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pup behavior related to depression, novelty, 
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Abstract 

Objective: Previously, we showed that consumption of a diet supplemented with omega‑3 polyunsaturated fatty 
acids (n‑3FAs) for two rounds of gestation and lactation increased the ability of rat dams to cope with stress when 
compared to dams that ingested a diet lacking n‑3FAs. The objective of this study was to determine if the diets of 
these dams affected the behavior of their pups later in life. To isolate the neurodevelopmental effects of n‑3FAs, 
pups from the second gestation were weaned to a diet adequate in n‑3FAs. Pup testing began at 8 weeks of age and 
consisted of the forced swim, open field, and hole board tests to examine depression‑related behavior, reaction to 
novelty, and learning and memory, respectively.

Results: Given the considerable difference in the n‑3FA content of the maternal diet, we expected a large effect size, 
however with the exception of rearing duration, maternal diet did not affect behavior in any of the tests conducted. 
These results suggest that maternal n‑3FA supplementation during neurodevelopment likely does not affect offspring 
behavior when a diet adequate in n‑3FA is provided post‑weaning. Rather, we hypothesize that brain n‑3FAs at the 
time of testing confer altered behavior and corroborate the need for additional research.
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Introduction
Fetuses and neonates depend on docosahexaenoic acid 
(DHA), an omega-3 polyunsaturated fatty acid (n-3FA), 
via the placenta or milk to meet neurodevelopmental 
demands [1]. Higher maternal seafood intake and serum 
n-3FA concentrations during human pregnancy and lac-
tation are often associated with increased infant neuro-
cognitive development [2, 3] and cognitive, attentional, 
and emotional benefits lasting into childhood [4–9]; 
however, much work, including meta-analyses, shows no 
effects [10–12].

Rodent studies support the relationship between 
n-3FA consumption and beneficial behavioral outcomes 
[13–21], but few isolate the function of n-3FAs prior to 
weaning, during neurodevelopment. Our objective was 
to fill this gap. We used dams consuming disparate diets 
either deficient in or supplemented with n-3FAs through 
two rounds of gestation and lactation. This deficient diet 
reduced brain n-3FAs in dams [22, 23] and neonates [17]. 
In our previous study, supplemented dams exhibited an 
increased ability to cope with stress when compared to 
deficient dams [24]. In the current study, pups from the 
dams used in [24] were weaned to a diet containing ade-
quate n-3FA levels for 5 weeks prior to behavioral testing. 
Because n-3FA levels were altered solely in the mater-
nal diet but not in the pup diet after weaning, we could 
isolate behaviors potentially altered by maternal n-3FA 
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intake during gestation and lactation, a crucial neurode-
velopmental period.

Main text
Methods
Animals and diets
N-3FA deficient or supplemented diets were adminis-
tered to Long Evans dams through two cycles of preg-
nancy and lactation (see Additional file  1). Maternal 
diets were manufactured by Research Diets, Inc. (New 
Brunswick, NJ), based on AIN-93G. Dams in the “with-
out n-3FAs” group consumed diets with 7% sunflower oil. 
The “with n-3FAs” group ingested diets with 7% menha-
den oil, consisting of 14.2% eicosapentaenoic acid (EPA) 
and 10.3% DHA.

Two days after parturition, litters were culled to eight 
pups, four/sex, when possible. Pups were housed with 
their dams until weaning at 21 days. Male pups from the 
second gestation of dams in [24] were used. Pups were 
from separate litters. Pups were weaned to the stand-
ard facility diet containing 6.7% fat (w/w), adequate 
α-linolenic acid (0.2% [25]), and negligible EPA and 
DHA. The fatty acid composition is in [24]. To simplify 
terminology, pup group names reflect the dams’ n-3FA 
intake.

Pups were habituated to handling prior to behavioral 
testing. Testing began 5 weeks after weaning, and contin-
ued for 7 days. Pups were sacrificed by rapid decapitation 
following the conclusion of the behavioral work. Proto-
cols were approved by the Institutional Animal Care and 
Use Committees of the University of Texas at Austin and 
Texas State University.

Behavioral tests
The forced swim test (FST) was conducted as in [24]. 
Rats were observed for 5 min on day 2. Immobility was 
assigned to stationary postures, moving only to stay 
afloat, for more than 3 s.

The open field test (OFT) was performed in two 
10-min sessions over two consecutive days [24]. The first 
day represented a novel; the second day a familiar envi-
ronment. An activity monitoring system (Med Associ-
ates Inc., St. Albans, VT) recorded frequency, duration, 
speed, location, and the path of movement. Behaviors 
measured included exploration, average velocity, average 
rearing duration, time in the center 38% of the field, and 
stereotypic time.

The hole board test (HBT) measured nose pokes into 
a board with a 4 × 4 array of holes 2  cm in diameter, 
inserted into the OFT apparatus. During each trial, the 
same four out of 16 holes were baited with a piece of 
cookie. Pups were exposed to the cookies before test-
ing. Trials began with the first entry and ended after the 

last bait was consumed or 5 min elapsed. Infrared beams 
below the floor recorded nose pokes (entries) into each 
hole. Latency to complete each trial, novel entries, repeat 
entries, and total entries were recorded by the automated 
system. Rats experienced five trials/day for three consec-
utive days.

Statistical analyses
Data for all subjects is included in figures. Data are 
expressed in tabular form in Additional files 2, 3, 4, and 
5 as mean ± SEM, mean differences and 95% confidence 
intervals of the mean differences (CI) for n = 10 deficient 
and n = 7 supplemented pups unless indicated. Mean 
differences due to maternal diet were calculated by sub-
tracting the value for the n-3FA deficient group from the 
supplemented group; thus, positive values indicate sup-
plemented > deficient. Mean differences over time were 
calculated by subtracting the first day of testing from the 
last. Levene’s tests for equality of variance determined if 
Welch’s or Student’s t-tests were appropriate for analy-
sis of behavior in the FST and on isolated days in the 
OFT and HBT (Additional files 2, 4). Fisher’s exact test 
assessed the proportion of pups with zero vs. non-zero 
immobility in the FST. Linear Mixed-Effects Modeling 
determined the effect of maternal diet on behavior over 
time in the OFT and HBT (Additional files 3, 5). This 
modeling was repeated dropping one subject at a time to 
determine if that individual drove the outcome. Statisti-
cal analyses were performed using SPSS v. 24 (Chicago, 
IL). Differences were considered significant at P < 0.05. 
The expected power analysis was done using G*Power 3.1 
[26].

Results
Increased FST immobility characterizes depression-
related behavior [27, 28]. There was no difference in the 
amount of time spent immobile due to maternal diet 
(Fig.  1), mean difference = 33.0  s, 95% CI (− 10.9, 77.0), 
P = 0.12. Maternal diet did not affect whether a pup dis-
played immobility (P = 0.62). Five pups per group exhib-
ited immobility. Two supplemented and five deficient 
pups showed no immobility (Fig. 1).

Novelty reactivity predicts learned helplessness [29], 
predisposing to depression [30–32]. Group differences 
in activity changes between novel and familiar envi-
ronments were assessed by comparing change in time 
spent exploring (the sum of ambulatory and rearing 
time), rearing duration average, and average velocity in 
the novel vs. familiar open field environments (Fig.  2; 
Additional file 2), which are reflected by the interaction 
between diet and time when predicting these metrics 
(Additional file 3). There was no effect of maternal diet 
on any parameter (Additional file  2). When modeled 



Page 3 of 7Jackson et al. BMC Res Notes          (2018) 11:812 

as a whole using linear mixed effects regression taking 
both maternal diet and day into account, diet did not 
alter time spent exploring, rearing duration, or aver-
age velocity (Fig.  2a–c; Additional file  3). Familiarity 
increased time spent exploring and rearing duration. A 
diet by novelty interaction existed for rearing duration. 
The rearing duration of supplemented pups remained 
relatively constant, while deficient pups increased their 
rearing duration between days (Additional files 2, 3). 
Due to the lack of response to maternal n-3FA intake 
on other parameters predictive of novelty response we 
believe this interaction is spurious and that, overall, 
n-3FA consumption during neurodevelopment has no 
effect on novelty reactivity.

Increased time spent in the center of the OFT envi-
ronment reflects decreased fear, elevated risk-taking, or 
a combination thereof. Stereotypic movement signifies 
hyperactivity [33]. There were no effects of maternal diet 
or novelty on center or stereotypic time and no interac-
tions (Fig. 2d, e; Additional files 2, 3).

The HBT assessed learning and memory. The refer-
ence memory ratio equaled the number of entries to 
baited holes divided by the number of total entries (to 
both baited and unbaited holes). Maternal diet had no 
effect on reference memory ratios when each day of the 
HBT was considered separately (Additional file 4). Pups 

improved their performance across days but maternal 
diet had no effect on pup performance (Fig.  3a; Addi-
tional file 5). There was no interaction between maternal 
diet and day.

The working memory ratio equaled the number of 
initial entries to holes divided by the total number of 
entries plus re-entries to holes. Maternal diet did not 
affect working memory ratio. Elimination of one subject 
resulted in an increase in working memory ratio over 
time (Fig.  3b, Additional file  5). With this pup included 
the working memory ratio did not change over time [F 
(1,15) = 1.90, P-value = 0.17, mean difference = 0.12, 95% 
CI of mean difference (0.01, 0.24)]. There was no mater-
nal diet by day interaction for working memory.

Discussion
When subjects themselves ingest increased amounts 
n-3FAs studies often reveal a positive correlation 
between n-3FA intake and beneficial behavior. While 
many designs aim to examine the role of n-3FAs in neu-
rodevelopment, few achieve this because the pups con-
sume the same diet as their dams after weaning through 
testing. In the current design, dams consumed disparate 
levels of n-3FAs during gestation and lactation, but their 
pups ingested adequate n-3FAs from weaning onward, 
allowing isolation of behaviors perpetually altered by 
maternal n-3FA intake during neurodevelopment. We 
found no effect of n-3FA intake on behaviors related to 
depression, novelty reactivity, and learning and memory.

Others have shown an inverse relationship between 
depression-related behavior and n-3FA intake in adult 
rats [13, 34–42]. Those isolating neurodevelopment [21, 
43] found that n-3FAs deficiency increased FST immobil-
ity in animals replete with n-3FAs post-weaning. Of note, 
diet did not affect depression-related behavior in the 
dams of our pups [24]. While we cannot be certain why 
these discrepancies exist, our use of Long-Evans (versus 
Sprague–Dawley) rats may contribute as strain affects 
FST behavior [44].

Studies indicate that as n-3FA intake increases, nov-
elty reactivity decreases whether n-3FAs are consumed 
post-weaning [45] or from conception [17]. Post-wean-
ing n-3FA supplementation also improves learning and 
memory in rats exposed to adequate n-3FA levels dur-
ing neurodevelopment [34, 46]. Additionally, n-3FA defi-
ciency during and after neurodevelopment decreases 
learning and brain DHA [18, 20]. In contrast to our study, 
in each of the above-mentioned studies n-3FA intake var-
ied at the time of testing; thus, we hypothesize that the 
effects of n-3FAs on behavior are due to n-3FA levels in 
the brain during testing.

In conclusion, our work suggests that maternal n-3FA 
intake during neurodevelopment may not dramatically 

Fig. 1 Effect of maternal n‑3 FA consumption during 
neurodevelopment on offspring immobility in the forced swim test. 
Pups were placed in a cylinder of water, to simulate an inescapable 
stressor, for 15 min on day 1 and for 5 min on day 2. Day 2 video 
recordings were scored for immobility. Data shown are seconds of 
immobility on day 2 for pups with (+ n‑3 FAs; n = 7) and without n‑3 
FAs during neurodevelopment (− n‑3 FAs, n = 10)
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Fig. 2 Impact of maternal n‑3 FA consumption during neurodevelopment on offspring behavior in the open field. Pups were placed in the open 
field chamber for 10 min on day 1 (novel environment). Twenty‑four hours later, pups were returned to the same chamber for another 10‑min 
period (familiar environment). Individual trajectories in the novel and familiar open fields are shown for supplemented (n = 7) and deficient (n = 10) 
pups. In each panel, green, solid lines indicate supplemented pups and orange, dashed lines specify deficient pups. The means for supplemented 
pups are indicated by a thick, blue line. A thick, red line denotes the means for deficient pups. Panels show time spent exploring (a), average rearing 
duration (b), average velocity (c) center time (d) and stereotypic time (e)
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alter behavior later in life provided offspring n-3FA 
intake is adequate postweaning. At behavioral testing, all 
pups had consumed a diet with adequate n-3FA levels for 
5 weeks, theoretically eliminating the effects of disparate 
maternal diets, resulting in similar brain n-3FA content 
as in [21, 43]. Additional work is required to test this 
theory.

Limitations
Sample size
Studies comparing diets either deficient in or supple-
mented with n-3FAs to those containing adequate lev-
els have seen very large effect sizes with sample sizes of 

6, 10, and 16 per group [14, 16, 18]. Based on these and 
considering the extreme disparity in n-3FA levels in the 
maternal diets, we chose n = 10/group for both genera-
tions. Indeed, we observed very large (Cohen’s d = 1.2) 
or large (Cohen’s d = 0.8–0.95) effect sizes of diet on dam 
behavior [24]. Unfortunately, three pups did not com-
plete the study due to factors unrelated to diet. Our final 
sample size had an expected power of 62% to detect very 
large (Cohen’s d = 1.2) mean differences. Button et  al. 
[47] showed that the median power of published neu-
roscience studies is 21%. Of note, studies with such low 
power can only obtain P < 0.05 significant differences if 
they randomly draw samples that show a much larger 
mean difference than the expected true effect. The fact 
that the vast majority of these publications (instead of the 
expected 21%) report significant differences reflects pub-
lication bias because underpowered studies with posi-
tive findings are published while underpowered studies 
with negative findings are often not. Thus, we conclude 
that our work was moderately well powered if the effect 
sizes of similar published studies are accurate estimates 
of the true effects; else, these previous studies are likely 
underpowered themselves and are therefore reporting 
exaggerated effects. Either way, it is important that our 
current negative findings are taken into account by future 
research, which should not assume very large effect sizes 
of n-3FA on behavior when calculating needed sample 
sizes. In summary, maternal n-3FA intake during neu-
rodevelopment may not markedly effect behavior later 
in life, but we acknowledge this data does not prove the 
null and there could be effects of maternal n-3FA intake 
on offspring behavior that may be detected with a larger 
sample size.

Lack of brain n‑3FA analysis
The brains were used for other assays so their n-3FA con-
tent was not assessed.

Additional files

Additional file 1. Experimental timeline.

Additional file 2. Table of activity parameters in the novel versus familiar 
open field.

Additional file 3. Table showing results of linear mixed effects regression 
analysis of open field activity parameters.

Additional file 4. Table of memory ratios by day in the hole board test.

Additional file 5. Table displaying results of linear mixed effects regres‑
sion analysis of reference and working memory.
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Fig. 3 Consequences of maternal n‑3 FA consumption on offspring 
reference or working memory in the hole board test. Pups were 
placed in the open field chamber modified to contain a board with 
a 4 × 4 grid and a consistent pattern of baited holes. Rats were 
subjected to five trials each day for three consecutive days. Individual 
trajectories are shown for n‑3FA supplemented (n = 7) and deficient 
(n = 10) pups. In each panel, green, solid lines indicate supplemented 
pups and orange, dashed lines specify deficient pups. Solid, circular 
markers indicate the supplemented pup that was an outlier and not 
included in the working memory ratio data shown in Additional files 
4 and 5. The mean memory ratios for supplemented pups is indicated 
by a thick, blue line. A thick, red line denotes the mean memory ratios 
for deficient pups. a Displays reference memory ratios, b working 
memory ratios. One less supplemented pup is included on day 2 for 
each ratio because data was lost due to an equipment malfunction
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