and GSVA outperformed their performances
in nonUMI-based datasets compared with in UMI-based datasets
(Fig. 3). The z-score method showed the worst performance in all
datasets, UMI-based datasets, and nonUMI-based datasets
(DR < 0.2). Furthermore, in silico evaluation (Supplemental



Fig. 2. Distribution of averaged performance score across filtering strategies (a) or normalization strategies (b). Results of significance testing are characteristic in dash line
for each tool. N.S no significance, *p < 0.0, ** p < 0.001, *** p < 0.0001.

Fig. 3. Evaluation accuracy of seven PAS tools on all data sets, UMI-based data sets
and nonUMI-based data sets. Accuracy of seven PAS tools were assessed in
dimensional reduction (DR), clustering (CL), and cell type annotation (CA). Heatmap
of three metrics – mean silhouette width, adjusted rand index (ARI) and
classification accuracy – averaged across all datasets. To compare the performance
of seven tools, metrics was scaled to a value between 0 and 1 before averaged. A
higher scaled score represents a better performance. PAS tools ranked by their
performance of DR across all data sets are shown in the plot.
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Fig. S1, Supplemental Note 1, and Supplemental Table S2), Pagoda2
was demonstrated to be the most robust tool, which was slightly
influenced by the library size. Four tools (z-score, ssGSEA, GSVA,
and PLAGE) developed for bulk-seq data sets were more sensitive
to the library size compared with others (Vision, AUCell, Pagoda2)
designed for single-cell data sets. The number cells have non-
significant influence on the performance of PAS tools (Supplemen-
tal Fig. S2).
3.3.2. Clustering
We compared the performance of these PAS transformation

algorithms for clustering (CL) analysis. Graph-based Louvain
2957
algorism was used for unsupervised clustering, and adjusted rand
index was selected as evaluation metric. We found Pagoda2 had
the best performance of CL among all datasets (CL = 0.89), UMI-
based datasets (CL = 0.90), and nonUMI-based datasets
(CL = 0.88). PLAGE, AUCell, and Vision yielded a relatively better
performance than GSVA, ssGSEA, and z-score among all datasets
(Fig. 3). For these seven tools, there was no prominent difference
in performances for CL between UMI-based and nonUMI-based
datasets.

3.3.3. Cell type annotation
The ability of these PAS transformation algorithms was assessed

for cell type annotation (CA). A multinormal logistic regression
model with cross validation strategy was employed to train these
PASs matrices. Averaged classification accuracy was determined
as an evaluation metric for annotating original cell types. Among
the seven tools, Pagoda2 had the highest classification accuracy
for CA in all datasets (CA = 0.81) and UMI-based datasets
(CA = 0.90), while PLAGE performed the best for CA in nonUMI-
based datasets (CA = 0.77). AUCell and Vision achieved a moderate
classification accuracy for CA in all datasets, UMI-based datasets,
and nonUMI-based datasets (CA > 0.5). The GSVA reached a mod-
erate classification accuracy in nonUMI-based datasets
(CA = 0.55). Both z-score and ssGSEA showed worse performances
for CA in all datasets (CA < 0.3). Altogether, we found Pagoda2
exhibited the best performance from three different aspects of
the assessment of accuracy. And PLAGE, AUCell, and Vision reached
a moderate performance among all accuracy assessment. Our
results indicated that different tools manifested a distinct perfor-
mance according to UMI-based and nonUMI-based datasets.

3.4. Evaluation of stability of methods

3.4.1. Dropout genes in gene expression profiles
We applied the gene coverage reduction to evaluate the stabil-

ity of different PAS transformation algorithms. Considering that the
number of detected genes were varied across different single-cell
data sets, these PAS tools were expected to cope with data sets
with various library size [24]. We randomly dropped expressed
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genes in each cell and calculated average pairwise correlation
between PASs derived from dropped data set and original data
set (see ‘‘Methods”). Generally, compared with other tools, we
observed that Pagoda2 had the best stability with genes dropout
in both UMI-based (Fig. 4a) and nonUMI-based datasets (Fig. 4b).
The standard deviation of Pagoda2 was relatively small. In UMI-
based datasets, GSVA, ssGSEA, Vision, and z-score showed a more
stable performance than AUCell and PLAGE. In nonUMI-based
datasets, the performances of ssGSEA, AUCell, GSVA, and ssGSEA
were dropped remarkably with the drop ratio increased.

3.4.2. Stability of different scRNA sequencing protocols
It is not only important that a PAS tool could produce similar

results when given sparse matrix, but also that it is able to retrieve
relatively similar PASs across different technologies, as they were
transformed from same biological context [24,48]. To do so, we
downloaded the human peripheral blood mononuclear cells
(PBMCs) from Human Cell Atlas Project, which were generated
from 13 different scRNA-seq protocols. To further assess these
tools’ stability, Spearman correlations between 13 technology pro-
tocols for each PAS tool were estimated. We found that AUCell and
Vision showed the higher correlations across 13 technologies (me-
dian r = 0.88 and 0.82, respectively). The z-score, ssGSEA, Pagoda2,
and GSVA had the moderate correlations across 13 technologies
(median r = 0.77, 0.68, 0.61, and 0.5, respectively). The PLAGE
was very sensitive to the technology protocols and data distribu-
tion (Fig. 4c). Besides, we found that with the increasing drop ratio
of genes in pathways/gene sets, the performance of these tools was
decreasing. (Supplemental Fig. S7). Altogether, combining the
results from dropout genes with correlations across different tech-
nologies, we found Pagoda2 showed the most stability than the
other tools (Fig. 6).

3.5. Evaluation of scalability of methods

With the number of cells produced from current protocols were
increased gradually, current analysis tools were expected to deal
with hundreds of thousands of cells [49,50]. To assess the scalabil-
ity, we randomly generated three gene expression data sets con-
sisting of different number of genes and cells from nonUMI-
based and UMI-based gene expression profiles, separately. These
two parts of data sets were designed to investigate the effect of
data sparsity on assessment of scalability (see ‘‘Methods”). Cells
sampled from Smart-Seq2 expressed 38% genes on average
(Fig. 5a), while cells generated from 10x Genomics platform
expressed 2% genes on average (Fig. 5b).

Overall, the maximum running time of seven tools across
nonUMI-based data sets (range from 1.5 min to 2.7 h) were longer
than that across UMI-based data sets (range from 1.4 min to 1 h).
The memory usage of seven tools across nonUMI-based data sets
were larger than that across UMI-based data sets. The number of
gene sets have no impact on the memory usage in either UMI-
based or nonUMI-based data sets (Fig. 5a and 5b). However, we
observed that these algorithms required longer time when cope
with more gene sets. Running times of AUCell, Pagoda2 and ssGSEA
were increased six-fold, four-fold and three-fold separately when
the number of gene sets reaching to 1000, while other four tools
(GSVA, Vision, PLAGE, and z-score) increased no more than one-
fold.

Pagoda2 has the best performance of scalability according to
running time and memory usage which cost 1.4 min and 13 Gb
when the number of cells reaching to 20,000. GSVA was the most
time-consuming method, which takes approximate 45-fold time
longer than Pagoda2. Vision used the largest memory overhead
value during calculation. The maximum memory usage of Vision
was up to 21 Gb on 20 � 20 � 1000 (20,000 genes � 20,000
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cells � 1000 gene sets) UMI-based data set while Pagoda2 only
need 13 Gb.

Together, these chosen tools had varied performances of the
scalability. Pagoda2 was estimated to be the best-performing tool
based on running time and memory usage. The number of genes,
cells, gene sets collections, and data sparsity would influence the
running time of all tools, and the memory consumption mainly
be attributed to dimensionality of gene expression profile. The run-
ning time of AUCell, Pagoda2 and ssGSEA was more sensitive to the
number of gene sets compare to other four tools.

3.6. Overall performance

By aggregating three metrics from the assessment of accuracy,
stability, and scalability through mean or median, we yielded an
overall performance score for each tool (Fig. 6, Supplemental
Figs. S3 and S4). We demonstrated that the relative accuracy of
PAS tools was consistent regardless of the choice of dimensional
reduction technique, clustering method, or supervised classifier
(Supplemental Fig. S5). We found that Pagoda2 achieved the best
overall performance score with the highest accuracy, scalability,
and stability regardless of the UMI-based data sets or nonUMI-
based data sets (Supplemental Figs. S3 and S6). Meanwhile, the
tool PLAGE exhibited the highest stability, as well as moderate
accuracy and scalability. However, the performance score of these
tools varied across evaluation criteria, for example, PLAGE had a
better performance than AUCell in term of accuracy while it
showed weaker performance in the assessment of stability.

4. Discussion

In this study, we systematically collected seven widely-
accepted pathway activity transformation algorithms including
four bulk-based and three single-cell-based tools with 32 bench-
mark datasets. For these benchmark datasets, there were 15
UMI-based and 17 nonUMI-based datasets included. Here, we pre-
sented a comprehensive benchmark evaluation to examine the
accuracy, stability, and scalability of these seven PAS tools on
scRNA-seq data.

Multiple lines of evidence have demonstrated [10,11] that
pathway-based enrichment analysis could help to elucidate biolog-
ical implications and molecular mechanisms. Thus, a growing
number of single-cell-based studies [12-14] have applied the
pathway-based activity score analysis to discover cells hetero-
geneities. One of advantages of using PASs is that the transforma-
tion is based on widely-accepted canonical pathways curated from
literature resources such as the KEGG database, which provide a
reasonable biological interpretation of cell identities and avoid
the process of marker genes selections before training classifiers.
In the current benchmarking study, we adopted seven PAS tools
based on the KEGG pathways to evaluate their performances on
scRNA-seq analysis, and found that Pagoda2 yielded the best per-
formance. Meanwhile, we noticed that different PAS tools achieved
a distinct performance according to UMI-based and nonUMI-based
datasets, suggesting that researchers should consider the resource
of scRNA-seq data before selecting the tools for analysis.

Many studies showed that bulk RNA-seq tools could be applied
to analyze scRNA-seq data [24,51]. For example, z-score, which is
embedded in matchScore2 [32], was used for calculating the com-
bined marker-gene-sets activity scores to train a classification
model. By using the z-score method, Lee et al. [32] established a
classification model to annotate cell populations with a prediction
accuracy of 0.9. Recently, Holland et al. [24] evaluated the perfor-
mance of three pathway analysis tools: PROGENy [28], GSEA
[29,46] and AUCell in their benchmarking study, and found bulk-
seq functional analysis tools that rely on manually curated gene



Fig. 4. Evaluation stability of PAS tools. a) Spearman correlation between the PASs inferred from original UMI-based data set and dropped data set using seven tools; b)
Spearman correlation between the PASs inferred from original nonUMI-based data set and dropped data set using seven tools; c) Spearman correlation of PASs between 13
technologies for each tool.
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sets are effective in calculating pathway activities from scRNA-seq
data and partially better than scRNA-seq tools. In the current
study, our results showed that the summarized performance
across single-cell-based tools (Pagoda2, AUCell, and Vision) out-
performed the performance of bulk-based tools (ssGSEA, GSVA,
and z-score) from three different aspects of accuracy, stability
and scalability, while the bulk-based tool of PLAGE yielded a rela-
tively better performance than Vision. Although Vision showed a
moderate performance than Pagoda2, AUCell, and PLAGE, it is an
annotation toolkit that could capture biological variation with or
without priori labeling of cells. Therefore, researchers could use
Vision to investigate differential pathway analysis or other
stratification-based analysis.

Since the influence of low-quality counts and systematic noise,
filtering and normalization are generally thought to be essential
steps in scRNA-seq analysis. In the present study, we found filter-
ing low quality genes had non-significant influence on the perfor-
mance of PAS transformation tools, but AUCell, PLAGEA, and z-
score were remarkably affected by normalization with distinct
methods. Our results suggested that PAS methods based on a sub-
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set of functional genes might be stable for cell clustering compared
with these based on gene-level expression. Furthermore, we found
that in a noisy data set, Pagoda2 mitigated the scRNA-seq batch
effects well and obtained the differences between biological cell
identities (Supplemental Fig. S8, Supplemental Note 1).

Several studies showed that gene regulator network (GRN)
could extract an ensemble of genes that represents a particular
combination of transcription factors to be used for functional inter-
preting and annotating scRNA-seq data [24,25]. These GRN tools
enables to combine with PAS tools to offer more dataset-specific
information [26], such as SCENIC. Although there were some out-
standing benchmarking studies evaluated the performance of
GRN tools [24,25,50], they only focused on the accuracy of GRN
tools or included a subgroup of GRN tools and PAS tools. Further
benchmarking studies are warranted to systematically compare
the performance between GRN tools and PAS tools or investigate
which combinations of these state-of-art tools could provide more
efficient and robust transcriptional heterogeneity. To have a glance
at this field, we extended our research on more well-defined path-
ways/gene sets, as well as the dataset-specific gene sets generated



Fig. 5. Evaluation scalability of PAS tools. Running time and memory usage were evaluated based on varying number of genes, cells, and gene sets (no. of genes � no. of
cells � no. of gene sets). The data sets were randomly generated from nonUMI-based data set (a) and UMI-based data set (b). The value with in the brackets represented
average percentage of genes detected per cell. NA (not applicable) indicated an error was produced during calculation.

Fig. 6. Overall summary of results evaluating PAS calculators for scRNA-seq data.
Methods are ranked by overall performance score which was averaged across three
categories: accuracy, stability and scalability. Accuracy was averaged across mean
silhouette width, ARI and classification accuracy. Stability was averaged across
correlations between PASs inferred from data sets across drop-outs and technolo-
gies. Running time and memory usage were scaled to a value [0, 1] before averaged
as scalability.
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from SCENIC. As shown in Supplemental Fig. S9, there were no con-
sistent best pathways or gene sets for every tools. Though, Pagoda2
still achieved the best performance across most pathways and gene
sets. Benefiting from the establishment of Human Cell Atlas [52],
Mouse Cell Atlas [53], and Tubula Muris [54], researchers could
unbiasedly investigate the ability of PASs on supervised cell type
annotation across technologies, organs and species, which might
further facilities the automatic functional annotation of single cells
from transcriptomics perspective.

In summary, we performed a systematical evaluation of seven
widely-used PAS tools from three different aspects of accuracy, sta-
bility, and scalability based on 32 well-defined benchmark data-
sets. Compared with other tools, Pagoda2 showed the best
overall performance. AUCell and PLAGE achieved a relatively better
overall performance. We hope our current benchmarking study
will assist computational researchers to select appropriate meth-
ods and design high-quality researches that will contribute to sci-
entific advances.
2960
CRediT authorship contribution statement

Yaru Zhang: Conceptualization, Methodology, Software, Writ-
ing - original draft, Writing - review & editing. Yunlong Ma:
Methodology, Software, Writing - original draft, Writing - review
& editing. Yukuan Huang: Investigation, Resources, Data curation.
Yan Zhang: Investigation, Resources, Data curation. Qi Jiang:
Investigation, Resources, Data curation. Meng Zhou: Investigation,
Resources, Data curation. Jianzhong Su: Conceptualization,
Methodology, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This study was funded by the National Natural Science Founda-
tion of China (61871294 and 61902352), and Science Foundation of
Zhejiang Province (LR19C060001).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2020.10.007.

References

[1] Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-
transcriptome analysis of a single cell. Nat. Methods 2009;6:377–82. https://
doi.org/10.1038/nmeth.1315.

[2] Method of the Year 2013. Nat Methods 2014;11:1. https://doi.org/10.1038/
nmeth.2801.

[3] Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell
RNA-seq in the past decade. Nat. Protoc. 2018;13:599–604. https://doi.org/
10.1038/nprot.2017.149.

[4] Beumer J, Puschhof J, Bauzá-Martinez J, Martínez-Silgado A, Elmentaite R,
James KR, et al. High-resolution mRNA and secretome atlas of human
enteroendocrine cells. Cell 2020:1–16. https://doi.org/10.1016/
j.cell.2020.04.036.

[5] Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the experimental
design of single-cell RNA sequencing studies. Nat. Protoc. 2018;13. https://doi.
org/10.1038/s41596-018-0073-y.

https://doi.org/10.1016/j.csbj.2020.10.007
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1016/j.cell.2020.04.036
https://doi.org/10.1016/j.cell.2020.04.036
https://doi.org/10.1038/s41596-018-0073-y
https://doi.org/10.1038/s41596-018-0073-y


Y. Zhang, Y. Ma, Y. Huang et al. Computational and Structural Biotechnology Journal 18 (2020) 2953–2961
[6] Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat. Biotechnol. 2014;32:381–6. https://doi.org/
10.1038/nbt.2859.

[7] Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat.
Biotechnol. 2018;36:411–20. https://doi.org/10.1038/nbt.4096.

[8] Lähnemann D, Köster J, Szczurek E, Mccarthy DJ, Hicks SC. Eleven grand
challenges in single-cell data science. Genome Biol. 2020.

[9] Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of
single-cell RNA-seq data. Nat. Rev. Genet. 2019;20:273–82. https://doi.org/
10.1038/s41576-018-0088-9.

[10] Wang Y, SongW, Wang J, Wang T, Xiong X, Qi Z, et al. Single-cell transcriptome
analysis reveals differential nutrient absorption functions in human intestine.
J. Exp. Med. 2020;217:1–15. https://doi.org/10.1084/jem_20191130.

[11] Zhang M, Zhang M, Hu S, Hu S, Min M, Ni Y, et al. Dissecting transcriptional
heterogeneity in primary gastric adenocarcinoma by single cell RNA
sequencing. Gut 2020:1–12. https://doi.org/10.1136/gutjnl-2019-320368.

[12] Ding H, Blair A, Yang Y, Stuart JM. Biological process activity transformation of
single cell gene expression for cross-species alignment. Nat. Commun.
2019;10:1–6. https://doi.org/10.1038/s41467-019-12924-w.

[13] Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, et al. Single-cell transcriptomic
atlas of primate ovarian aging. Cell 2020;180(585–600):. https://doi.org/
10.1016/j.cell.2020.01.009e19.

[14] Ramirez AK, Dankel SN, Rastegarpanah B, Cai W, Xue R, Crovella M, et al.
Single-cell transcriptional networks in differentiating preadipocytes suggest
drivers associated with tissue heterogeneity. Nat. Commun. 2020;11:1–9.
https://doi.org/10.1038/s41467-020-16019-9.

[15] Hänzelmann S, Castelo R, Guinney JGSVA. Gene set variation analysis for
microarray and RNA-Seq data. BMC Bioinf. 2013;14. https://doi.org/10.1186/
1471-2105-14-7.

[16] Barbie DA, Tamayo P, Boehm JS, Kim SY, Susan E, Dunn IF, et al. Processing-a-
Programming-Handbook-for-Visual-Designers-and-Artists.Pdf 2010;462:108–
12. https://doi.org/10.1038/nature08460.Systematic.

[17] Celiku O, Gilbert MR, Lavi O. Computational modeling demonstrates that
glioblastoma cells can survive spatial environmental challenges through
exploratory adaptation. Nat. Commun. 2019;10:5704. https://doi.org/
10.1038/s41467-019-13726-w.

[18] Yang R, Cheng S, Luo N, Gao R, Yu K, Kang B, et al. Distinct epigenetic features
of tumor- reactive CD8 + T cells in colorectal cancer patients revealed by
genome-wide DNA methylation analysis 2020:1–13.

[19] Yung YC, Duong TE, Gao D, Chun J, Kharchenko P V. Integrative single-cell
analysis of transcriptional and epigenetic states in the human adult brain
2018;36:70–80. https://doi.org/10.1038/nbt.4038.Integrative.

[20] Kaper F, Fan J, Zhang K, Chun J, Peter V. Characterizing transcriptional
heterogeneity through pathway and gene set overdispersion analysis
2016;13:241–4. https://doi.org/10.1038/nmeth.3734.Characterizing.

[21] DeTomaso D, Jones MG, SubramaniamM, Ashuach T, Ye CJ, Yosef N. Functional
interpretation of single cell similarity maps. Nat. Commun. 2019;10. https://
doi.org/10.1038/s41467-019-12235-0.

[22] Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-cell
analyses inform mechanisms of myeloid-targeted therapies in colon cancer.
Cell 2020;181(442–459):. https://doi.org/10.1016/j.cell.2020.03.048e29.

[23] Su J, Zhang Y, Yu F, Zhang Y, Zhang J, Guo F, et al. scTPA: A web tool for single-
cell transcriptome analysis of pathway activation signatures. 2020. https://doi.
org/10.1101/2020.01.15.907592.

[24] Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP, Mereu E, et al.
Robustness and applicability of transcription factor and pathway analysis tools
on single-cell RNA-seq data. Genome Biol. 2020;21:1–19. https://doi.org/
10.1186/s13059-020-1949-z.

[25] Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J.
Benchmark and integration of resources for the estimation of human
transcription factor activities. Genome Res. 2019;29:1363–75. https://doi.
org/10.1101/gr.240663.118.

[26] Aibar S, González-blas CB, Moerman T, Huynh-thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: Single-cell regulatory network inference and
clustering 2018;14:1083–6. https://doi.org/10.1038/nmeth.4463.02200317.

[27] Ding H, Douglass EF, Sonabend AM, Mela A, Bose S, Gonzalez C, et al.
Quantitative assessment of protein activity in orphan tissues and single cells
using the metaVIPER algorithm. Nat. Commun. 2018;9:1471. https://doi.org/
10.1038/s41467-018-03843-3.

[28] Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al.
Perturbation-response genes reveal signaling footprints in cancer gene
expression. Nat. Commun. 2018;9. https://doi.org/10.1038/s41467-017-
02391-6.

[29] Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al.
PGC-1a-responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat. Genet.
2003;34:267–73. https://doi.org/10.1038/ng1180.

[30] Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward
precise disease classification. PLoS Comput. Biol. 2008;4. https://doi.org/
10.1371/journal.pcbi.1000217.

[31] Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using
singular value decomposition. BMC Bioinf. 2005;6:1–11. https://doi.org/
10.1186/1471-2105-6-225.
2961
[32] Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ, Álvarez-Varela A,
et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas
projects. Nat. Biotechnol. 2020;38:747–55. https://doi.org/10.1038/s41587-
020-0469-4.

[33] Cole MB, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E, et al. Performance
assessment and selection of normalization procedures for single-cell RNA-Seq
performance assessment and selection of normalization procedures for single-
cell RNA-Seq. Cell. Syst. 2019;8(315–328):. https://doi.org/10.1016/j.
cels.2019.03.010e8.

[34] Sun S, Zhu J, Ma Y, Zhou X. Accuracy, robustness and scalability of
dimensionality reduction methods for single-cell RNA-seq analysis. Genome
Biol. 2019;20:1–21. https://doi.org/10.1186/s13059-019-1898-6.

[35] Hou W, Ji Z, Ji H, Hicks SC. A systematic evaluation of single-cell RNA-
sequencing imputation methods. Genome Biol. 2020;21:218. https://doi.org/
10.1186/s13059-020-02132-x.

[36] Germain PL, Sonrel A, Robinson MD. pipeComp, a general framework for the
evaluation of computational pipelines, reveals performant single cell RNA-seq
preprocessing tools. Genome Biol. 2020;21:227. https://doi.org/10.1186/
s13059-020-02136-7.

[37] Tian L, Dong X, Freytag S, Lê Cao KA, Su S, JalalAbadi A, et al. Benchmarking
single cell RNA-sequencing analysis pipelines using mixture control
experiments. Nat. Methods 2019;16:479–87. https://doi.org/10.1038/
s41592-019-0425-8.

[38] Li C, Liu B, Kang B, Liu Z, Liu Y, Chen C, et al. SciBet as a portable and fast single
cell type identifier. Nat. Commun. 2020;11:1–8. https://doi.org/10.1038/
s41467-020-15523-2.

[39] Miao Z, Moreno P, Huang N, Papatheodorou I, Brazma A, Teichmann SA.
Putative cell type discovery from single-cell gene expression data. Nat.
Methods 2020;17:621–8. https://doi.org/10.1038/s41592-020-0825-9.

[40] Tsuyuzaki K, Sato H, Sato K, Nikaido I. Benchmarking principal component
analysis for large-scale single-cell RNA-sequencing. Genome Biol.
2020;21:1–17. https://doi.org/10.1186/s13059-019-1900-3.

[41] Praktiknjo SD, Obermayer B, Zhu Q, Fang L, Liu H, Quinn H, et al. Tracing
tumorigenesis in a solid tumor model at single-cell resolution. Nat. Commun.
2020;11.. https://doi.org/10.1038/s41467-020-14777-0.

[42] Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a
tutorial. Mol. Syst. Biol. 2019;15.

[43] Lun ATL, Mccarthy DJ, Marioni JC. A step-by-step workflow for low-level
analysis of single-cell RNA-seq data with Bioconductor [version 2 ; referees : 3
approved , 2 approved with reservations]. F1000Research 2016.

[44] Hafemeister C, Satija R. Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression. Genome Biol.
2019;20:1–15. https://doi.org/10.1186/s13059-019-1874-1.

[45] Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW,Wilson R, et al. Massively
parallel digital transcriptional profiling of single cells. Nat. Commun. 2017;8.
https://doi.org/10.1038/ncomms14049.

[46] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA
2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.

[47] Germain P-L, Sonrel A, Robinson MD. pipeComp, a general framework for the
evaluation of computational pipelines, reveals performant single-cell RNA-seq
preprocessing tools 02.930578. BioRxiv 2020;2020(02). https://doi.org/
10.1101/2020.02.02.930578.

[48] Mereu E, Lafzi A, Moutinho C, Ziegenhain C, Maccarthy DJ, Alvarez A, et al.
Benchmarking Single-Cell RNA Sequencing Protocols for Cell Atlas Projects n.d.

[49] Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell
trajectory inference methods. Nat. Biotechnol. 2019;37:547–54. https://doi.
org/10.1038/s41587-019-0071-9.

[50] Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking
algorithms for gene regulatory network inference from single-cell
transcriptomic data. Nat. Methods 2020;17:147–54. https://doi.org/10.1038/
s41592-019-0690-6.

[51] Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges
in single-cell transcriptomics. Nat. Rev. Genet. 2015;16:133–45. https://doi.
org/10.1038/nrg3833.

[52] Paper W. The human cell atlas [October 2018] 2017.
[53] Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the mouse cell atlas

by microwell-Seq. Cell 2018;172(1091–1107):. https://doi.org/10.1016/
j.cell.2018.02.001e17.

[54] Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T, et al. Single-
cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature
2018;562:367–72. https://doi.org/10.1038/s41586-018-0590-4.

[55] Martignetti L, Calzone L, Bonnet E, Barillot E, Zinovyev A. ROMA:
Representation and quantification of module activity from target expression
data. Front. Genet. 2016;7:1–12. https://doi.org/10.3389/fgene.2016.00018.

[56] Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. f-scLVM:
Scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol.
2017;18:1–13. https://doi.org/10.1186/s13059-017-1334-8.

[57] Pont F, Tosolini M, Fournié JJ. Single-cell signature explorer for comprehensive
visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids
Res. 2019;47:. https://doi.org/10.1093/nar/gkz601e133.

https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nbt.4096
http://refhub.elsevier.com/S2001-0370(20)30429-3/h0040
http://refhub.elsevier.com/S2001-0370(20)30429-3/h0040
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1084/jem_20191130
https://doi.org/10.1136/gutjnl-2019-320368
https://doi.org/10.1038/s41467-019-12924-w
https://doi.org/10.1016/j.cell.2020.01.009
https://doi.org/10.1016/j.cell.2020.01.009
https://doi.org/10.1038/s41467-020-16019-9
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/s41467-019-13726-w
https://doi.org/10.1038/s41467-019-13726-w
https://doi.org/10.1038/s41467-019-12235-0
https://doi.org/10.1038/s41467-019-12235-0
https://doi.org/10.1016/j.cell.2020.03.048
https://doi.org/10.1186/s13059-020-1949-z
https://doi.org/10.1186/s13059-020-1949-z
https://doi.org/10.1101/gr.240663.118
https://doi.org/10.1101/gr.240663.118
https://doi.org/10.1038/s41467-018-03843-3
https://doi.org/10.1038/s41467-018-03843-3
https://doi.org/10.1038/s41467-017-02391-6
https://doi.org/10.1038/s41467-017-02391-6
https://doi.org/10.1038/ng1180
https://doi.org/10.1371/journal.pcbi.1000217
https://doi.org/10.1371/journal.pcbi.1000217
https://doi.org/10.1186/1471-2105-6-225
https://doi.org/10.1186/1471-2105-6-225
https://doi.org/10.1038/s41587-020-0469-4
https://doi.org/10.1038/s41587-020-0469-4
https://doi.org/10.1016/j.cels.2019.03.010
https://doi.org/10.1016/j.cels.2019.03.010
https://doi.org/10.1186/s13059-019-1898-6
https://doi.org/10.1186/s13059-020-02132-x
https://doi.org/10.1186/s13059-020-02132-x
https://doi.org/10.1186/s13059-020-02136-7
https://doi.org/10.1186/s13059-020-02136-7
https://doi.org/10.1038/s41592-019-0425-8
https://doi.org/10.1038/s41592-019-0425-8
https://doi.org/10.1038/s41467-020-15523-2
https://doi.org/10.1038/s41467-020-15523-2
https://doi.org/10.1038/s41592-020-0825-9
https://doi.org/10.1186/s13059-019-1900-3
https://doi.org/10.1038/s41467-020-14777-0
http://refhub.elsevier.com/S2001-0370(20)30429-3/h0210
http://refhub.elsevier.com/S2001-0370(20)30429-3/h0210
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1101/2020.02.02.930578
https://doi.org/10.1101/2020.02.02.930578
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/nrg3833
https://doi.org/10.1038/nrg3833
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.3389/fgene.2016.00018
https://doi.org/10.1186/s13059-017-1334-8
https://doi.org/10.1093/nar/gkz601

	Benchmarking algorithms for pathway activity transformation of �single-cell RNA-seq data
	1 Introduction
	2 Materials & methods
	2.1 Pathway activity score calculation tools
	2.2 Datasets
	2.3 Accuracy
	2.3.1 Dimensional reduction
	2.3.2 Clustering accuracy
	2.3.3 Cell type annotation

	2.4 Best choice of preprocessing procedure
	2.5 Stability
	2.5.1 Correlation between two matrices
	2.5.2 Correlations between runs of drop-out events
	2.5.3 Correlations between different sequencing technologies

	2.6 Scalability
	2.7 Overall performance score

	3 Results
	3.1 Evaluation scheme
	3.2 Impact of RNA-seq data preprocessing
	3.3 Evaluation of accuracy of methods
	3.3.1 Dimensional reduction
	3.3.2 Clustering
	3.3.3 Cell type annotation

	3.4 Evaluation of stability of methods
	3.4.1 Dropout genes in gene expression profiles
	3.4.2 Stability of different scRNA sequencing protocols

	3.5 Evaluation of scalability of methods
	3.6 Overall performance

	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


