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Abstract

Motivation: Uncovering the cellular and mechanical processes that drive embryo formation requires an accurate
read out of cell geometries over time. However, automated extraction of 3D cell shapes from time-lapse microscopy
remains challenging, especially when only membranes are labeled.

Results: We present an image analysis framework for automated tracking and three-dimensional cell segmentation
in confocal time lapses. A sphere clustering approach allows for local thresholding and application of logical rules to
facilitate tracking and unseeded segmentation of variable cell shapes. Next, the segmentation is refined by a discrete
element method simulation where cell shapes are constrained by a biomechanical cell shape model. We apply the
framework on Caenorhabditis elegans embryos in various stages of early development and analyze the geometry of
the 7- and 8-cell stage embryo, looking at volume, contact area and shape over time.

Availability and implementation: The Python code for the algorithm and for measuring performance, along with all
data needed to recreate the results is freely available at 10.5281/zenodo.5108416 and 10.5281/zenodo.4540092. The
most recent version of the software is maintained at https://bitbucket.org/pgmsembryogenesis/sdt-pics.

Contact: rob.jelier@kuleuven.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modern fluorescence microscopy allows for the detailed imaging of
all cells in a multi-cellular system over time. Following cells and their
shapes can provide information about cellular mechanics, cell–cell
interactions and force generation, which are constituents of the proc-
esses that underlie cellular self-organization (Keller, 2013).
However, automated 3D cell shape reconstruction from microscopy
of multi-cellular systems with labeled membranes remains challeng-
ing in practice. In this article, we develop an innovative method to
accurately segment cells and retrieve 3D meshes using the
Caenorhabditis elegans embryo as a model.

There are several issues that complicate working with this type
of data. Phototoxicity places biological constraints on the signal
strength especially during time lapses, while photobleaching and
light scattering deeper in the sample typically leads to a degradation
of signal quality over time and depth. The problem is compounded
by the relatively limited z-resolution in standard confocal and wide-
field microscopy. Furthermore, some systems, such as early embryo
development, feature cells with variable and changing cell shapes
and sizes.

Various techniques have been used in current cell segmentation
pipelines (Meijering, 2012), including deformable models such as
level sets (Grushnikov et al., 2018; Uba et al., 2020) and active
meshes (Dufour et al., 2011) along with machine learning
approaches, such as pixel classification methods (Hilsenbeck et al.,
2017) and convolutional neural networks (Cao et al., 2020;
Supplementary Table S5), though the most widely used technique
appears to still be the watershed algorithm (Beucher, 1990;
Stegmaier et al., 2016; Supplementary Table S5).

The effectiveness of a given technique strongly depends on the
way both over-segmentation and gap sensitivity are handled. Over-
segmentation can occur due to signal noise, apparent membrane sig-
nal inside cells or irregular cell shapes, amongst other reasons. The
issue can be dealt with procedurally, e.g. by a clustering approach in
the case of watershed regions (Beucher and Marcotegui, 2009), but
more commonly the problem is addressed by providing the algo-
rithm with seeds marking the cells, either by manual annotation or
by adding a nucleus channel (Amat et al., 2014; Azuma and Onami,
2017; Cao et al., 2019; Machado et al., 2019). The latter has the
drawback that an extra marker channel needs to be used. This pro-
duces extra technical overhead during imaging, and more crucially
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limits how many other markers can be imaged in the experiment,
given that the number of fluorescent markers is often limited to two
or three in practice. The second challenge is handling gaps in the
membrane signal. The gaps can result in segmentation errors where
a cell region spills over into extra-cellular space or neighboring cells.
Techniques to help close these membrane gaps include morphologic-
al operations (Serra and Soille, 1994; Stegmaier et al., 2016), tensor
voting (Mosaliganti et al., 2012) and surface regression (Cao et al.,
2019). However, these techniques are not sufficient to fully resolve
gaps from noisy confocal images, especially when working in 3D,
given the sparse z-resolution of the microscopy input data. An ad-
vantage of deformable approaches over watershed in this respect is
the introduction of shape constraints which better enable them to re-
construct shapes in regions of poor membrane signal. However,
using these methods in the context of multi-cellular aggregates often
requires complex algorithm adaptations and high computational
cost, which explain their limited use in embryo segmentation soft-
ware (Dufour et al., 2011). Moving from a continuous deformable
model to a discrete particle-based simulation can help to overcome
these issues, as has been demonstrated by LimeSeg (Machado et al.,
2019). Limeseg’s approach is similar to a coarse-grained modeling
of a lipid membrane where the ‘lipid’ particles are attracted to high
intensity pixels, making it applicable to a broad range of segmenta-
tion scenarios, well beyond cell segmentation. However, this broad
applicability is reflected in generic shape constraints, and thus can
still lead to cell shapes not allowed under the laws of cell mechanics.
Overall, the constraints placed on the segmentation by these meth-
ods are aimed at reconstructing smooth segmentations, but do not
represent well-described properties governing cell shapes, such as
cellular adhesion and the mechanical properties of the cellular
cortex.

Here, we introduce new methods to robustly identify and track
cells in membrane labeled 3D time-lapse images followed by accur-
ate shape retrieval using a biophysical cell shape model. After clari-
fying the basic design and rationale, we present the tracking and
segmentation results obtained on C.elegans embryos. Next, we com-
pare our method to RACE, LimeSeg and CShaper. Finally, the soft-
ware is used to analyze the geometry of the 7- to 8-cell stage.

2 Algorithm

Our design approach is aimed at segmenting and tracking
membrane-labeled images of cells with variable shapes, without
using additional information to identify the cells. The cell shapes are
retrieved in three stages (Fig. 1A). The first stage is an image filter
pipeline to identify pixels with membrane signal (Supplementary
Material S2, Supplementary Fig. S1). This stage would likely require
optimization between microscopy platforms and biological systems.
The second stage is a robust and readily optimized algorithm for

finding, tracking and roughly segmenting cells, and should be broad-
ly applicable (Supplementary Material S3). The third stage uses a
biomechanical model of cell shape to refine the cell segmentations
(Supplementary Material S4). A detailed description can be found in
Supplementary Information.

2.1 Tracking and coarse segmentation
After membrane localization (Supplementary Material S2), the
spheresDT algorithm (Fig. 1B, Supplementary Material S3.1) identi-
fies and tracks the cells, while also providing a coarse 3D cell seg-
mentation. SpheresDT is a progressive clustering algorithm that
operates on a 3D distance transform (DT) image stack calculated
from the binary membrane images. If the DT-value of a pixel at loca-
tion (x, y, z) equals r, then one can position a sphere with radius r
and center (x, y, z), and by definition, this sphere will take up the
maximum of volume without overlapping any membrane pixel. As
such, the DT-stack is filled up with spheres in an iterative way, start-
ing with the biggest sphere possible, gradually going down in size
until a predefined minimum sphere size is reached. A sphere never
overlaps with a membrane pixel, but spheres can mutually overlap
leading to the formation of clusters, which in turn get grouped into
cells (Supplementary Fig. S2). The cells are subsequently tracked
over time by passing on cell labels from one time point to the next
and checking for cell divisions at every time step. During clustering,
the maximum distance transform value of the overlap zone is used
to gauge the size of the membrane gap between the two spheres or
clusters, given that this value reflects the radius of the biggest sphere
that can be placed inside the overlap zone. This value is compared to
a clustering threshold that scales with the radius of the smallest
sphere or cluster within the pair. The combined effect is a clustering
criterion determined by the size of the membrane gap relative to the
size of the smallest object within the pair being considered. In add-
ition, the hierarchy build up during clustering, ranging from spheres
to cells, is subjected to logical rules that guide segmentation
and tracking (Supplementary Fig. S3). In the Implementation sec-
tion, we will demonstrate the benefits of these characteristics on
segmentation.

2.2 Physically informed cell segmentation
The Mpacts-PiCS algorithm refines spheresDT’s output by con-
straining the cell segmentation through a mechanical model of cell
shape. The Deformable Cell Model (DCM) (Odenthal et al., 2013;
Smeets et al., 2019), which is based on the Discrete Element Method
(DEM), is used to simulate the forces that give rise to cell shapes,
such as cortical tension, cytoplasmic pressure and contact forces be-
tween cells. These forces act on the nodes of closed triangulated
meshes which represent the cells. The model has been used in a var-
iety of contexts such as tissue mechanics (Van Liedekerke et al.,
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Fig. 1. Design spheresDT/Mpacts-PiCS. (A) Overview of the spheresDT/Mpacts-PiCS pipeline. The membrane labeled 3D confocal time-lapse image (1) undergoes preprocess-

ing to identify the membrane. The output of the 2D Frangi filter (2) assigns a vesselness score to each pixel (Supplementary Material S2.1). After a thresholding, size filtering

and a thinning operation, a binary membrane image is obtained (3). Next, a sphere clustering algorithm named spheresDT is applied that locates the cells and tracks them over

time, reconstructing the lineage tree. The 3D distance transform image (4) derived from the binary membrane is used as input, resulting in coarse cell segmentations where every

cell is represented as a cluster of spheres (5). Finally, a segmentation refinement algorithm named Mpacts-PiCS is applied (6). The coarse cell segmentations from spheresDT are

inputted into a mechanical simulation whereby the forces that drive cell shape changes are governed by the Deformable Cell Model with an added attractive force originating

from the membrane pixels from preprocessing. (B) The spheresDT core algorithm. (C) Mpacts-PiCS. The force on a mesh node ~Ftot that drives the mechanical simulation is

composed out of a force resulting from the Deformable Cell Model (~FDCM) and an attractive force from a nearby pixel (~Fpix). ~Fpix (nN) decreases with distance (lm) according

to Equation 12
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2020), cell spreading (Odenthal et al., 2013) and contact inhibition
of locomotion (Smeets et al., 2016). Image information is introduced
into the simulation by inserting membrane pixels into the scenario as
an extra attractive force on the cell meshes (Fig. 1C). To calculate
forces exerted by the pixels on the cell mesh, the Immersed
Boundary Method (IBM) (Guyot et al., 2016) is used.

Utilizing a biomechanical model is a way to use prior knowledge
on how cells take their shape and interact with each other in the seg-
mentation. It places mechanical constraints on the segmentation that
should ensure physically likely cell shapes. This model driven ap-
proach can also help to infer shapes in locations of poor signal
quality.

3 Implementation

3.1 A segmentation approach for membrane labeled

early-stage embryos
For accurate segmentation of images from membrane labeled

early-stage embryos, the method needs to be robust against gaps in
the membrane signal as well as avoid over-segmentation. SpheresDT
has some unique characteristics, that we demonstrate here using sim-
ple segmentation challenges and a comparison to a watershed ap-
proach (Fig. 2).

First, to deal with variable cell shapes and sizes one needs to
move from a global threshold to a threshold able to vary across
space. Such a spatially varying threshold flows naturally from
spheresDT given that a different threshold can be set for every pair
of overlapping spheres or clusters. The threshold varies in a way that
the size of the membrane gap is evaluated relative to the size of the
smallest sphere or cluster in the pair. Figure 2A gives an example of
a segmentation challenge with several cell shapes. Because watershed
uses a global threshold and different cells impose different con-
straints, it is impossible to find a threshold resulting in correct seg-
mentation. With spheresDT on the other hand, the imposed
constraints are compatible, allowing for a correct segmentation. The
benefit of using a threshold varying with sphere radius can be seen
when looking at cell 1 and cell 2. Both cells have the same shape, but
they differ in size, and in spheresDT, these two shapes lead to the
same constraint. The need for spatially localized thresholding was

also acknowledged in a recent paper (Guignard et al., 2020), where

they employ different heuristics based on this concept to improve

segmentation and tracking.
Second, spheresDT can limit spillover problems by limiting the

resolution of segmentation. Spillover is caused by membrane gaps in

the (preprocessed) image that are hard to avoid given the challenging

nature of the microscopy data. Figure 2B demonstrates that

spheresDT avoids the spillover seen by watershed, by stopping the
segmentation process at a certain minimum sphere radius. This is

further illustrated in Figure 2C. Combining the minimum sphere ra-

dius, which defines the segmentation resolution, with a minimum

cell radius allows some flexibility in the segmentation behavior.
Third, spheresDT is embedded in a set of logical rules, not

defined at the pixel-level as in most segmentation approaches, but

defined on higher level objects represented in the data model that is

build up (Supplementary Fig. S2). Figure 2D provides an illustration
of such a logical rule involving cell division.

3.2 Lineage reconstruction using only membrane

labeling
To demonstrate the accuracy of the spheresDT algorithm, we
tracked cells in four developing C.elegans embryos. These early-

stage embryos, ranging from 2 up to 100 cells, express a fluorescent

membrane marker and were recorded for approximately 1 h in 3-

min intervals using a confocal microscope. For validation, we com-
pared the automatic lineage reconstruction to manually annotated

lineage data. Our evaluation uses the TRA score, together with

standard accuracy metrics (Supplementary Material S6.1). The TRA
score is a reflection of the effort needed to manually correct the lin-

eage, making it a richer metric compared to sensitivity and precision,

which look at each time step separately. SpheresDT achieved an

average TRA-score of 0.959, average precision of 0.974 and average
sensitivity of 0.943 (Fig. 3A, Supplementary Fig. S15). Only three

user parameters needed to be varied across all datasets

(Supplementary Table S3): a first parameter controls the sensitivity

during the identification of membrane pixels, a second parameter
sets the overall clustering threshold and a third parameter defines

the minimum cell radius.

A
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Fig. 2. spheresDT features in comparison to watershed. (A) Dealing with varying cell shapes. (1) The ground truth image shows five cells. Cell 1 and 2 have the same shape but

cell 2 is smaller. Cell 3 and 4 are small, clearly separate cells with a minor membrane gap in between. Cell 5 has an oblong shape next to cell 1 with a minor membrane gap in

between. (2) Distance Transform of the ground truth image. (3) Watershed on the DT-image can never find a threshold (h-maxima transform, Serra and Soille (1994)) leading

to a perfect segmentation. (4) Segmentation via spheresDT is able to correctly identify all cells. h corresponds to parameter fragmentationlevel (Supplementary Material S3.1).

Cell 1 and cell 2 will break up in two parts at the same fragmentationlevel value, because both cells have the same shape, and only differ in size. (B) Dealing with membrane

gaps. (1) Ground truth image showing two cells with membrane gaps surrounded by an exterior boundary. (3) Watershed on the distance transform allows detecting two cells,

but leads to spillover into the exterior. (4) SpheresDT locates both cells without spillover by halting segmentation when the radii of the circles drop below a certain threshold

(spmin). A coarser segmentation will be the result. (C) spheresDT segmentation allows to control the segmentation by varying the two parameters. spmin controls the resolution

of the resulting segmentation, while cmin (minimum cell radius) controls the size of the segmentation area that can be detected. A high value of spmin will reduce problems of

spillover, but also results in a coarser segmentation. A high value of cmin will reduce problems of over-segmentation, but should not be set too high to avoid missing smaller

cells. If both parameters are set to the lowest value (one pixel), spheresDT behaves like regular watershed. (D) In scenario 1, an image artifact at t¼ 1 separates the cell into two

different regions. Because this artifact is no longer present at t¼ 2, this division will not be confirmed and the cell at t¼ 1 will remain unified. On the other hand, in scenario 2 a

true cell division occurs and the membrane separating cell 1 from cell 2 will also be present at t¼ 2, leading to a confirmation of a cell division at t¼ 1
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3.3 Physically informed cell segmentation
Twelve image stacks representing three replicates of the 2-, 7-, 26-
and 48-cell stage were selected as input. The rough cell outlines
determined by spheresDT, parameterized for optimal tracking, were
converted into triangulated meshed hulls and used as input for the
Mpacts-PiCS algorithm (Supplementary Material S4).

We compared the automatic shape reconstructions produced by
Mpacts-PiCS (Supplementary Fig. S16) to manually annotated cell
shapes using the Jaccard score (JAC) and Dice score (Dice), together
with a relative Jaccard score (JACREL) (S6.2). JACREL is defined as
the ratio of the original JAC score, with the JAC score obtained with
manually annotated membrane as pixel input for the mechanical
simulation (Supplementary Material S4.4).

Across the 12 embryos, an average JAC score of 0.80 was
obtained, ranging from 0.71 to 0.90 (Fig. 3B). JAC scores tend to de-
crease with larger cell counts, mainly because the limited z-reso-
lution often causes ambiguity on where one cell ends and another
cell begins, and smaller cells have a larger part of their volume
affected by these ambiguous slices. Also, with more, and therefore
smaller cells, small stretches of membrane missed by membrane ex-
traction can account for a large proportion of a cell’s membrane,
leading to a big drop in segmentation quality for that cell.

Given that the manually annotated 3D cell shapes themselves are
imperfect, especially when the image quality is relatively poor, the
JACREL score was introduced, which scores segmentation relative to
a segmentation that uses the manually annotated membrane. This
allows to parse out the effect of the membrane extraction on seg-
mentation. JACREL scores range from 0.96 to 1.01, indicating that
membrane extraction (preprocessing) performs close to manually
annotated membrane regarding segmentation quality.

For additional validation, we applied our software to the 21
image stacks made available by Cao et al. (2020) for which we
obtained a precision of 0.87, recall of 0.88 and a DICE score of 0.88
(Supplementary Material S6.5).

3.4 Comparison to RACE, Limeseg and CShaper
Although many segmentation software packages are available, not
all are suited for 3D microscopy images with only membrane label-
ing (Supplementary Table S5). We chose to compare to RACE
(Stegmaier et al., 2016), LimeSeg (Machado et al., 2019) and
CShaper (Cao et al., 2020).

RACE is state-of-the-art software shown to have excellent per-
formance across different organisms and microscopes and is
reported to outperform ACME, EDGE4D and MARS (Stegmaier

et al., 2016). We processed the first time point of the aforementioned
four time-lapses with RACE and evaluated cell detection perform-
ance (Fig. 3D). Parameters were manually set for optimal perform-
ance using the first time-lapse to calibrate microscope-related
parameters, while data-specific parameters were adjusted for each
time-lapse separately (Supplementary Table S6). The results reflect
that automated seed detection from RACE underperforms on our
data. Next, to bypass the segmentation issues caused by faulty seed
detection, we manually provided the seeds to RACE. As
Supplementary Figure S20B illustrates, spillover effects are still read-
ily observed across the stacks, especially deeper down the z-stack.
Supplementary Figure S21 further demonstrates that one single
watershed threshold was not able to give consistent segmentations
across the whole stack.

We also compared our segmentation results to LimeSeg, a surfel-
based approach which is loosely based on a molecular dynamics
simulation of a lipid membrane. Like Mpacts-PiCS it also employs a
particle based simulation, but the forces result solely from mem-
brane tensions instead of cell shape mechanics. To initialize
LimeSeg, the seeds were manually inputted, and the outward pres-
sure force was adjusted for optimal segmentation. LimeSeg obtained
an average JAC score of 0.76, compared to 0.8 using our algorithm
(Fig. 3D). LimeSeg scores are comparable to Mpacts-PICS, but show
a drop in JAC score on the 2-cell stage (Supplementary Fig. S22A).
Highly irregular surfaces can be outlined by LimeSeg, which
amounts to a very flexible approach, but which can also result in un-
natural cell shapes in some instances (Supplementary Fig. S22B).

Finally, we compared to CShaper, which uses a convolutional
neural network-based approach to identify membrane in the image,
followed by a watershed segmentation. Both the pre-trained neural
network, and the network trained on our ground truth data did not
result in binary membrane images that could be used for further seg-
mentation (Supplementary Material S7.4).

3.5 Geometric analysis of the 7- to 8-cell stage
To demonstrate the practical use of the segmentation approach
described earlier, we examined the 7- to 8-cell stage of the C.elegans
embryo, looking at volume, contact area and sphericity
(Supplementary Material S5). Starting from the first time point after
EMS division, seven embryos were tracked over 15 min in 3-min
intervals (Supplementary Fig. S14).

In line with the literature (Fickentscher and Weiss, 2017; Gönczy
and Rose, 2005; Sulston et al., 1983), P2 and EMS were found to
divide asymmetrically (Fig. 4A, Supplementary Fig. S7). Contrary to

A

C

B D

Fig. 3. Results tracking and segmentation. (A) Overall tracking scores. Four C.elegans embryos were tracked starting from different cell stages using the spheresDT algorithm.

Each time step represents an interval of 3 min. TRA evaluates the reconstructed lineage tree as a whole (Supplementary Material S6.1), sensitivity and precision are aggregated

measures over all time steps. (B) Twelve image stacks representing three replicates of the 2-, 7-, 26- and 48-cell stage were segmented using the spheresDT/Mpacts-PiCS algo-

rithm. Averaged JAC, Dice and JACREL scores across the different cell stages are shown. (C) Cross-section and 3D segmentation representing the different cell stages. Only the

first replicate of the three is shown. (D) (left) Cell localization performance of RACE compared to spheresDT. The first time point of the tracking data was used. (right)

Comparing segmentation performance of spheresDT/Mpacts-PiCS to LimeSeg. LimeSeg was initialized using manually validated cell centroids
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Fickentscher and Weiss (2017), which states that all AB cells are not
significantly different in volume, we found that ABpr is smaller than

ABpl, with an estimated ABpr/ABpl ratio of 0.85. To assess the ef-
fect of compression during imaging, we performed additional seg-

mentation and subsequent volume measurements based on
previously published images (Jankele et al., 2021) for four uncom-
pressed embryos (Supplementary Material S1.1). We found a highly

significant effect of compression (P¼2e-6) with an estimated ABpr/
ABpl ratio of 0.99 for the uncompressed embryos (Supplementary

Fig. S7). To see if this asymmetry can still be detected in later cell
stages, we analyzed the volume measurements from Cao et al.
(2020), which resulted in an ABpr/ABpl ratio of 0.8918, in line with

the volume asymmetry we observed in the 7-cell stage
(Supplementary Material S5.2).

Next, we tracked the changes in contact area between all nine

cells in the 15 min time span (Fig. 4B, Supplementary Material S5.3).
Cellular contact area is considered a key determinant of cell commu-
nication (Guignard et al., 2020). The most substantial change in con-

tact area reflects the movement of ABpl, where ABpl moves away
from ABpr, simultaneously pulling the C cell along (Pohl and Bao,

2010) (Supplementary Figs S13 and S10). Another notable change
corresponds to the increase in contact between ABpl and MS during
left-right patterning (Pohl and Bao, 2010).

Finally, when tracking sphericity (Fig. 4C, Supplementary Fig.

S12), we see the effect of rounding and stiffening of the cells as they
approach cell division (Kajita et al., 2002). After cell division, cells

tend to lose sphericity and start to spread out (Supplementary Fig.
S13). The stretching of C due to the pulling effect of ABpl can also
be observed in the sharp decline in sphericity of C.

4 Discussion

With spheresDT/Mpacts-PiCS we offer an approach for cell localiza-
tion, tracking and 3D segmentation using 3D time-lapse microscopy

data with only membrane labeling (Supplementary Material S7.5).
SpheresDT can effectively track cells based on membrane signal

alone in a complex 3D environment, as opposed to lineage recon-
struction software requiring nuclei staining (Murray et al., 2006).

We could achieve high performance for identifying and tracking
cells, despite the challenges posed by the dynamic cell shapes in the
early C.elegans embryo. By employing a spatially varying threshold

and coarse segmentation, spheresDT is designed to sidestep the pit-
falls of watershed-based approaches such as over-segmentation and

spillover, and offers a straightforward way to guide the segmenta-
tion process with a limited set of easy to understand parameters. The
underlying architecture of spheresDT is generic in nature, making it

applicable to different membrane marked datasets and 3D segmenta-
tion tasks in general.

With Mpacts-PiCS we advance a novel concept whereby a mech-
anical simulation evolves 3D cell meshes to achieve precise and phys-
ically sound cell reconstructions. Its appeal lies in that it poses 3D
constraints arising from internal mechanics, rather than generic
smoothness constraints, leading to a scenario in which irregular
shapes are only allowed given strong evidence provided by the mi-
croscopy image, while unnatural shapes are precluded. It is also use-
ful for cell shape inference in areas of low signal quality, often
encountered deeper in the embryo. The Deformable Cell Model
includes passive viscoelastic properties of the acto-myosin cortex,
which dominate the immediate mechanical response, as well as ac-
tive traits, such as cortical tension and adhesion forces. Mpacts-PiCS
is rooted in the Discrete Element Method, which is an established
numerical method with solid foundation in mechanical theory, and
which offers many supporting software packages for simulation and
visualization. We pose that particle-based simulation can be an ef-
fective segmentation strategy, as also demonstrated with LimeSeg.

Applying our method to retrieve detailed 3D cell shape recon-
structions from early-stage C.elegans embryos, we obtained statistics
that highlight the crucial processes relevant for signaling and reposi-
tioning of cells in the early embryo, such as asymmetric divisions
and cell to cell contacts evolving over time. Asymmetric cell divisions
play an important role in embryo development as they underlie axis
formation of the body plan and lead to daughter cells with different
fates. The differential distribution of cell fate determinants is often
accompanied by a difference in volume of the daughter cells. Besides
the P0/1/2/3/4 and EMS divisions, all other cell divisions until gas-
trulation are typically interpreted as being symmetric in volume.
However, these assumptions are predominantly extrapolated from
2D segmentations, and few studies have made detailed 3D volumet-
ric measurements across multiple embryos. We could accurately de-
termine the volume asymmetry of the EMS division, which is known
to be modest. Surprisingly, we found a significant volume difference
between ABpr and ABpl. It is unclear if the asymmetry has biological
significance as the cells have equivalent lineage potential (Wood,
1991), though it has been observed that ABpl and ABpr behave dif-
ferently in the compressed embryo (Jelier et al., 2016; Pohl and Bao,
2010). One possibility is that the volume difference is a consequence
of geometric constraints, as the ABp spindle position is oriented by
directed cortical flows (Naganathan et al., 2014; Pimpale et al.,
2020) that may be affected by the compression of the embryo for
imaging, which is supported by our observation that this volume
asymmetry disappeared in uncompressed embryos.

Even though this paper’s main focus is cell segmentation, it
should be viewed as a necessary first step in approaching several
interesting biological research questions. The use of a biomechanical

A B C

Fig. 4. Analysis of the 7- to 8-cell stage. (A) Volume estimates resulting from the mixed model (Supplementary Material S5.1). Black bars indicate the 95% confidence intervals

of the volume estimate for each cell type. Note that, because cell size is correlated to the total embryo size, cells with an overlapping confidence interval can be still shown to be

significantly different in volume after the correlation to the embryo size is accounted for by the mixed model. EMS division gives rise to a MS daughter cell which is slightly big-

ger than the E cell (MS/E ratio ¼ 1.12). A noteworthy difference can be seen in the ABpr cell which is significantly smaller (ABpr/ABpl ratio ¼ 0.85) as compared to ABpl and

other AB cells. (B) Heatmap that shows the change in contact area (in lm2) between cells between the first and the last appearance of the cell pair in the data (See

Supplementary Fig. S11 for more detail). (C) Sphericity change over time. The x-axis indicates the time to the nearest cell division (3-min intervals). Cells nearing cell division

(the AB cells) show consistent rounding. After division, cells lose their sphericity
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model of cell shape for segmentation opens up a range of options for
further analyses of morphology and biomechanics of the developing
embryo. Cell shapes can be used to characterize and quantitatively
compare cellular morphologies during development, and this type of
analysis can highlight differences in behavior across cell types and
over time. Likewise, morphological characterization can help iden-
tify novel and specific phenotypes during perturbation experiments
such as gene knockdowns. Also, the reconstructed 3D cell shapes
can be input for inference strategies with the aim of extracting
underlying mechanical parameters, for example cortical tensions
and adhesions, that support the observed cell geometry. In addition,
observing cell shape changes over time can be used to infer the active
forces that drive the movements (Brodland et al., 2014; Xu et al.,
2018).
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