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Populations can be genetically isolated by differences in their ecology or environment 
that hampered efficient migration, or they may be isolated solely by geographic distance. 
Moreover, mountain ranges across a species’ distribution area might have acted as 
barriers to gene flow. Genetic variation was quantified using amplified fragment length 
polymorphism (AFLP) and 13 selective amplification primer combinations used generated 
a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow 
and environmentally dependent local adaptation of Cunninghamia konishii occur in 
Taiwan. A pattern of genetic isolation by distance was not found and variation partitioning 
revealed that environment explained a relatively larger proportion of genetic variation 
than geography. The effect of mountains as barriers to genetic exchange, despite 
low population differentiation indicating a high rate of gene flow, was found within the 
distribution range of C. konishii. Twelve AFLP loci were identified as potential selective 
outliers using genome-scan methods (BAYESCAN and DFDIST) and strongly associated 
with environmental variables using regression approaches (LFMM, Samβada, and 
rstanarm) demonstrating adaptive divergence underlying local adaptation. Annual mean 
temperature, annual precipitation, and slope could be the most important environmental 
factors causally associated with adaptive genetic variation in C. konishii. The study 
revealed the existence of physical barriers to current gene flow and environmentally 
dependent adaptive divergence, and a significant proportion of the rate of gene flow may 
represent a reflection of demographic history.
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INTRODUCTION

Understanding connectivity among populations and pattern of 
gene flow has been important for deciphering how species adapt 
in response to environments and has clear practical implications 
for conservation of forest genetic resources (Allendorf et al., 
2010; Aitken and Bemmels, 2016). Low levels of population 
genetic differentiation are commonly found in coniferous 
species due to efficient gene flow based on paternally inherited 
plastid DNA (ptDNA) variation (Neale et al., 1991; Hipkins et al., 
1994; Hwang et al., 2003) and biparentally inherited molecular 
markers, such as allozyme (Hamrick et al., 1992; Lin et al., 1993; 
Hamrick and Godt, 1996; Lin et al., 1998). Although gene flow 
maintains genetic diversity and is critical to population resilience 
and persistence (Allendorf et al., 2013), high rate of gene flow 
among closely related sexual populations can preclude local 
adaptation by eroding divergence driven by natural selection 
due to the homogenizing effect of dispersing individuals mating 
among populations (García-Ramos and Kirkpatrick, 1997), 
resulting in no population adaptive divergence (Li et al., 2018). 
Nevertheless, selection invoked by environmental heterogeneity 
can counteract the effect of gene flow (Lenormand, 2002). 
The failure of detecting variation under selection might have 
also related to past demographic histories and stochastic 
mechanisms (Lande, 1988; Wang et al., 2017). It is likely that the 
balance between migration and selection is species dependent 
and is related to the realized ecological niche where species can 
tolerate in response to ecological factors (Pulliam, 2000; Bruno 
et al., 2003).

The accumulation of genetic variation can provide as raw 
materials for evolutionary potential under natural selection (Petit 
and Hampe, 2006; Barrett and Schluter, 2008). The investigation 
involved orthologous coding sequences in gymnosperms and 
angiosperms showed that the average synonymous mutation 
rate was found to be higher in angiosperms in contrast to 
gymnosperms (Buschiazzo et al., 2012). However, the rate of 
nonsynonymous substitutions in protein-coding genes was found 
to be higher in conifers compared with angiosperms suggesting 
that conifers harbored higher number of fixed adaptive mutations 
than angiosperms (Buschiazzo et al., 2012), and it is common 
to observe population local adaptation of conifers in response 
to environmental heterogeneity (e.g., Mimura and Aitken, 
2010; Grivet et al., 2011; Chen et al., 2012; Fang et al., 2013; Shih 
et al., 2018). However, no adaptive genetic divergence between 
populations of Taiwania cryptomerioides occurring in Taiwan 
was detected probably due to random neutral drift because of 
the high rate of gene flow among populations that eroded the 
adaptive local mutations (Li et al., 2018).

Natural selection driven by ecological factors will result in 
the development of ecological adaptation and divergence, and 
selection can act on genetic variation (e.g., Holderegger et al., 
2008; Chen et al., 2012; Fang et al., 2013). Genetic variation 
in natural populations of a species can be quantified using 
methods involving next-generation sequencing (NGS), such 
as restriction site-associated sequencing (Shih et al., 2018). 
Although less powerful than NGS technologies, amplified 

fragment length polymorphism (AFLP) is an efficient approach 
allows generation of hundreds of molecular markers from 
genome sequences of nonmodel organisms to identify candidate 
genetic variation involved in adaptive evolution that derived 
from DNA sequence variation (Holderegger et al., 2008; Chen 
et al., 2012; Fang et al., 2013).

Cunninghamia konishii Hayata (Cupressaceae) is a coniferous 
species disjunctly distributed in northern and central Taiwan 
and along part of the border between Vietnam and Lao People’s 
Democratic Republic (Nga et al., 2016; http://threatenedconifers.
rbge.org.uk/taxa/details/cunninghamia-konishii). C. konishii is closely 
related to Cunninghamia lanceolata (Lamb). Hook. distributed in 
mainland China (Lin et al., 1998; Chung et al., 2004) and it may 
represent a montane form rather than a distinct species (http://
threatenedconifers.rbge.org.uk/taxa/details/cunninghamia-
konishii). In Taiwan, C. konishii is a dominant species among 
other conifers associated mainly with Chamaecyparis, Pinus spp., 
and Pseudotsuga wilsoniana at elevations of 1,300–2,800 m (Liu, 
1966). Human interferences have greatly impacted this species, 
e.g., a pure stand of C. konishii(ca. 60 hectares) in Shiangshanshan, 
Hsinchu County, northwest Taiwan, was entirely vanished by 
logging. Low level of population differentiation was revealed 
for C. konishii based on allozyme (Lin et al., 1998) and ptDNA 
(Hwang et al., 2003). However, Chung et al. (2004) found high 
level of genetic differentiation among C.  konishii populations 
based on 357 AFLP markers derived from three AFLP selective 
amplification primer pairs. Populations of C. konishii are 
separated not only by major mountain ranges including the 
Hsuehshan Mountain Range (HMR) and the Central Mountain 
Range (CMR) trending from north to south, but also by 
mountains in between of the HMR and the CMR (Figure 1). 
Mountains were revealed to be the third important factor, after 
tectonics and climate, as a physical barrier to dispersal in the 
biogeographic differentiation of a species (Antonelli, 2017). It is 
likely that mountains may have had an active role in population 
dispersal of C. konishii. In addition, the relationship between 
genetic variation in C. konishii and environmental variables 
implying local adaptation has not been tested. Investigation 
assesses the association of genetic variation with environment is 
important for the conservation program because identification 
of environmentally dependent ecotypes can be crucial in the 
assisted migration program of C. konishii, particularly in the 
face of global climate change (Aitken et al., 2008; Aitken and 
Whitlock, 2013; Aitken and Bemmels, 2016).

Environment may play an important role in driving population 
divergence (Wang et al., 2013; Sexton et al., 2014). However, 
population differentiation may simply reflect a correlation between 
genetic and geographic distance independent of environmental 
conditions (Hutchison and Templeton, 1999). C. konishii 
populations occupy a wide elevational band (~1,500 m), though 
within a small latitudinal range, with wide variety of habitats 
because of varied geographical topologies and climates (Su, 1984; 
Li et al., 2013). It is likely that mountains and environment both 
have been critically involved in shaping the population structure 
of C. konishii. Therefore, genetic variation of 115 individuals from 
11 populations was surveyed using 13 AFLP selective primer 
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pairs. Genetic variation and sample site coordinates were used in 
testing the hypothesis of mountain ranges as a physical dispersal 
barrier to genetic exchange and genetic variation together 
with information of environmental variables were used to test 
environmentally dependent adaptive divergence underlying 

local adaptation. The specific aims of the present study were to 
1) test the barrier effects of mountains to current gene flow and 
2) assess the relationships of genetic variation with environmental 
variables underlying local adaptation, in the light of usefulness in 
the future conservation of C. konishii.

FIGURE 1 | Geographic distribution of the 11 populations of C. konishii occur in Taiwan. See Table 1 for abbreviations of the 11 populations of C. konishii.
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MATERIALS AND METHODS

Sampling and Genotyping
We collected 115 individuals of C. konishii from 11 populations 
(Table 1, Figure 1). Leaf samples dried with silica gel were 
used for DNA extraction (Dehestani and Kazemi Tabar, 
2007). We quantified genetic variation using AFLP (Vos 
et  al., 1995). In selective amplification, 13 EcoRI-MseI primer 
combinations (E00: 5’-GACTGCGTACCAATTC-3’ and M00: 
5’-GATGAGTCCTGAGTAA-3’) with additional five and 
three bases were added, respectively, at the ends, were used 
(Supplementary Table 1). Fragments amplified by polymerase 
chain reaction were electrophoresed on an ABI 3730XL DNA 
analyzer (Applied Biosystem, Foster City, CA, USA) and scored 
with Peak Scanner v.1.0 (Applied Biosystem). The presence and 
absence of amplified fragments were scored with the fluorescent 
threshold set at 150 units. Amplified fragment peaks in the range 
of 150–500 base pair (bp) separated by less than one nucleotide 
in a ± 0.8 bp window were scored as the same fragment. Markers 
scored higher than 99% or less than 1% of individuals were 
removed. The AFLP dataset was deposited in Supplementary 
Data Sheet 1.

Genotyping error rate of each primer combination was 
estimated based on the ratio of mismatches in three amplification 
replicates of three samples in each population. Loci with error 
rates greater than 5% were removed (Bonin et al., 2004) and the 
mean error rate was 1.91% (Supplementary Table 1).

Genetic Diversity
The percentage of polymorphic loci (%P) at the 95% level with 
rarefaction to the smallest sample size (n = 3) was calculated 
using AFLPDIV software v.1.1 (Coart et al., 2005). The private 
band richness (PBr) was estimated separately for each population 
using ADZE software v.1.0 (Szpiech et al., 2008) with rarefaction 
(Kalinowski, 2004). We calculated index of association (IA) 
(Brown et al., 1980) and modified index of association (rD) 

(Agapow and Burt, 2001) using the ia function of R poppr 
package (Kamvar et al., 2014; Kamvar et al., 2015) in the 
R environment (R Development Core Team, 2018) to assess the 
level of multilocus linkage disequilibrium (LD), and significant 
departure from zero was tested with 999 permutations. 
Unbiased expected heterozygosity (uHE) (Nei, 1987) within a 
population were computed using AFLP-SURV v.1.0 (Vekemans 
et al., 2002). In AFLP-SURV, allele frequencies were estimated 
assuming Hardy–Weinberg equilibrium with nonuniform prior 
distribution (Zhivotovsky, 1999) for uHE computation. Per locus 
uHE was calculated using ARLEQUIN v.6.0 (Excoffier and Lischer, 
2010). Assessment of significant difference of mean uHE per 
locus between populations was performed using a linear mixed 
effect model (LMM) with population and locus treated as fixed 
and random effect, respectively, based on reduced maximum 
likelihood estimation using the lmer function of R lme4 package 
(Bates et al., 2015). Significance was assessed based on type II 
Wald χ2 test using the Anova function of R car package (Fox and 
Weisberg, 2011), and P values were adjusted with Tukey’s post 
hoc method using the lsmeans function of R emmeans package 
(Lenth, 2018).

Genetic Differentiation
The level of genetic differentiation among populations was 
analyzed via analysis of molecular variance (AMOVA) using 
the poppr.amova function of R package poppr, and significance 
tested using the randtest function of R package ade4 with 9,999 
permutations (Dray and Dufour, 2007). Across population FST 
was computed using AFLP-SURV with 9,999 permutations. 
ARLEQUIN was used to compute pairwise FST with 10,000 
permutations. Moreover, HICKORY v.1.1 (Holsinger and Lewis, 
2003) was used to estimate θII (an analog to FST), considering 
the uncertainty associate with the inbreeding coefficient (f) for 
dominant markers. To check the convergence of parameters, 
two HICKORY runs were performed with sampling and chain 
length parameters include burnin = 5,000, samples = 100,000, 

TABLE 1 | Site properties and population genetic parameters based on 482 amplified fragment length polymorphism (AFLP) loci of the sampled C. konishii 
populations.

Locality Latitude/Longitude Altitude 
(m)

N PBr %P uHE (SE) IA

(P)
rD
(P)

Alishan (AL) 120.7644/23.5303 2,132 19 0.0261 73.7 0.260 (0.008) 0.923 (0.001) 0.003 (0.001)
Anmashan (AM) 121.0044/24.2647 2,510 6 0.0110 41.1 0.239 (0.008) −0.076 (0.519) −0.0004 (0.519)
Chitou (CT) 120.7864/23.6675 1,236 3 0.0225 33.0 0.284 (0.008) 0.491 (0.241) 0.003 (0.241)
Denta (DT) 121.1408/23.7489 2,299 22 0.0119 67.4 0.227 (0.008) 2.010 (0.001) 0.006 (0.001)
Dayuanshan (DY) 121.6436/24.5544 1,065 3 0.0296 32.2 0.262 (0.009) 5.123 (0.003) 0.033 (0.003)
Kuanwu (KW) 121.1375/24.4956 2,060 19 0.0149 74.3 0.253 (0.008) 3.213 (0.001) 0.009 (0.001)
Shengkuang (SK) 121.3381/24.3772 2,176 9 0.0141 60.8 0.265 (0.009) 4.798 (0.001) 0.017 (0.001)
Shiouhluan (SL) 121.2642/24.6458 1,296 10 0.0188 58.9 0.251 (0.009) 0.046 (0.409) 0.0002 (0.409)
Tajian (TJ) 121.1989/24.2542 1,511 10 0.0125 58.1 0.243 (0.009) 1.811 (0.001) 0.007 (0.001)
Tashueshan (TS) 120.9569/24.2358 1,810 8 0.0157 49.4 0.239 (0.009) 2.493 (0.001) 0.011 (0.001)
Yeinhai (YH) 121.4969/24.1336 1,844 6 0.0098 43.6 0.245 (0.009) 0.664 (0.075) 0.003 (0.075)
Total 115
Average (SD) 0.0170 

(0.007)
53.9
(15.1)

0.252 (0.016)

N, number of samples; uHE, unbiased expected heterozygosity. IA, index of association; rD, modified index of association. PBr, private band richness. %P, the percentage of 
polymorphic loci.
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and thinning = 20. Genetic data was evaluated fitting to the full 
model, f = 0 model, θII = 0 model, and f-free model, and the best 
fitting model in estimating θII was determined by the deviance 
information criterion (DIC). The f-free model was used to estimate 
f within populations because other models produced unreliable f 
estimates. The f-free model selects f values from a uniform prior 
distribution without generating a posterior distribution of f 
independent of assumptions.

Genetic Clustering and Testing the Barrier 
Effects of Mountains on Gene Flow
Genetic homogeneous groups of C. konishii individuals were 
assessed based on sparse nonnegative factorization (sNMF) 
algorithm (Frichot and Francois, 2015) and discriminant 
analysis of principal components (DAPC) (Jombart et al., 2010). 
Individual assignments based on the least-squares optimization 
using the snmf function of R LEA package (Frichot and Francois, 
2015) was performed for K = 1–11. The regularization parameter, 
iterations, and repetitions in snmf were set to 100, 200, and 10, 
respectively, with other arguments set to defaults. The best K in 
LEA was evaluated with the means of minimal cross-entropy 
(CE). The find.clusters and dapc functions of R adegenet package 
(Jombart and Ahmed, 2011) were used in DAPC analysis, in 
which a principal component analysis (PCA) was first performed 
and followed by a discriminant analysis that maximize variance 
between groups. The best K in DAPC was indicated by an elbow 
in the curve of Bayesian information criterion (BIC), as suggested 
by the authors of the R adegenet package, estimated using the 
find.clusters function.

Given the heterogeneous nature of C. konishii populations 
distributed across mountains, Monmonier’s maximum difference 
algorithm (Monmonier, 1973; Manni et al., 2004) was used to 
assess sharp genetic discontinuities in the geographic distribution 
area of C. konishii, based on the Euclidean distance of AFLP and 
sample coordinates, using the optimize.monmonier function of R 
adegenet package. In optimize.monmonier, 10 different starting 
points were used to find the largest sum of local distances that 
explains genetic distances among populations.

Environmental Variables 
and Heterogeneity
Environmental variables used were 19 bioclimate, 2 topological, 
and 12 ecological variables. Nineteen bioclimate variables for 
sample sites at 30-s spatial resolution (~1 km) were downloaded 
from the WorldClim v.1.4 (Hijmans et al., 2005). Topographic 
variables including aspect and slope at 30-m resolution were 
obtained from Aster Global Digital Elevation Map (https://asterweb. 
jpl.nasa.gov/gdem.asp). We obtained ecological factors including 
normalized difference vegetation index (NDVI) and enhanced 
vegetation index (EVI) derived from moderate resolution imaging 
spectroradiometer (MODIS) dataset MOD13A2 (1-km resolution), 
and leaf area index (LAI) and fraction of absorbed photosynthetically 
active radiation (fPAR) derived from MOD15A2 dataset (500-m 
resolution). The annual total potential evapotranspiration (PET) 

was calculated based on MOD16A3 dataset (500-m resolution). 
All the MODIS datasets were acquired from Land Process 
Distributed Active Archive Center (http://lpdaac.usgs.gov) 
during 2001‒2013, and monthly mean values of NDVI, EVI, LAI, 
and fPAR were computed using a maximum-value composite 
procedure (Huete et al., 2002). Monthly mean values of the other 
five ecological factors including relative humidity (RH), cloud 
cover (CLO), time of sunshine (SunH), number of rainfall days 
per year (RainD), and mean wind speed (WSmean) were also 
calculated for data obtained from the Data Bank for Atmospheric 
& Hydrologic Research (https://dbahr.pccu.edu.tw/, recorded 
in 1990–2013) at spatial resolution of 1 km using a universal 
spherical model of the Kriging method in ArcGIS (Chang et al., 
2014). Additionally, we acquired soil pH values of sample sites 
based on an island-wide soil investigation (n = 1,150) conducted 
in 1969‒1986 from the Agriculture and Food Agency of Taiwan 
(Chang et al., 2009). Annual precipitation and annual PET 
(derived from annual mean temperature) were used to calculate 
annual moisture index (Thornthwaite, 1948).

The cor function of R was used to calculate correlation coefficients 
between environmental variables. Variance inflation factor (VIF) 
was calculated using the vif function of R package usdm (Naimi 
et al., 2014). We retained eight environmental variables for further 
use based on environmental variables with VIF < 10 and which 
not strongly correlated with other variables (|r| < 0.8). The eight 
retained environmental variables were aspect, BIO1 (annual mean 
temperature), BIO7 (annual temperature range), BIO12 (annual 
precipitation), NDVI, PET, RainD, and slope (Supplementary 
Table 2). Environmental Euclidean distance matrix was used in a 
permutational multivariate analysis of variance (PERMANOVA) 
to assess environmental heterogeneity among sample sites and 
among population genetic clusters (revealed by LEA and DAPC 
analyses, see Results) using the adonis function of R package 
vegan (Oksanen et al., 2017). Pairwise population and cluster 
comparisons were also performed using the pairwise.perm.manova 
function of R package RVAideMemoire (Herve, 2018). Significant 
pairwise comparisons were tested with 999 permutations and a 
false discovery rate (FDR) of 5%.

Mantel test was used to assess genetic isolation by distance 
(IBD) by analyzing the correlation of the population Euclidean 
distance matrix of AFLP with the population Euclidean distance 
matrix of geography (latitude and longitude) using the mantel 
function of R vegan package.

Partitioning of Genetic Variation Explained 
by Environmental Variables
The eight retained environmental variables were used in a 
redundancy analysis (RDA) to assess the relative contribution of 
environmental variables explaining the total AFLP variation using 
the varpart function of R package vegan, and significance tested 
using the anova.cca function with 999 permutations (Oksanen 
et al., 2017). The total variation was partitioned into four fractions: 
pure environmental variables (fraction [a]), geographically 
structured environmental variables (fraction [b]), pure geographic 
variables (fraction [c]), and residual effects (fraction [d]) 
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(Borcard et al., 1992; Borcard and Legendre, 2002). Adjusted R2 
value was used to represent the amount of variation explained in 
each fraction (Peres-Neto et al., 2006). Longitude and latitude of 
sample sites were used as geographic variables in the analysis.

Test for FST Outliers
Two genome scan methods, BAYESCAN and DFDIST, were 
used to identify FST outliers indicating signature of selection 
across populations. Hierarchical Bayesian method implemented 
in BAYESCAN v.2.1 (Foll and Gaggiotti, 2008) uses a reversible-
jump Markov chain Monte Carlo algorithm to estimate the 
ratio of posterior probabilities of selection over neutrality [the 
posterior odds (PO)]. We used 100 pilot runs of 50,000 iterations 
followed by a sample size of 50,000 with thinning interval of 20 
among 106 iterations in BAYESCAN analysis. A logarithmic scale 
for model choice of selection over neutrality can be defined as: 
substantial (log10PO > 0.5); strong (log10PO > 1.0); very strong 
(log10PO > 1.5); and decisive (log10PO > 2) (Jeffreys, 1961; Foll, 
2012). We considered a locus with log10PO > 0.5 as a potential 
selective outlier under selection.

DFDIST incorporates the Beaumont and Nichols model 
modified for AFLP (Beaumont and Nichols, 1996). The probability 
of a locus that may be under selection by observed FST (Weir and 
Cockerham, 1984) and uHE (Zhivotovsky, 1999) compared to 
simulated neutral distributions was estimated. Parameters for 
running DFDIST were: critical frequency = 0.99; Zhivotovsky 
parameters = 0.25; trimmed mean FST = 0.3 (excluding 30% of 
highest and 30% of lowest FST values); smoothing proportion = 0.06; 
500,000 resamplings; critical P = 0.05; and level of differentiation 
(target average θ) = 0.063254. Empirical loci considered to be 
the outliers potentially under directional selection were those 
with FST values significantly greater (P < 0.01) than the simulated 
distribution.

Test for Associations of Genetic Variation 
With Environmental Variables
Associations of genetic variation with environmental variables 
were assessed using Samβada v.0.8.1 (Stucki et al., 2017) and 
latent factor mixed model (LFMM) (Frichot et al., 2013). A 
multiple univariate logistic regression approach was employed in 
Samβada to test for significant correlations of allele frequencies 
with the values of environmental variables. Models with and 
without environmental variables were compared, and significant 
fit was determined based on both Wald and G scores with an FDR 
cutoff of 0.05. LFMM is a method uses a hierarchical Bayesian 
mixed model considering background levels of population 
structure as random effects due to demographic history and IBD 
patterns, and is introduced via latent factors, K. In LFMM, genetic 
data matrix was used as fixed effect in a testing procedure based 
on Z-scores. The number of latent factors, K, was set to 3 (based on 
the LEA and DAPC clustering results). We ran LFMM five times 
for each value of K with 10,000 iterations in Gibbs sampling 
algorithm and a burn-in period of 5,000 cycles. Z-scores from 
five independent replicate runs were combined using Fisher–
Stouffer method (Brown, 1975), and the resulting P values were 
adjusted using the genomic inflation factor (λ). P values were 

further adjusted based on an FDR correction of 1% using the R 
qvalue package (Storey et al., 2019).

For those potential selective outliers identified by either 
genome scan method (BAYESCAN or DFDIST), a Bayesian 
logistic regression approach implemented in the stan_glm 
function of R rstanarm package (Goodrich et al., 2018) was 
also used to test for the associations of the potential selective 
FST outliers with environmental variables. In stan_glm analysis, 
Student’s t distribution with mean zero and 7 degrees of freedom 
was used as the weakly informative prior. The scale of the prior 
distribution was 10 for the intercept and 2.5 for the predictors. 
All models were run with four chains for 1,000 warm-up and 
1,000 sampling steps. Credible intervals (95% and 99%) of 
estimate were calculated using the posterior_interval function of 
R rstanarm package.

RESULTS

Diversity and Differentiation
We obtained 482 AFLP loci (mean ± SD: 37.08 ± 7.87) for 
C. konishii (Supplementary Table 1). The average value of PBr ± 
SD was 0.017 ± 0.007 (ranged from 0.0098 for the population YH 
to 0.0296 for the population DY) (Table 1). The average value of 
%P ± SD was 53.9 ± 15.1 (ranged from 32.2 for the population DY 
to 74.3 for the population KW). The average level of uHE ± SD was 
0.252 ± 0.016 and ranged between 0.227 (population DT) and 0.284 
(population CT). Within C. konishii, the level of uHE per locus was 
significantly different among populations using LMM (χ2 = 41.38, 
P < 0.0001). However, significant difference in the level of uHE per 
locus was not found for all pairwise comparisons (Supplementary 
Table 3). No positive correlation of sample size with population 
uHE (S = 305.78, ρ = −0.390, P = 0.2358) and PBr (S = 251.29, ρ = 
−0.142, P = 0.6766), respectively, was found based on Spearman’s 
rank correlation test. However, significant positive correlation was 
found between sample size and the percentage of polymorphism 
(S = 14.12, ρ = 0.936, P < 0.001). Using HICKORY, an estimate of 
f within population was 0.4969 (95% CI: 0.022–0.976) using the 
f-free model representing the contemporary reproductive mode of 
C. konishii (Supplementary Table 4). The measures of multilocus 
LD, IA and rD, showed significant departure from random 
association between AFLP loci in 7 (populations AL, DT, DY, KW, 
SK, TJ, and TS) of the 11 populations examined (Table 1).

The full model was the best model fitting to the genetic data 
based on DIC in HICKORY analysis (Supplementary Table 4). 
Low, albeit significant, level of genetic differentiation of C. konishii 
populations was found based on AMOVA and θII (ΦST = 0.0827, 
θII = 0.0848; Table 2, Supplementary Table 4). Across population 
FST estimated using AFLP-SURV was 0.0656 (P < 0.001). 
Significant population pairwise FST estimated using ARLEQUIN 
was commonly found (Supplementary Table 5).

Genetic Clustering and Test for IBD
In the LEA analysis, the means of minimal CE was minimized at 
K = 3 (Supplementary Figure 1A). LEA clustering results were 
depicted for K = 2–3 (Figure 2). The lowest BIC was found at 
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K = 5, but elbowed at K = 3, in DAPC analysis (Supplementary 
Figure 1B). The eigenvalues for the first two retained PCs were 
1.04 and 0.64 (Supplementary Figure 1C) and the eigenvalues 
for the first two DAPC linear discriminants were 28.77 and 14.63 
(Supplementary Figure 1D). Three population clusters can be 
distinguished based on DAPC: cluster 1 contains population AL; 
cluster 2 contains populations DT, TS, and YH; and cluster 3 
contains populations AM, CT, DY, KW, SK, SL, and TJ. However, 
a few individuals from one population can be grouped with 
individuals of other populations in a separate cluster (Figure 3). 
Figure 4 displayed the spatial boundaries of genetic exchange 
among C. konishii populations using Monmonier’s algorithm. 
Mantel test revealed no significant genetic isolation by geographic 
distance (rM = 0.251, P = 0.107).

Variation Partitioning of Genetic Variation 
Explained by Environment and Geography
PERMANOVA revealed significant environmental difference 
among (P = 0.001) and between the three genetic clusters (P = 
0.001). Significant pairwise differences between populations were 
found (Supplementary Table 6), albeit PERMANOVA revealed 
no environmental difference across populations (P = 1). Total 
explainable genetic variation was 7.38% (Table 3). This value 
was relatively small as compared to the amounts of unexplained 
variation (92.62%). Nevertheless, significant amount of genetic 
variation was explained by both pure environment (5.18%, 

fraction [a]) and pure geography (1.84%, fraction [c]), albeit 
small, based on F tests of RDA model. Moreover, environment 
explained a relatively larger proportion of genetic variation 
than geography.

TABLE 2 | Summary of the analysis of molecular variance (AMOVA).

Source of variation df Sum of squares Variance 
component

% variation Fixation index P value

Between populations 10 1,001.39 4.73 8.27 ΦST = 0.0827 <0.001
Within populations 104 5,457.78 52.48 91.73
Total 114 6,459.17 57.21 100

FIGURE 2 | Individual assignments of 115 individuals from 11 populations of C. konishii analyzed using LEA. The clustering scenarios for K = 2–3 were displayed.

FIGURE 3 | Clustering results analyzed using discriminant analysis of 
principal components (DAPC).
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FIGURE 4 | Barriers to genetic exchange identified using Monmnier’s algorithm. The levels of physical barrier effect of gene flow were represented by the thickness 
of blue lines. See Table 1 for abbreviations of the 11 populations of C. konishii.
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Potential Outliers Strongly Correlated With 
Environmental Variables
Six and nine nonoverlapped loci, respectively, were identified as FST 
outliers by BAYESCAN and DFDIST (Table 4). Allele frequencies 
of these outlier loci across populations arranged either latitudinally 
or longitudinally were depicted in Figure 5. Samβada and LFMM 
found significant associations of 18 and 83 loci, among the 482 
loci scored, respectively, with at least one environmental variable. 
The Wald and G scores in the Samβada analysis were reported 
in Supplementary Table 7. The corresponding Z-score, −log10(P 
value), and adjusted P value of candidate outlier loci identified 
using LFMM were summarized in Supplementary Table 8. 
For the 15 loci identified either by BAYESCAN or DFDIST, 
Samβada found five (P1_1715, P5_2456, P9_1014, P11_1715, and 

P15_1918) and LFMM found seven (P1_1409, P1_1715, P5_2456, 
P11_1715, P12_2853, P13_1547, and P15_1446) loci, respectively, 
strongly correlated with environmental variables (Table 4). Of the 
15 loci identified either by BAYESCAN or DFDIST, nine (P1_1715, 
P4_1326, P5_1061, P5_2456, P9_1014, P11_1715, P13_1547, 
P15_1918, and P18_1421) were found to be strongly associated 
with environmental variables using Bayesian logistic regression 
(the stan_glm function of R package rstanarm). In summary, 
12 AFLP loci (2.49%) were identified either by BAYESCAN or 
DFDIST and associated strongly with environmental variables 
using Samβada, LFMM, and rstanarm. Results showed that annual 
mean temperature, annual precipitation, and slope were closely 
associated with a large proportion of the 12 FST outliers identified 
by BAYESCAN and DFDIST; and aspect, annual temperature 
range, NDVI, PET, and RainD associated strongly only with a 
minor proportion of these FST outliers. (Table 4).

DISCUSSION

Genetic Diversity
The average uHE ± SD (= 0.252 ± 0.016) in the present study 
was found to be higher compared to that of the previous study 
examined for C. konishii (uHE = 0.184; Chung et al., 2004). The 
higher number of amplification primer combinations used in the 
present study could be the cause of the discrepancy compared with 
the previous AFLP study, which may result in higher interlocus 
variance (Nei, 1987). Although there is no direct evidence for the 
relationship between the number of amplification primer pairs 
and the level of genetic diversity, higher interlocus variance was 
found to contribute more to the total variance associated with the 

TABLE 3 | The percentage of variation explained in genetic loci accounted for by 
non-geographically structured environmental variables [a], shared (geographically 
structured) environmental variables [b], pure geographic factors [c], and 
undetermined component [d] analyzed based on the eight retained environmental 
variables.

Variation 
(adjusted R2)

F P

Environment [a] 0.05183 1.7834 0.001
Environment + Geography [b] 0.00356 – –
Geography [c] 0.01840 2.0527 0.001
[a + b + c] 0.07379 1.9082 0.001
Residuals [d] 0.92621 – –

Proportions of explained variation were obtained from variation partitioning by 
redundant analysis. F and P values are specified for testable fractions. Fraction [b] is 
untestable because the adjusted R2 value was obtained by subtraction ([a + b + c] − 
[a] − [c]) rather than by estimation.

TABLE 4 | Potential outliers associated with environmental variables.

Markers BAYESCAN
log10PO

DFDIST Samβada, LFMM, and rstanarm

Aspect BIO1 BIO7 BIO12 NDVI PET RainD Slope

P1_1409 0.0041 b
P1_1715 0.6723 *,** B *,** a,*
P4_1326 0.0075 * *,**
P5_1061 0.0001 *,** * *,**
P5_2456 1.1684 b,*,** a a * a,*,**
P7_2874 0.0067
P9_1014 1.4171 *,** a,*,** *
P9_1688 0.0095
P11_1715 0.6865 *,** B *,** a,*
P12_2853 0.0098 B
P12_3406 0.0080
P13_1547 0.0017 B *
P15_1446 1.5961 a a,B a a
P15_1918 0.8566 * *,**
P18_1421 0.0089 *,**

Fifteen potential outliers were identified by FST genome scan methods (BAYESCAN and DFDIST) and 12 of them were found to be strongly associated with environmental variables 
using regression approach (Samβada, LFMM, and rstanarm).
a and b represent significant correlation of AFLP markers with individual environmental variables identified, respectively, by Samβada and LFMM. B represents a |Z| ≥ 1.5 in LFMM analysis.
*,** significance based on 95% and 99% posterior credible intervals for the potential outliers found to have strongly correlated with environmental variables using the stan_glm 
function of R package rstanarm.
Aspect (0–360°) and slope (0–90°).
BIO1, annual mean temperature; BIO7, annual temperature range; BIO12, annual precipitation; RainD, number of rainfall days per year. NDVI, normalized difference vegetation 
index; PET,The annual total potential evapotranspiration.
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level of genetic diversity compared to intralocus variance in Pinus 
pinaster (Ribeiro et al., 2002). Moreover, more amplified AFLP 
loci, though with higher error rate, could be positively correlated 
with higher level of genetic diversity (Zhang and Hare, 2012). 
Additionally, higher number of amplification primer pairs used 
could have amplified fragments spanning more chromosomal 
loci and contributed to the higher level of genetic diversity.

Based on the result of the present study, the average level of 
C. konishii genetic diversity appeared to be comparable to other 
conifers occurring in Taiwan that have been examined based 
on AFLP such as Keteleeria davidiana var. formosana (average 
uHE = 0.233, Fang et al., 2013) and T. cryptomerioides (average 
uHE = 0.236, Li et al., 2018). The average level of C. konishii 
genetic diversity was also found to be comparable to the average 
level of AFLP diversity (= 0.230) for 13 plant species in general 
summarized in Nybom (2004). Despite C. konishii covers only a 
small latitudinal range, it distributed across complex topography 
and habitat heterogeneity in mountain ranges (Su, 1984; Li et al., 
2013) and hence could have contributed to the accumulation of 
genetic diversity (Hewitt, 1996; Petit et al., 2003; Hewitt, 2004).

Mountain Ranges as a Physical Barrier to 
Genetic Exchange
The spatial distribution of genetic variability within natural 
plant populations can be shaped by population demographic 
history and geography through the combined effects of genetic 
drift, gene flow, and selection (Hoffmann and Sgrò, 2011). The 
discrepancy of the level of genetic differentiation based on 
AFLP was also observed as that of the level of genetic diversity 
between the present (Table 3) and the previous study (Chung 
et al., 2004). The ΦST, FST, and θII estimates are consistent with the 
results of clustering analyses using LEA (Figure 2) and DAPC 

(Figure 3). In the present study, the level of population genetic 
differentiation was much smaller compared with the previous 
AFLP study based on AMOVA analysis (ΦST = 0.0827 vs. ΦST = 
0.2460, respectively). However, the level of genetic differentiation 
of the present study is consistent with the levels of genetic 
differentiation found based on allozyme (FST = 0.029) (Lin et al., 
1998) and ptDNA (GST = 0.073) (Hwang et al., 2003). The higher 
level of genetic differentiation among populations found in the 
previous study (Chung et al., 2004) could have arisen in part due 
to the smaller number of genomic regions amplified, compared 
with the present study, and harvested a relatively smaller fraction 
of ancestral polymorphisms contributing to the higher level of 
population differentiation. Nonetheless, the levels of population 
genetic structure estimated (ΦST, FST, and θII) in the present study 
were consistent with the results found in other conifers occurring 
in Taiwan including K. davidiana var. formosana (Fang et al., 
2013) and T. cryptomerioides (Li et al., 2018) based on AFLP. 
In addition, these results are in accordance with the general 
realization that conifers typically have high rates of effective 
pollen dispersal resulting in low population differentiation 
because of long distance wind pollination based on allozyme data 
(Hamrick et al., 1992; Hamrick and Godt, 1996).

Although low levels of across population and population 
pairwise FST were found (Table 2, Supplementary Table 5), 
genetic boundaries have been established by mountain ranges 
(Figure 4) and current gene flow among populations might have 
also been restricted by spatial environmental heterogeneity as 
suggested by PERMANOVA analysis (Supplementary Table 6). 
Additionally, Mantel test revealed no significant correlation 
of genetic distance matrix with geographic distance matrix 
suggesting no IBD pattern. These results suggest that the pattern 
of gene flow in C. konishii may not follow a stepping stone 
migration model (Kimura, 1953) due to the presence of physical 

FIGURE 5 | Heatmap of allele frequencies of the 15 outlier loci identified by either BAYESCAN or DFDIST. The sequence of populations was arranged according to 
(A) latitude or (B) longitude.
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dispersal barriers and sharp discontinuities in gene frequencies 
can be observed in populations in close proximity geographically 
(Figures 1 and 5). Our results suggest that the presence of physical 
barriers to gene flow and migration–drift equilibrium may not be 
reached, and a significant proportion of the observed low level 
of genetic differentiation reflects historical population expansion 
(Hwang et al., 2003) rather than current level of gene flow (Latta 
and Mitton, 1999; Turgeon and Bernatchez, 2001; Ringbauer et 
al., 2018). In the present study, the barrier effects of the HMR and 
the CMR and mountains in between of the HMR and the CMR 
could have played roles in shaping population differentiation of 
C. konishii. Moreover, mountains surrounding the AL population 
could have played a damping effect on dispersal between the 
AL and all other C. konishii populations, particularly between 
the AL and its nearby CT population, genetically (Figure 4). 
Therefore, natal dispersal within different geographic areas could 
have played an important role in shaping the genetic structure of 
C. konishii. However, environment could also be an important 
factor contributed to C. konishii population divergence because 
genetic variation is structured more by pure environment than 
by pure geography as revealed by the analysis of variation 
partitioning (Table 3). Our results suggest that environmental 
factors accompanied with physical separations have shaped the 
divergence between C. konishii populations. Ecotypes are likely to 
have arisen at local scales and the emergence of clusters of locally 
beneficial mutations forming genomic islands of divergence (Via, 
2009; Wolf et al., 2010; Strasburg et al., 2012).

The Most Important Environmental 
Variables for Adaptive Genetic Divergence 
in C. konishii
Current mating of C. konishii individuals among populations 
could be limited as suggested by significant population-level 
IA and rD in 7  of the 11 populations examined, indicating 
nonrandom association of loci within these populations 
(Table 1). Local reduction in gene flow mediated by divergent 
selection and/or immigrant inviability that reduced survival and 
reproduction of immigrants might have also contributed to the 
detection of multilocus LD (Kawecki and Ebert, 2004; Nosil et al., 
2005; Jump and Peñuelas, 2006). However, detection of LD does 
not ensure a lack of linkage equilibrium (Slatkin, 2008) and LD 
within populations may be related to the demographic history of 
species (Wall et al., 2002).

Our results based on analyses using BAYESCAN, DFDIST, 
Samβada, LFMM, and rstanarm found adaptive divergence 
of genetic variation (Table 4). Although BAYESCAN and 
DFDIST found no common outlier loci, regression approaches 
(Samβada, LFMM, and rstanarm) can be effective in testing 
their associations with environmental gradients (Stucki et 
al., 2017). Results showed that outlier AFLP loci were mainly 
driven by environmental variables including annual temperature 
range, annual precipitation, and slope (Table 4), and these 
environmental factors could have played major roles in driving 
outlier AFLP variation for local adaptation in C. konishii. 
Environmental variables including aspect, annual temperature 
range, NDVI, PET, and RainD could have played only minor 

roles as selective drivers in shaping adaptive divergence in C. 
konishii.

Strong correlations between environmental variables and 
population genetic variability can be provided as evidence 
for local adaptation and selection (Linhart and Grant, 1996). 
Temperature and precipitation have been found to be the two most 
important selective drivers for local adaptation in conifers (e.g., 
González-Martínez et al., 2006; Fang et al., 2013; Shih et al., 2018). 
Temporal and spatial variation in temperature and precipitation 
can influence fitness-related traits (Parmesan and Yohe, 2003; 
Hoffmann and Sgrò, 2011; Franks and Hoffmann, 2012) and 
consequently influence the survival of conifers (Brodribb et al., 
2014). Topographic gradients over short distances in the rugged 
geographic landscape can play significant roles in shaping species 
composition of forest communities (Kitagawa et al., 2015). 
Topographic factors such as slope are important predictors of forest 
attributed to differences in radiation exposure and have a strong 
influence on the microclimate (Rosenberg et al., 1983; Bennie 
et al., 2008; Brousseau et al., 2015). Aspect and slope were found 
to be closely correlated with genetic variation within and between 
species (Nakazato et al., 2010; Monahan et al., 2012; Bothwell 
et  al., 2013; Brousseau et al., 2015; Huang et al., 2015a; Huang 
et al., 2015b; Li et al., 2018). In the present study, slope could be the 
major topographic factor that played an important role in driving 
outlier AFLP variation for local adaptation (Table 4).

Environmental variation has been correlated with 
forest ecosystem properties in various geographic regions, 
suggesting the sensitivity of species composition responding to 
environmental conditions (Vandewalle et al., 2010; Roscher et 
al., 2012; Zhang et al., 2014). NDVI is a proxy to photosynthetic 
activity representing the level of vegetation greenness and has 
been shown to be correlated with intraspecific and interspecific 
adaptive divergence (Nakazato et al., 2010; Huang et al., 2015a; 
Huang et al., 2015b; Chen et al., 2017; Li et al., 2018). RainD 
represents the number of rainfall days per year, which was found 
to be associated with adaptive genetic variation of an angiosperm 
species, Rhododendron oldhamii, occur in Taiwan (Hsieh et al., 
2013). PET was identified to be closely correlated with adaptive 
genetic variation between genetic lineages of a coniferous species, 
T. cryptomerioides, occurring in Taiwan, mainland China, and 
Vietnam (Li et al., 2018).

Our results suggest that ecologically relevant selective 
drivers involved in population adaptive divergence of C. konishii. 
Spatial environmental heterogeneity might have invoked genetic 
divergence among populations and in consequence the formation 
of local adaptation.

CONCLUSIONS

The maintenance of genetic ecotypes adapting to varying 
environmental conditions can be critical for the conservation 
of species in the face of global climate change. Environmental 
variables might have exerted effects in shaping adaptive evolution 
of genetic variation. In the present study, we found annual mean 
temperature, annual precipitation, and slope could be the most 
important environmental factors that played crucial roles in 
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