
sensors

Article

Multi-Objective Particle Swarm Optimization of
Sensor Distribution Scheme with Consideration of
the Accuracy and the Robustness for
Deformation Reconstruction

Feifei Zhao 1, Hong Bao 1,*, Song Xue 1 and Qian Xu 2

1 Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University,
Xi’an 710071, China; ffzhao@stu.xidian.edu.cn (F.Z.); sxue@xidian.edu.cn (S.X.)

2 Xinjiang Observatory, National Astronomical Observatories, Chinese Academy of Science, Urumqi 830011,
China; xuqian@xao.ac.cn

* Correspondence: hbao@xidian.edu.cn; Tel.: +86-29-8820-3040

Received: 27 January 2019; Accepted: 11 March 2019; Published: 15 March 2019
����������
�������

Abstract: For the inverse finite element method (iFEM), an inappropriate scheme of strain
senor distribution would cause severe degradation of the deformation reconstruction accuracy.
The robustness of the strain–displacement transfer relationship and the accuracy of reconstruction
displacement are the two key factors of reconstruction accuracy. Previous research studies have
been focused on single-objective optimization for the robustness of the strain–displacement transfer
relationship. However, researchers found that it was difficult to reach a mutual balance between
robustness and accuracy using single-objective optimization. In order to solve this problem,
a bi-objective optimal model for the scheme of sensor distribution was proposed for this paper, where
multi-objective particle swarm optimization (MOPSO) was employed to optimize the robustness
and the accuracy. Initially, a hollow circular beam subjected to various loads was used as a case to
perform the static analysis. Next, the optimization model was established and two different schemes
of strain sensor were obtained correspondingly. Finally, the proposed schemes were successfully
implemented in both the simulation calculation and the experiment test. It was found that the results
from the proposed optimization model in this paper proved to be a promising tool for the selection of
the scheme of strain sensor distribution.

Keywords: inverse finite element method; multi-objective particle swarm optimization; deformation
reconstruction; transfer relationship; optimal model

1. Introduction

During the past few decades, deformation reconstruction has played an important role in real-time
structural health monitoring (SHM) with the flourish of civil engineering, aerospace, and smart
structure development. Shape sensing techniques can be employed to reconstruct the displacement
field based on strain sensor values in a real-time manner [1,2]. The advantage of this method is that
a priori knowledge, such as model shape, load form, and elastic-inertial material information, is not
required in the process of reconstruction. This is particularly the case in scenarios where the applied
loads are difficult to be accurately determined or measured. For example, the applied loads are the
aerodynamic forces, temperatures, impact loads, or vibrating excitation [3].

The key technology in shape sensing was to accurately establish the mathematical model between
the discrete surface strain and the displacement field. Previous researchers proposed many modeling
methods. The adaptive fuzzy net was employed to establish the transformation relationship between
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measured surface strain and displacement [4]. Moreover, neural nets were also used to perform the
strain–displacement relationship [5,6]. However, the shortcoming of these net approaches was that the
reconstructed displacement accuracy was heavily dependent on the selection of the load cases used
for the training process. Ko et al. performed the integration of discrete surface strain to handle the
beam deformation problem [7]. Later, the shape sensing technique was further developed based on
Ko’s displacement theory. This theory was then extended to solve the deformation displacement of
beam, plate, and wing [8,9]. This method has shown a higher reconstructed accuracy in the resultant
one-dimension than in the multi-dimensional loading conditions. The global or piecewise continuous
basis functions have been used to describe the strain field [10–16]. In this paper, the authors have
combined the spatial functions with the appropriate weight coefficient to fit the measured strains,
where the unknown weights were determined by the discrete measurement of the strain. However, the
required strain number was generally larger. When normal modes are employed as the basis functions,
the deformation reconstructions are referred to as modal method (MM) [10,14]. Zhu et al discovered
that the reconstruction accuracy of the modal method was higher than the neural net method, but the
accuracy of the modal method relied on the number of modes used and it was hard to implement [15].
The discrete surface strains obtained by the strain sensors were interpolated into a predefined shape
function to calculate the deformation displacement of the whole wing [16].

In the process of reconstructing the displacement field, the aforementioned approaches involved
structural properties, load forms, and material parameters. However, in the case of application, it was
difficult to determine the load information. In order to solve this problem, Tessler et al. proposed the
inverse finite element method (iFEM), which employed the variational principle and performed the
three-displacement field according to the strain–displacement relationship based on the Timoshenko
beam theory [17,18]. Moreover, the first-order shear deformation theory (FSDT) was used to develop a
three-node inverse shell element [19]. Additionally, some experiments have already been performed
for the validation of the inverse finite element method [20,21].

During the application of the inverse finite element method, people have found that the schemes
of strain sensor distribution had a great influence on the displacement reconstruction accuracy.
The information entropy was proposed as a performance parameter of the sensor distribution. Then,
the optimal sensor distribution schemes could be formulated as a single-objective optimization problem
involving discrete-valued variables based on efficient sequential sensor placement algorithms [22].
Therefore, a single-objective optimal model for the scheme of sensor distribution could be presented
to investigate how to maintain the stability of the section strain computing, where the optimal
senor distribution scheme based on the particle swarm optimization could be obtained according to
Reference [23,24]. For the aforementioned optimal methods, the single-objective optimal model was
used to optimize the sensor distribution schemes to overcome the drawback of not fully considering
reconstruction accuracy, which may degenerate other performances [23].

In order to further improve the performance using iFEM in the engineering application scenarios,
the authors of this paper employed multi-objective particle swarm optimization (MOPSO) to optimize
both the robustness and the accuracy simultaneously to obtain the optimal strain sensor distribution
scheme. The paper is organized as follows. In the first section, a brief review of the inverse finite
element method is presented. Next, bi-objective optimization functions are proposed based on the
well-separated eigenvalues and the relative root mean square (RRMS). In the meantime, an introduction
to the MOPSO is presented and the adopted optimization strategies are illustrated. Then, the
optimization model is established considering both robustness and accuracy. Two different optimal
schemes of strain sensor distribution are presented correspondingly. Finally, the two schemes are
applied to a hollow circle beam subjected to various free-end loads. Both the simulation calculations
and experiment tests were carried out. The experimental results showed that the optimization model
established in this paper can effectively improve the performance of the inverse finite element method.
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2. Inverse Finite Element Problem Specification

The original inverse finite element method (iFEM) was proposed in Reference [18], and developed
continually by certain researchers. Academic achievements were obtained in Reference [17–26].
Therefore, in this section, the inverse finite element method for beam elements is briefly reviewed
as follows.

Based on the small-strain hypothesis, the strains can be obtained from the deviation of
displacement based on the Timoshenko theory along the x axes, as given by Equation (1):

εx(x, y, z) = e1(x) + ze2(x) + ye3(x)
γxz(x, y) = e4(x) + ye6(x)
γxy(x, y) = e5(x)− ze6(x)

(1)

where e(u) = {e1, e2, e3, e4, e5, e6} describes the section strain of the theory, and it can be presented
further in terms of nodal displacement as follows:

ei(u) = Biue

ue = [u, v, w, θx, θy, θz]
(2)

where Bi (i = 1, . . . ,6) is the deviation of the displacement shape function. ue contains the nodal
displacement and rotation angle.

The iFEM uses the weighted least square principle to minimize the difference between in situ
section strain, eε, and analytic section strains, e(u), which can be written as follows:

ϕ(u) = ‖e(u)−eε‖2 (3)

The relationship between in situ strain measurement and deformed beam displacement can be
obtained by substituting Equation (2) into Equation (3), which can be expressed as follows:

keue=fe (4)

The two terms ke and fe are defined as follows:

ke =
6

∑
k=1

wkke
k

fe =
6

∑
k=1

wk f e
k

(5)

with

ke
k =

L
n

n

∑
i=1

[
BT

k (xi)Bk(xi)
]

f e
k =

L
n

n

∑
i=1

[
BT

k (xi)eε
k(xi)

] (6)

where n denotes the section number, xi is the section location along the x axis, and eε
i (xi) is the in situ

section strains. L denotes the element length.wi (k = 1,2, . . . ,6) are positive-valued constants for the
axial stretching, bending, twisting, and transverse shearing, respectively, and their initial values have
been set as 1 in this paper.
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Once the scheme of strain sensor distribution has been determined, which means that the values
of x = xi, θ = θi, β = βi (i = 1,2, . . . ,6) are determined, the section strains can be calculated from the
measured surface strains using strain–tensor transformations as follows:

ε∗2(xi, θ, β) = [
(

c2
β − µs2

β

)
,
(

c2
β − µs2

β

)
sθ R,

(
c2

β − µs2
β

)
cθ R, cβsβcθ , cβsβsθ , cβsβR]

·
[
eε

1(xi), eε
2(xi), eε

3(xi), eε
4(xi), eε

5(xi), eε
6(xi)

]T

= T ·
[
eε

1(xi), eε
2(xi), eε

3(xi), eε
4(xi), eε

5(xi), eε
6(xi)

]T

with cβ = cos β, cθ = cos θ sβ = sin β and sθ = sin θ,

(7)

where µ is the Poisson ratio. R is the external radius of the section as shown in Figure 1.
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Then, based on the analysis and calculation results of Equation (12) in Reference [23], these
unknown parameters (a1, . . . , a6), which are used to established the relationship between section
strains and the position along the centroid axis, can be solved:

[a1, a2, a3, a4, a5, a6]
T = (T×



1
0
0

0
xi
0

0
1
0

0 0 0
0 0 0
xi 1 0

0 Dy
Gz

0 0 0 0
0 0 0 Dz

Gy
0 0

0 0 0 0 0 1


)

−1

× ε∗2= (T×Q∗)−1ε∗2 (8)

where ε∗2 = [ε∗2(xi, θi, βi)]
T , T = [T1, T2, . . . , T6]

T , i = 1,2, . . . ,6.
Therefore, for an arbitrary point on the centroid axis, the section strains (e1,e2, . . . e6) can be

determined by substituting Equation (8) into Equation (7):

[eε
1, eε

2, eε
3, eε

4, eε
5, eε

6]
T = Q× [a1, a2, a3, a4, a5, a6]

T

= Q(T×Q∗)−1ε∗2
(9)

where the Q matrix can be obtained by replacing variable xi by yi in the Q∗ matrix, and yi denotes an
arbitrary point placement along the centroid axis direction.

The transfer relationship between deformation displacement and surface strain can be constructed
by substituting Equation (9) into Equation (4). This relationship can be expressed as follows:

ue = (ke)−1fe= TR× ε∗2(xi) (10)

where TR = ( L
n ×

6
∑

i=1

[
wkBT

k (xi)Bk(xi)
]
)
−1

× ( L
n ×

6
∑

i=1

[
wkBT

k (xi)Q(T×Q∗)−1
]
).
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3. Establishing the Multi-Objective Particle Swarm Optimization Model

The section strains can be computed from the strain sensor values which can be measured by
Fiber Bragg Grating (FBG) sensors. However, during the FBG sensor installation, installation errors
occur between the installation position and the theoretical position of the sensor along the axial length
xi, angle parameter θi, and βi. Therefore, these position parameters with errors are substituted into
Equation (7), which will affect the accuracy of the computed section strain. Moreover, in Equation (10),
the transfer relationship (TR) is the matrix about the scheme of strain sensor distribution, and acts
as a bridge between the surface strain and the deformation displacement. However, it was found
that an inappropriate strain sensor distribution scheme could lead to a singular or ill-condition TR
matrix [23]. For example, a tiny surface measured strain change might cause a significant reconstructed
displacement change using the iFEM, which further deteriorates the accuracy or even leads to the
process failure. Thus, the robustness of transfer relationship is one optimization objective ( f1), which
can be constructed with well-separated eigenvalues [27]:

f (TR(ξi, θi, βi)) = max(min
∣∣λi − λj

∣∣, i 6= j, i, j = 1, 2, . . . , 6)
f1 = − f

(11)

where λi represents the eigenvalues of transformation matrix TR(ξi, θi, βi). Parameter ξi represents the
sensor location along the centroid axis direction. It is difficult to determine the strain sensor locations
on both end nodes in engineering applications. Therefore, the installed placements are selected in
the range of ξi ∈ [ L

10 , 9L
10 ]. In order to minimize the positioning errors for a strain sensor distribution

scheme, one sensor is placed at βi = 45
◦
, whereas the other five sensors are located at βi = 0 [23].

The accuracy is the key reference to estimate the performance of deformation reconstruction using
the iFEM. Generally, structural beam deformation is varied due to different load forms. In order to
eliminate the effect of working conditions on deformation, the relative root mean square (RRMS) is
proposed to act as another optimization objective function ( f2) for estimating reconstruction accuracy,
which can be expressed as follows:

RMS = ( 2

√
n
∑

i=1
(dispmeasurement(xi)− dispiFEM(xi))

2
/n)

f (RRMS(xi, θi, βi)) = 100%× RMS/Max(dispmeasurement)

f2 = − f

(12)

where disp(xi) is the deformation displacement along the centroid axis in one direction. The superscript
measurement denotes the actual deformation value from the simulation software or a measurement
device. The iFEM is the predicted value computed from the iFEM. RMS indicates deformation
reconstruction root-mean-square errors. RRMS is the ratio of RMS and maximum deformation value
from the actual deformation value.

The purpose of strain sensor distribution scheme optimization is to find an optimal scheme, which
can make the optimal balance between robustness and accuracy throughout a limited beam surface
measurement. Thus, the optimization model can be described as follows:

Minimize F(xi, θi, βi) = max[ f1(xi, θi, βi), f2(xi, θi, βi,)]

S.T xi ∈ [
L
10

,
9L
10

], θi ∈ [0◦, 360◦], βi = 0◦, or, 45◦ i = 1, 2, . . . , 6.
(13)

For multiple objective optimization problems, Coello et al. proposed an extending particle swarm
optimization (PSO) approach to solve this problem, referred to as an MOPSO [28]. Compared with
other algorithms, the advantages of this method are a high convergence speed and a simple algorithm
structure [29].
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According to the PSO algorithm theory [30–32], a population size is 50 and randomly initialized
in the limited beam surface. The maximum iteration number is 100. Each particle position can be
expressed by a vector pi = (xi11, . . . , xi16, . . . xi31, . . . , xi36, θi11 . . . , θi16, θi31 . . . , θi36)1×36, which are
random initialized in xi ∈ [0,L], θi ∈ [−180◦, 180◦], βi = 0◦ or 45◦. Each particle has a corresponding
velocity, represented by vi = (v1x1, . . . , v1x6, . . . v3x1, . . . , v3x6, v1θ1 . . . , v1θ6, v3θ1 . . . , v3θ6)1×36, which
determines the direction that particle can move for the search of the optimal solutions. Then, each
particle is introduced into an optimal model to calculate a potential solution (13). The optimal solutions
are continuously searched by updating the velocity and position of particle according to Equation (14):

xi+1
i = xi

i + vt+1
i

vt+1
i = w ∗ vt

i + c1 ∗ r1 ∗ (pi − xt
i ) + c1 ∗ r2 ∗ (pg − xt

i )
(14)

where t indicates the tth iteration in the PSO algorithms. Parameter w denotes inertia weight, which
is decreased from 0.9 to 0.4. Acceleration constant parameters are c1 = c2 = 2. Parameters r1 and
r2 are random values uniformly distributed in [0,1]. Parameters pi and pg indicate the element of
personal best solution (pbest) and global best solution(gbest). The maximum velocity (vmax) is equal to
the dynamic range in each dimension of the particle, and vt+1

i ∈ [−vmax, vmax]. PSO will be stopped if
the tth iteration satisfies the predefined maximum number of iterations. The concrete specifications of
this optimization algorithm are explained in Figure 2.
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The pbest is continuously updated in the following process: in the search space, if a particle
searches a new solution that dominates its pbest, the new solution can be selected as the new pbest.
Otherwise, the old solution has a probability of 0.5 to be replaced by a new solution. The criterion of
crowding distance [29], which is used to estimate the density of solutions surrounding a particular
solution in the Pareto front, is proposed to select gbest. For example, when the value of crowding
distance is large, the solution in the Pareto front will be deviated from its surrounding solutions.
Additionally, the reflecting wall proposed in Reference [30] is used to improve the exploration of
the particle.
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4. Simulation Calculation and Experiment Verification

4.1. Simulation Calculation

In the simulation, the aluminum hollow beam using 188 elements was modeled based on the
Timoshenko beam theory. The beam’s Young’s modulus is E = 73000 MPa with the Poisson ratio of
v = 0.3 and a density of p = 2712.63 kg/m3. The beam length is L = 660 mm, with an external diameter
R = 13 mm as well as an inner diameter r = 11.5 mm. The model was discreted into 200 elements and
the cross-section of the beam was discreted into 120 segments as shown in Figure 3.

The free-end of the cantilever beam was subjected to static loads with a combination of two
forces in three conditions (Table 1) for obtaining these parameters in nodes, containing deformation
displacements, rotation angles, strains, and shear strains. Then, based on the obtained data, the
MOPSO was established to optimize the strain sensor distribution scheme. The Pareto front and
bi-objective function values ( f1, f2) are shown in Figure 4.
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Figure 3. Finite element model of the cantilever beam.

Table 1. Loading types and directions on free-end.

Heavy Load (N) Middle Load (N)

Fy 250 120
Fz 200 100

According to the Pareto front as shown in Figure 4a, the better front can be found in a small
range. Figure 4b describes the objective function values of all positions visited by the swarm during
optimization, which can be divided into the accurate region and the stable region, namely, C1 region
and C2 region. However, in engineering, taking into consideration the strain senor distribution location
errors, a good scheme should be searched in the C2 region, where a high accuracy and good robustness
can be identified. On the other hand, the higher accuracy C1 region was also selected to compare the
robustness of the C2 region. The specific strain sensor distribution schemes from ranges C1 and C2 are
described in Table 2.

Table 2. Optimized schemes of sensor distribution.

C1 C2

ε1 (−0.78, 25◦, 0◦) (−0.54, −90◦, 0◦)
ε2 (−0.36, 168◦, 45◦) (−0.3, 150◦, 0◦)
ε3 (−0.1, 66◦, 0◦) (−0.24, −150◦, 45◦)
ε4 (0.04, 69◦, 0◦) (0.06, −80◦, 0◦)
ε5 (0.46, 96◦, 0◦) (0.28, 75◦, 0◦)
ε6 (0.74, 93◦, 0◦) (0.78, 45◦, 0◦)

f (TR) 22.8 94.5
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positions visited by the swarm during optimization.

The C1 and C2 schemes were tested on the same hollow beam which was subjected to static loads
with a two-force combination. The comparisons of iFEM deformation reconstruction of the hollow
beam with two different schemes are presented in Table 3.

Table 3. Comparison of reconstruction accuracy under two schemes (mm).

Heavy Load (N) Middle Load (N) Slight Load (N)

X Y Z X Y Z X Y Z
Max-disp 0 37.8 30.3 0 18.2 15.1 0 7.57 7.57

MER

C1 6.5 × 10−4 0.08 0.06 6.6× 10−3 0.07 0.07 3.7× 10−4 0.02 0.03
C2 8.5× 10−4 0.19 0.07 2.2× 10−4 0.11 0.09 2.01× 10−4 0.03 0.03

In this paper, the estimation criteria of reconstruction accuracy can be defined as follows:

MER = MAX
∣∣∣disp(xi)

ANSYS − disp(xi)
iFEM

∣∣∣, i = 1, . . . 201, (15)

where MER denotes the maximum errors. Max-disp is the maximum deformation displacement in
theory. Table 3 shows that the reconstruction accuracy of the C1 scheme is higher than C2 on the
condition of not considering the position errors of strain sensor distribution.
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The robustness and the accuracy of the C1 and C2 schemes are further compared with the
consideration of these errors from the strain sensor positions and measuring equipment, which may
affect the accuracy of deformation reconstruction computed from Equation (10). It is assumed that
these errors are as follows:

∆xi ∈ [−0.05, 0.05], ∆θi ∈ [−9◦, 9◦] and ∆βi ∈ [−10◦, 10◦], i = 1, . . . 6. (16)

It is assumed that these noises are randomly distributed in the set, and these tests are performed
500 times in total. Then, the highest error can be selected for the reconstruction accuracy, which is
shown in Tables 4 and 5.

Table 4. Comparison of the maximum deformation errors with adding disturbance (mm).

Heavy Load (N) Middle Load (N) Slight Load (N)

X Y Z X Y Z X Y Z
Max(MER)

C1 1.01 20.60 23.70 0.47 9.62 10.96 0.21 4.22 4.80
C2 0.05 2.61 2.71 0.02 1.29 1.34 0.01 0.60 0.55

Table 5. Comparison of the maximum RRMS with adding disturbance (%).

Heavy Load (N) Middle Load (N) Slight Load (N)

X Y Z X Y Z X Y Z
RRMS

C1 0 24.48 33.92 0 23.04 30.61 0 23.73 26.11
C2 0 4.20 4.75 0 4.34 4.79 0 4.62 3.90

Table 3 shows that the C1 scheme has a higher deformation reconstruction accuracy than C2 using
iFEM without considering these disturbances. In particular, for the Y direction in heavy load, the error
of the C2 scheme is 0.19 mm. On the other hand, the error of the C1 scheme drops to 0.08 mm.

When the noise is introduced, the maximum errors in the X, Y, Z directions are 1.01 mm, 20.6 mm,
and 23.7 mm, respectively, for the C1 scheme. On the other hand, the maximum errors in the X, Y,
Z directions drop to 2.64 mm, 2.61 mm, and 2.71 mm, respectively, for the C2 scheme, as shown in
Table 4. The RRMS in the Y and Z directions are within 34% for the C1 scheme, and the RRMS in the Y
and Z directions are stable within 4.8% for the C2 scheme, as shown in Table 5. It is indicated that the
accuracy and the robustness of the C2 scheme is better than the C1 scheme.

4.2. Experiment Verification

Figure 5 shows the experiment rig and its measurement equipment, which includes a 3-D optical
measurement device (NDI Optrotrak Certus, Northern Digital INC, Waterloo, ON, Canada) and Fiber
Bragg Grating (FBG) strain sensors. The two-strain sensor distribution schemes and six-position
sensors are used for the deformation reconstruction of the hollow beam under the end-node loadings,
which are presented in Table 6.

In the experiments, the surface strains are measured by two schemes of the FBG strain sensor,
respectively. In addition, the beam shapes are recorded by the NDI (in Figure 5b), which can accurately
capture the position of the position sensors in Figure 5c. The comparison between the measured
deformation captured from the NDI and the reconstructed deformation computed using the iFEM is
shown in Table 7. Moreover, the deformation displacement values in measurement points are also
shown in Tables 8–10.

From Table 7, MDNDI denotes the maximum deformation measured by NDI. MDiFEMC1 and
MDiFEMC2 denote the maximum deformation computed using the iFEM with the sensor distribution
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C1 and C2 schemes. MERC1 (MERC2) and RRMSC1 (RRMSC2) can be computed from Equations (17)
and (20), respectively.

Table 7 compares the results of reconstructed displacement using the iFEM with the deformation
displacement measured with NDI. It is found that the C2 scheme result gives a better robustness and
a higher accuracy than the C1 scheme in most loading scenarios. In particular, the maximum errors
(MER) in the Y and Z directions are 2.57 mm and 3.95 mm, and 0.2 mm and 0.16 mm, respectively,
in most loading scenarios. The corresponding relative root mean square (RRMS) values are 22.8% and
20.9%, and 3.1% and 2.6%, respectively. However, in the X direction, the deformation displacement
should be zero in theory, but there are slight deviations due to the imperfect distribution of the
actual end-load in the YOZ plane. Under a heavy load, the deformation displacement of the hollow
beam is only 0.49 mm, which gives the same magnitude order with the 3-D measurement device
accuracy (NDI). Therefore, the maximum error and relative root mean square (RRMS) of reconstructed
deformation displacement is comparatively high. Based on the aforementioned discussion, the optimal
model proposed in this paper can allow the selection of a proper strain sensor distribution scheme
which could result in a strain–displacement transfer relationship with better robustness and higher
reconstructed deformation displacement accuracy.
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Table 6. Static loading case.

Heavy Load (N) Middle Load (N) Slight Load (N)

Load (kg) 9 6 3
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Table 7. Comparison between NDI and iFEM in the loading case of the end node.

Heavy Load (N) Middle Load (N) Slight Load (N)

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

MDNDI 0.49 −5.13 −8.09 0.31 −3.13 −5.06 0.18 −1.73 −2.86
MDiFEMC1 0.27 −2.56 −4.14 0.23 −1.83 −2.72 0.15 −1.28 −1.81
MDiFEMC2 0.41 −5.00 −8.00 0.25 −3.07 −5.13 0.15 −1.81 −3.17

MERC1 0.22 2.57 3.95 0.23 1.31 2.34 0.15 0.45 1.25
MERC2 0.08 0.13 0.16 0.06 0.15 0.15 0.03 0.08 0.11

RRMSC1 61.2% 21.6% 20.9% 53.5% 17.6% 19.8% 52.9% 22.8% 18.6%
RRMSC2 13.1% 2.2% 1.8% 12.7% 2.6% 2.6% 12.7% 3.1% 2.4%

Table 8. Deformation displacement by NDI measurement and reconstruction with the C1 and C2
schemes in marker point for heavy load condition.

Measurement
Point

NDI_X
(mm)

NDI_Y
(mm)

NDI_Z
(mm)

C1_X
(mm)

C1_Y
(mm)

C1_Z
(mm)

C2_X
(mm)

C2_Y
(mm)

C2_Z
(mm)

1 0.08 −0.01 −0.16 0 0 0 0 0 0
2 0.2 −0.36 −0.72 0.06 −0.28 −0.42 0.15 −0.15 −0.56
3 0.25 −0.98 −1.50 0.14 −1.19 −1.81 0.22 −1.00 −1.34
4 0.35 −1.82 −2.79 0.18 −1.78 −2.76 0.28 −1.91 −2.64
5 0.35 −2.95 −4.45 0.22 −2.14 −3.38 0.34 −2.97 −4.30
6 0.49 −5.13 −8.09 0.27 −2.56 −4.14 0.41 −5.00 −8.00

Table 9. Deformation displacement by NDI measurement and reconstruction with the C1 and C2
schemes in marker point for middle load condition.

Measurement
Point

NDI_X
(mm)

NDI_Y
(mm)

NDI_Z
(mm)

C1_X
(mm)

C1_Y
(mm)

C1_Z
(mm)

C2_X
(mm)

C2_Y
(mm)

C2_Z
(mm)

1 0.05 −0.01 −0.13 0 0 0 0 0 0
2 0.12 −0.30 −0.49 0.04 −0.20 −0.57 0.09 −0.27 −0.36
3 0.15 −0.62 −1.02 0.09 −0.84 −1.18 0.14 −0.61 −0.86
4 0.22 −1.08 −1.81 0.12 −1.26 −1.80 0.18 −1.18 −1.69
5 0.22 −1.68 −2.91 0.14 −1.53 −2.21 0.21 −1.84 −2.76
6 0.31 −3.13 −5.06 0.17 −1.82 −2.72 0.25 −3.07 −5.13

Table 10. Deformation displacement by NDI measurement and reconstruction with the C1 and C2
scheme in marker point for slight load condition.

Measurement
point

NDI_X
(mm)

NDI_Y
(mm)

NDI_Z
(mm)

C1_X
(mm)

C1_Y
(mm)

C1_Z
(mm)

C2_X
(mm)

C2_Y
(mm)

C2_Z
(mm)

1 0.04 0 −0.08 0 0 0 0 0 0
2 0.08 −0.18 −0.3 0.03 −1.4 −0.18 0.06 −0.15 −0.23
3 0.08 −0.32 −0.61 0.06 −0.59 −0.77 0.08 −0.35 −0.53
4 0.13 −0.6 −1.08 0.08 −0.88 −1.18 0.11 −0.67 −1.05
5 0.13 −0.99 −1.74 0.09 −1.07 −1.46 0.13 −1.05 −1.71
6 0.18 −1.73 −2.86 0.11 −1.28 −1.81 0.15 −1.81 −3.17

5. Conclusions

The robustness of the strain–displacement relationship and the accuracy of the reconstructed
deformation displacement are two key factors to evaluate the strain sensor distribution scheme. In this
paper, the MOPSO was employed to reach a balance between robustness and accuracy. In the algorithm,
the well-separated eigenvalues of transfer matrix was employed as an optimal objection, and the
relative root mean square of reconstructed deformation displacement was used as another optimal
objection. The optimization model was then tested on a hollow cantilever beam subjected to various
loads. In the test, the Pareto front and the objective function values of all visited positions were obtained.
Next, two schemes were chosen from the solution space based on practical application conditions and
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their results were compared. It was found that the C2 scheme could lead to a better strain–displacement
relationship robustness as well as a higher reconstructed deformation displacement accuracy using the
iFEM. Finally, the simulation results and experiment results with the disturbance errors added were
used to validate the result that the C2 optimal scheme had a better robustness and a higher accuracy.
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