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Abstract

Background: Capacitation, a prerequisite for oocyte fertilization, is a complex process involving series of structural
and functional changes in sperms such as membrane modifications, modulation of enzyme activities, and protein
phosphorylation. In order to penetrate and fertilize an oocyte, mammalian sperms must undergo capacitation.
Nevertheless, the process of sperm capacitation remains poorly understood and requires further elucidation. In the
current study, via high throughput sequencing, we identified and explored the differentially expressed microRNAs
(miRNAs) and mRNAs involved in boar sperm capacitation.

Results: We identified a total of 5342 mRNAs and 204 miRNAs that were differentially expressed in fresh and
capacitated boar sperms. From these, 12 miRNAs (8 known and 4 newly identified miRNAs) and their differentially
expressed target mRNAs were found to be involved in sperm capacitation-related PI3K-Akt, MAPK, cAMP-PKA and Ca?
*signaling pathways.

Conclusions: Our studly is first to provide the complete miRNA and transcriptome profiles of boar sperm. Our findings
provide important insights for the understanding of the RNA profile in boar sperm and future elucidation of the underlying

molecular mechanism relevant to mammalian sperm capacitation.
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Background

Capacitation, a prerequisite for oocyte fertilization, is a
complex process involving a series of structural and
functional changes in sperms such as membrane modifi-
cations, modulation of enzyme activities, and protein
phosphorylation. In order to penetrate and fertilize an
oocyte, mammalian sperms must undergo hours of in
vivo (in female reproductive tract) or in vitro capacita-
tion process immediately after ejaculation [1, 2].
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Multiple physiological and biochemical changes are in-
volved in sperm capacitation [3], including protein tyro-
sine phosphorylation [4], membrane cholesterol efflux
[5], production of reactive oxygen species (ROS) [6],
membrane hyper-polarization [5, 7], as well as increase
in intracellular pH [8], Ca*"*, cyclic adenosine monopho-
sphate(cAMP) [9], superoxide anion levels [10], and
HCOj3™ concentration.

Furthermore, during cryopreservation, sperms are re-
ported to experience capacitation-like changes [8] or “cryo-
capacitation” [11, 12]. These changes include increased
sperm capacitation, plasma membrane reorganization, ROS
generation, increased intracellular Ca** and protein tyrosine
phosphorylation (PTP) [13]. Although cryo-capacitated
sperms exhibit striking differences in patterns of PTP
compared to normal in vitro capacitated sperms [14],
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cryo-capacitation should not be regarded as true cap-
acitation [15]. It has been reported that various pro-
tein kinases and protein phosphatases are present in
mammalian sperm and are implicated in sperm motil-
ity acquisition, capacitation and acrosome reaction
[16, 17]. For example, tyrosine phosphorylation of
sperm flagellar proteins is related to acquisition of
hyperactive motility [18, 19]. Protein tyrosine phos-
phorylation involves three pathways: cAMP-dependent
protein kinase A (cAMP-PKA) signaling pathway [20],
phosphatidylinositol-3-hydroxycarboxylase (PI3K) sig-
nal Pathway [21] and mitogen-activated protein kinase
(MAPK) signaling pathway [22].

In addition, optimal concentration of Ca** can pro-
mote protein phosphorylation and sperm motility [23],
therefore, Ca®* signaling pathway is essential for the
regulation of capacitation. Furthermore, many important
tyrosine phosphorylated proteins are reportedly associ-
ated with capacitation, such as protein A-kinase anchor-
ing proteins (AKAPs) in human spermatozoa [24, 25],
A-kinase anchoring protein 4 (AKAP4) in hamster sperm
[26], proacrosin binding protein/p32 in boar [17, 27] and
calcium-binding and tyrosine phosphorylation-regulated
protein (CABYR) in mouse sperm [28].

Sperms are highly differentiated and specialized cells,
their main function is to transmit paternal genetic infor-
mation and coding, noncoding RNAs to the oocyte [29].
Sperm contains an array of RNAs, including messenger
RNAs (mRNAs), ribosomal RNAs (rRNAs) and small
RNAs [30], which are residues from the process of
spermatogenesis [31-33]. Sperm RNAs may contribute
to sperm movement, capacitation, fertilization and early
embryogenesis [34].

In 2006, Gur and Breitbart have demonstrated that la-
beled amino acids are incorporated into polypeptides
during sperm capacitation, a process that is entirely
inhibited by mitochondrial translation inhibitors, but not
by cytoplasmic translation inhibitors. They further re-
ported that, unlike 80S cytoplasmic ribosomes, 55S
mitochondrial ribosomes are present in polysomal frac-
tions and are actively involved in protein translation in
sperm. Furthermore, inhibition of protein translation
could lead to significant reduction in sperm motility,
capacitation and in vitro fertilization rate. Therefore,
contrary to the accepted dogma, nuclear genes are
expressed in sperm while in the female reproductive
tract until fertilization [35].

Small RNAs are a class of short non-coding RNAs (ap-
proximately 19-23 nucleotides) including miRNAs [29].
MiRNAs can regulate gene expression and participate in
the regulation of biological processes, such as develop-
ment, cell proliferation and differentiation, apoptosis and
metabolism [36—38], via inhibition/suppression of transla-
tion or degradationof mRNA [39]. Severe dysregulation in
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expression patterns of miRNAs has been observed in dif-
ferent types of reproduction abnormalities [30, 40, 41].

For many decades, the understanding of capacitation
was limited to macroscopic observation and description.
By and large, the process of sperm capacitation and its
underlying molecular mechanisms are poorly under-
stood and require further elucidation [42]. In this study,
as the first to utilize next generation sequencing for the
study of sperm capacitation,we identified and reported
differentially expressed mRNA and miRNA profiles in
fresh and capacitated boar sperm. Deep sequencing in-
formation was obtained to explore the interaction of
miRNA and mRNA and to further understand the
underlying mechanism of sperm capacitation.

Results

Evaluation of sperm quality parameters

Semen quality parameters were divided into two frac-
tions: FS and CS. Statistically significant difference was
detected in FS and CS after induction of sperm capacita-
tion in vitro, as well as insperm acrosome statuses
(Table 1). Additionally, the capacitated sperms showed
higher motility, viability and acrosome reaction rate
compared to fresh sperms (P < 0.01).

Analysis of RNA sequencing

After performing transcriptome sequencing quality con-
trol, we obtained a total of 53,686,904 and 59,851,746
raw reads and 26,843,452 and 29,925,873 clean reads in
fresh and capacitated sperm, respectively. The uniquely
mapped reads to reference genome in fresh and capaci-
tated sperm were 28,565,403 (53.21%) and 30,691,568
(51.28%), respectively. Additionally, in small RNA se-
quencing, we obtained 18,956,444 and 16,209,736 raw
reads, 12,561,033 and 11,222,990 clean reads, and
3,027,230 and 2,944,033 mapped reads to reference gen-
ome in fresh and capacitated sperm, respectively. In
total, Mirdeep2 detected 1092 unique miRNAs in fresh
and capacitated sperm. From these, 259 and 238 were
known miRNAs, 769 and 782 were new (novel) candi-
date miRNAs in fresh and capacitated sperm, respect-
ively (Table 2).

GO and KEGG analysis of mRNAs and miRNAs

Log2 (Fold change, expressed in base-2 log ratio of tran-
script abundance - intensity, log2’) >1 and FDR
(-logl0) < 0.01 were selected as standard. Figure la and
b depict the differential expression between FS and CS.
In brief, we identified 5342 differentially expressed
mRNAs. From these, 3716 and 1626 were known and
novel mRNAs, respectively. Furthermore, 503 mRNAs
were upregulated and 4839 were downregulated in FS
and CS (Fig. 1b). Results of clustered differentially
expressed genes are shown in Fig. 2b. In brief, 69 and
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Table 1 Sperm quality parameters of fresh and capacitated boar sperm

Group Concentration (10 mL™") Viability (%) Motility (%) Acrosome Reaction (%)
FS 1.932 + 0.3760 82 + 0.0274 84.73 £ 0.0328 465 + 04848
cs 1932 + 0.3760 90 + 0.0365%* 94.03 + 0.0068** 5870 + 0.4686**

Note: **indicates statistical significance at P < 0.01. FS, fresh sperm and CS, Capacitated sperm

4554 mRNAs were specifically expressed in capaci-
tated and fresh sperm, respectively (Additional file 1:
Table S3-1, 2, 3).

Moreover, 5342 differentially expressed genes (DEGs)
were analyzed by KEGG. These mRNAs were enriched
in 283 pathways, and each enriched pathway contained
numbers of differentially expressed mRNAs ranging
from 1 to 115 (Fig. 2). From these, 41 mRNAs were
enriched in Wnt, MAPK, PI3K-Akt signaling pathways,
and energy metabolism and sperm capacitation-related
pathways such as Ca®>* and cAMP signaling pathways
(Fig. 3b).

The enrichment analysis of KEGG pathway in differen-
tially expressed mRNAs was depicted in Fig. 4b. We
identified a total of 204 differentially expressed miRNAs
(DEM) between FS and CS. Among these, 60 and 141
were known and novel miRNAs, respectively. Whereas
86 and 118 miRNAs were upregulated and downregu-
lated, respectively (Fig. 1a). Hierarchical cluster analysis
of differentially expressed miRNAs in fresh and capaci-
tated sperm was shown in Fig. 2a. We further observed

Table 2 Overview of transcriptome and small RNA sequencing
in fresh and capacitated boar sperm

Data type FS cs
mRNA  Clean reads(pair-end) 26,843,452 29,925,873
Clean bases 6,642,110,360 7,481,508,592
9% 2 Q30 86.90 86.06
Total Reads 53,686,904 59,851,746
Mapped Reads(single-  30,016,749(55.91%) 33,084,783(55.28%)
end)
Unig Mapped Reads  28,565,403(53.21%) 30,691,568(51.28%)
miRNA  Raw reads 18,956,444 16,209,736
Clean reads 12,561,033 11,222,990
% 2 Q30 86.43 87.25
Mapped Reads 3,027,230 2,944,033
Total-miRNAs 1028 1020
Known-miRNAs 259 238
novel-miRNAs 769 782

Note: Clean reads (pair-end), the total number of pair-end reads in clean reads.
Clean bases, the total number of bases in clean reads. >Q30, the percentage
of the base that the quality value of clean data is greater than or equal
to 30.Mapped reads (single-end), the number of bases for compared to
the reference genome’ clean reads and the percentage in clean reads.
Unig Mapped Reads, the number of reads that are the only place in the
reference genome and the percentage in clean reads. Known-miRNA, the
number of miRNA is known. Novel-miRNAs, the number of new miRNA for
predicted. Total-miRNAs, the number of total miRNA

that 9 miRNAs (miR-148a-3p, miR-151-3p, miR-425-5p,
miR-132, miR-451, miR7136-5p, miR-489, miR-1343,
miR-1306-3p) and 49 miRNAs exhibited higher expres-
sion in CS and FS, respectively (Additional file I:
Table S4). Furthermore, 5 miRNAs (miR-378b-3p,
miR493-5p, miR-133a-3p, miR-362, and wmiR-214)
were uniquely expressed in fresh sperm.

Protein internetwork of differentially expressed genes
Based on the protein interaction network, we observed a
distinct interactive relationship between the differentially
expressed genes. The nodes, degrees, aggregation coeffi-
cients and edges in the interaction networks reflect the
strength of the interactions between differentially
expressed genes. Based on these parameters, we specu-
lated that differentially expressed genes, such as MAPKI,
PGK1, PPM1B, and PGAMI1, may play an important
role in the regulation of fresh and capacitated boar
sperm (Fig. 5).

Target mRNA prediction and pathway analysis of DE
miRNAs

In total, we predicted 19,788 target mRNAs using the
miRnada and RNAhybrid tools. Canonical pathway ana-
lysis further revealed that these genes are annotated to
276 signaling pathways (Fig. 3b). Similarly, these pre-
dicted target mRNAs are annotated and associated with
energy metabolism and sperm capacitation signaling
pathways, including phosphatidylinositol-signaling sys-
tem, glycolysis, MAPK, calcium, and PI3K-Akt signaling
pathway (Fig. 6).

RT-PCR validation

The identified miRNAs and mRNAs (7 = 8 each) were ran-
domly selected for verifying their expression level in fresh
and capacitated sperm via qRT-PCR. The results showed
that, except for comservative-1-2721 and conserva-
tive-7-221178, the expression levels of all mRNAs and miR-
NAs in fresh and capacitated sperm are consistent with the
results of high-throughput sequencing (Fig. 7c, d).

Discussion

In recent past, a number of studies have demonstrated
that sperm RNAs contribute to spermatogenesis, sperm
movement, capacitation, fertilization, and early embryo-
genesis [34]. The commonly shared characteristics of
miRNAs and mRNAs in mammals indicate their import-
ant roles in regulation, control and guidance of sperm
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Fig. 1 Volcano plot of differentially expressed miRNAs and mRNAs between fresh and capacitated boar sperm. (@) miRNAs; (b) mRNAs. Each point
in the volcanic figure (Volcano plot) represents a gene, numerical value of genes expression in FS and CS as the abscissa, and the negative logarithm
of P-value-FDR as the ordinate. The red and green dots represent up-regulated and down-regulated differentially expressed genes, respectively. Blue or
black dots represent genes that were not differentially expressed
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functions. Building on extensive scruitiny of scientific lit-
erature, our study reported, for the very first time, the
comprehensive and systemic investigation of the miRNA
and mRNA profiles in fresh and capacitated boar sperm
using high throughput sequencing. In current investiga-
tion, we identified a total of 204 DE miRNAs and 5342
DE mRNAs between fresh and capacitated boar sperm.
Substantial past evidences have indicated that multiple
physiological and biochemical changes are involved in
the process of capacitation, such as protein tyrosine
phosphorylation [4], sperm membrane cholesterol efflux

[5], and increase in intracellular pH [8], Ca®** and bicar-
bonate (HCO3") concentration [9]. Generally, Ca?* and
HCO3"™ are considered as two important biological ele-
ments required for sperm capacitation and are be-
lieved to promote protein tyrosine phosphorylation.
In this study, heparin induces boar sperm capacita-
tion and affects the expression of miRNAs and their
target mRNAs. Some of these miRNAs and mRNAs
contribute to protein tyrosine phosphorylation and
are mainly involved in membrane-related activities
such as G-protein coupled receptor activity, signal
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transducer activity, transmembrane signaling receptor
activity in mitochondria.

In the present study, we analyzed the KEGG pathway
of DE miRNAs and their target mRNAs. The results
showed that these DE miRNAs and their target mRNAs
were mainly enriched in the PI3K-Akt, MAPK,
cAMP-PKA, and calcium signaling pathways, which are
thought to be important for protein tyrosine phosphoryl-
ation and sperm capacitation. It has been reported that
PI3K-Akt signaling pathway plays an important role in cell
cycle growth, development, apoptosis and cancer [43]. In
sperms, the actin polymerization and depolymerization

processes can mimic sperm capacitation and acrosome
reaction [21]. MAPK signaling pathway is reportedly in-
volved in physiological processes, such as cell prolifera-
tion, differentiation, variation and apoptosis, and plays an
important role in regulating sperm flagellar activity, hyper-
activation and acrosome reaction, especially via the ERK
(Ras/Raf/MEK/ERK) signaling pathway [22]. Further-
more, activated ion channels, such as Ca®* channel
(CatSper), can trigger signal transduction factors that
are generally required for intiating the cAMP-PKA
signaling pathway and subsequent steps in sperm cap-
acitation [44].
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node represents the low aggregation coefficient

Fig. 5 Protein interaction network analysis for the differentially expressed genes between fresh and capacitated sperm. The circle represents the
node (differentially expressed protein), the line represents the edge, the red node represents the high aggregation coefficient, and the green

In our study, miR-1343 was upregulated in capaci-
tated sperm compared to fresh sperm. The target
mRNAs of miR-1343,COL11A1 and PDE4A, can par-
ticipate in PI3K-Akt and cAMP-PKA signaling path-
ways. AKAP3, as a target of miR-1285, can combine
with PKA and PDE4A to function as skeletal protein
in sperm and regulates the concentration of local
cAMP and sperm capacitation [45]. VDACI and
HSPA2 are targets of miR-127. They are involved in
calcium signaling pathway and MAPK signaling path-
way. It has been reported that VDACI is mainly lo-
cated in sperm mitochondrial membrane and in outer

i Phosphatidylinositol signaling system(35) M Glycolysis / G genesis(20)

 MAPK signaling pathway(76) H Ras signaling pathway(63)

H Calcium signaling pathway(45) B cGMP-PKG signaling pathway(41)

Il cAMP signaling pathway(50) I PI3K-Akt signaling pathway(87)

Fig. 6 The pie chart of annotated target genes associated with energy
metabolism and sperm capacitation signaling pathways. The number
represents the number of target genes, and the annotations on the
right represent different signaling pathways

dense fibers of sperm flagella, which affects sperm
motility, survival rate, acrosome reaction, capacitation,
tyrosine phosphorylation, fertilization and embryo de-
velopment [46, 47].

Furthermore, some newly identified miRNAs and their
targets may be associated with sperm capacitation. CAT-
SPER4, the target of miR-151-3p, is a sperm-specific cal-
cium channel. CatSper controls the concentration of
intracellular calcium and forward movement of sperm
[48]. The CatSper channel has been identified in human
[49], murine [50], and equine sperm [51]. Recently, it
has also been identified in ovine sperm [52]. CABYR, a
target of novel miRNA (unconservative_7_234335), is a
calcium binding tyrosine phosphorylated chemical fiber
sheath protein involved in sperm capacitation [28]. The
binding protein ACRBP, a target of new miRNA
(unconservative_11_42222), promotes the maturation
and tyrosine phosphorylation of acrosinthat are
closely related to sperm capacitation [53]. One previ-
ous study has also demonstrated that the bovine
sperm capacitation process requires AKAP3-degrada-
tion; and the degree of such was regulated by the
level of AKAP3 tyrosine phosphorylation [54]. In our
investigation, we found that a number of mRNAs re-
lated to sperm capacitation in other species were also
differentially expressed in boar sperm. Some import-
ant target mRNAs and proteins of miRNAs associated
with tyrosine phosphorylation during in vitro capaci-
tationare listed in Table 3. Nevertheless, despite the
novel and fascinating findings of our current study,
new scientific questions, such as how these DE miR-
NAs and mRNAs interact with each other to regulate
sperm capacitation, remains unanswered and warrants
further investigations.
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Table 3 The miRNAs and their targets involved in signaling pathways and process of capacitation in boar sperm

miRNA log2FC Target gene log2FC  Signaling pathway Function

miR-1343 16303 PDE4A - CAMP-PKA Regulating the concentration of local cCAMP and sperm
capacitation [45]

miR-1285 -29161  AKAP3 —6.5979 MAPK Regulating the level of AKAP3 tyrosine phosphorylation [71]

miR-127 -3.8252  VDACI -5.5646 Calcium Affected the function of sperm motility, survival rate, acrosome
reaction, capacitation, tyrosine phosphorylation, fertilization and
embryo development [46, 47]

miR-151-3p 1.7770 CATSPER4 —5.7323 Calcium Affect the concentration of intracellular calcium and forward
movement of sperm [72]

miR-133a-3p —26.7016  PRDX5 -82880 - Preventing oxidative stress during human sperm capacitation [73]

miR-378 —2.3458  DNM1 -50628 - Regulation of human sperm acrosomal exocytosis [74]

miR-1306-3p 15420 CLU -72109 - Important for sperm maturation and capacitation [75]

miR-214 —259240 CYP19A1 —54823 - Increasing the translational activities during capacitation for

conservative_3_158937 10748  MYC 69168 more protein synthesis [76]

conservative_7_221178 3.5235 PSPI -57360 - Participating in the regulation of reproductive immunity, and the
process of fertilization; maintaining sperm viability, exercise ability,
and mitochondrial activity [77]

unconservative_7_234335 1.7749 CABYR -9.1633 - Calcium binding tyrosine phosphoric acid fiber vitamin sheathing
protein, participates in sperm capacitation [28]

unconservative_11_42222 18879 ACRBP —-4.8677 - Promotion of acrosin maturation and sperm capacitation [53]
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Conclusion

To conclude, our study is first to provide evidence that
in vitro capacitation induces comprehensive changes in
expression patterns of miRNAs and mRNAs in boar
sperm. We also generated valuable data on novel boar
miRNAs and genomic clusters expressed in fresh and ca-
pacitated boar sperm. Our findings, along with existing
evidences, support the notion that differentially
expressed miRNAs and their target mRNAs in fresh and
capacitated boar sperm play considerable role in the
regulation of sperm apoptosis, mitochondrial membrane
potential and spermatogenesis alteration. These discov-
eries indicate a functional redundancy of these genes in
controlling sperm capacitation and thereby, fertility. Our
findings provide important insights for the understand-
ing of the RNA profile in boar sperm and future elucida-
tion of the underlying molecular mechanism relevant to
mammalian sperm capacitation.

Methods
Sperm collection and induction of sperm capacitation
Fresh ejaculates were harvested from 11 sexually mature
Landrace boars using manual collection method as pre-
viously described [55]. Collection of samples was per-
formed in accordance with the regulations for the
Administration of Affairs Concerning Experimental
Animals (Ministry of Science and Technology, China, re-
vised in June 2004) and was approved by the Institu-
tional Animal Care and Use Committee in the College
of Animal Science and Technology, Sichuan Agricultural
University, Sichuan, China, under permit No.
DKYB20081003 [56]. The sperm quality parameters
were determined with SQA-V (MES, Israel). Only fresh
ejaculates with sperm motility greater than 0.8, normal
morphology, and sperm concentrations higher than 1 x
10®* mL™ ' were used in this study. In order to eliminate
individual differences in our analysis, five sample pools
(n = 5) were generated by mixing the fresh ejaculates 2—
3 boars for each pool. Then, these ejaculate pools were
equally divided into two aliquots. One aliquot (Fresh
sperm, FS) was immediately frozen in liquid nitrogen
and stored at — 80 °C, and another aliquot (Capacitated
sperm, CS) was immediately prepared for capacitation.
Before sperm capacitation, fresh sperms were washed
thrice with BTS solution and centrifugated at 600 g for
5 min. Then, fresh sperms were incubated in
Tris-buffered medium (TBM, 113.1 mM NaCl, 3 mM
KCl, 7.5 mM CaCl,2H,0O, 5 mM Sodium pyruvate,
11 mM Glucose, 1 mM Caffine, 20 mM Tris, 1 mg mL~
! BSA, and with a final pH 7.6~ 7.8) supplemented with
10 mM heparin at 38.5 °C, 5% CO,, 100% humidified in-
cubator for 30 min [57]. Finally, capacitated sperms were
immediately frozen in liquid nitrogen and stored at -
80 °C until RNA extraction.
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Sperm viability and acrosome reaction assay

Sperm viability was assessed according to Kovacs and
Foote [58] with some modifications. Briefly, 100 pL fresh
and capacitated sperms were mixed with isovolumetric
and pre-incubated Trypan blue (0.4% in distilled water)
and placed in incubator at 37 °C for 2 min. Then, 20 pL
of mixture was placed on a glass slide with a cover slip
to observe and calculate the percentage of non-colored
sperm (at least 500 sperms) under an optical microscope
(400x). The capacitated sperms were evaluated based on
the changes in pattern of 0.05% Coomassie brilliant blue
(CBB) according to the method described by Zhuo et al.
with some modifications [59]. Finally, 20 pL-capacitated
sperms were smeared on glass slide, air-dried and then
soaked in pre-incubated CBB and placed in an incubator
at 37 °C for 5 min, then washed with distilled water
three times and air-dried. The percentage of capaci-
tated sperms (acrosome reaction rate) was observed
(at least 200 sperm) using a phase contrast micro-
scope (1000x) [60].

Total RNA extraction, library preparation and sequencing
For each sample (n = 5), total RNA extraction of fresh
and capacitated sperms was performed with Trizol LS
Reagent (Ambion, USA) [61]. Briefly, the straws were
thawed by plunging into a 37~ 38 °C waterbath for
1 min. The sperms in three straws were collected in a
1.5 mL tube. The sperm suspension was centrifuged at
3400 g and 4 °C for 5 min. The pellets were resuspended
with 1 mL of hypotonic solution with 0.5% of Triton
X-100 (Roche, Germany). The samples were incubated
for 10 min on ice for lysis of the somatic cells. After cen-
trifugation at 5000 g for 5 min, the hypotonic/triton
X-100 solution was discarded. Then, 0.75 mL of TRIzol
LS reagent was added. The sperm pellets were washed
three times with RNase-free PBS, and then resuspended
in 0.25 mL of RNase-free water. The concentration and
quality of total RNA were measured using NanoDrop
ND1000 spectrophotometer (NanoDrop Technologies,
USA). The purity (OD 260/280 > 1.8; OD260/230 = 1.0)
and concentration (>250 ng pL™') of total RNA were
qualified for library preparation. Then, small RNA librar-
ies were generated using small RNA Sample Kit Prekit
(NEB, USA) according to manufacturer’s instructions.
The quality and vyield after sample (n= 5) preparation
were measured with Agilent 2100 Tape Station and
Qubit 2.0, and libraries were sequenced on Illumina
Hiseq 2500 platform.

Quality analysis and mapping

Clean data (clean reads) were obtained by removing
reads containing adapter, reads containing ploy-A/T/C/
G and low qualities reads from raw data. All the
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downstream analyses were performed on high quality
clean data.

The sequence alignment and subsequent analysis using
a reference genome were performed using the desig-
nated reference genome of Sus scrofa (ftp://ftp.ensembl.
org/pub/release-75/fasta/sus_scrofa/). Then, clean reads
of small RNA were mapped to the Sus scrofa genome se-
quence with miRDeep2 [62]. Clean reads of transcrip-
tome were compared with reference genome by
TopHat2 [63]. Information of the location in reference
genome or gene, as well as peculiarity of sequence char-
acteristics of the sequenced samples were also obtained.

MiRNA identification and differential expression analysis

Bowtie [64] software was used to compare clean reads
with Silva database, GtRNAdDb database, Rfam database
and Repbase. Filtered non-coding RNA, including
ribosome RNA (rRNA), transport RNA (tRNA), small
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nuclear RNA (snRNA), small nucleolar RNA (snoRNA),
and repeat sequences, and miRNAs of unannotated
reads were obtained. Then, Mirdeep2 [62] was used to
identify the known miRNA and novel miRNA, and to
predict the function of miRNAs. Differential expression
of miRNA and mRNA between the FS and CS fractions
were analyzed with TPM and FPKM algorithm [65] using
the DESeq R package (1.10.1). miRNA and mRNA with an
adjusted P < 0.01 and absolute value of log2 (Fold change)
> 1 were assigned as differentially expressed.

MiRNA target prediction

For prediction of the potential targets of differentially
expressed miRNAs, miRnada [66] and RNAhybrid [67]
were used to compare the gene sequence information of
corresponding species to the known miRNA and novel
miRNA identified in boar sperm.

Table 4 Primers information of miRNAs and mRNAs for gRT-PCR validation

Gene ID Primer sequences (5-3") Amplicon (bp) GenBank/miRBase accession

PPIA F:CACAAACGGTTCCCAGTTTT 174 NM_214353
RTGTCCACAGTCAGCAATGGT

PDHA1 F:.GATGATGCAGACTGTTCGCC 138 XM_003360244
RTCCGTAGGGTTTATGCCAGC

VDAC1 FTGATGGGACGGAGTTTGGTG 115 NM_213960
RGGCTGCTATTCCAAAGCGTG

CABYB F:AAGTAGCTCACGGTCCTTCG 202 NM_001256771
R.GGCATACTTGTTGCCACATCC

AKAP3 F:.GCACCCAACAAAAGCCTGAG 96 XM_021090980
R.GCCGGGAGTCTTATCCGAAG

PGK1 F.GCTGGACGTGAAGGGAAAGA 104 NM_001099932
RCTGACTTGGCTCCGTTGTCT

FSCB F:GCTATTGATGAAGCAGCCCC 74 XM_001924913
RAAGTGAGTGTCTCCTTGGTGG

PSPI FTGGGCCTTGCTGTTCAGT 202 NM_213837
RTCCCACAGGTGAGGTTGAGA

HSPA2 FTGAGCGGTACAAGTCGGAAG 119 XP_003356782
RTCTTGCCCCTCAGTTTCTCG

ssc-miR-127 TCGGATCCGTCTGAGCTTGGCT - MI0013144

ssc-miR-1285 CTGGGCAACATAGCGAGACCCCGT - MI0013164

ssc-miR-151-3p CTAGACTGAAGCTCCTTGAGGA - MIMAT0013883

ssc-miR-152 TCAGTGCATGACAGAACTTGG - MI0013104

conservative_1_2721 ATTTGTGCTTGGCTCTGTCA - Novel

conservative_7_221,178 GGGGGGTGTAGCTCAGTGGTAGAGC - Novel

conservative_7_234493 GCTGGGTGCTGGCTGGGGEC - Novel

conservative_X_268567 TGGCGGGCGGCGGGCGGCGEGEEL - Novel

u6 FTTATGGGTCCTAGCCTGAC - EU520423

RCACTATTGCGGGTCTGC
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GO and KEGG enrichment analyses

GO enrichment analysis was performed on target genes
of miRNAs and differentially expressed mRNA usingthe
GOseqR package [68]. In addition, the differentially
expressed protein coding genes were also analyzed using
GO. The enrichment of miRNA target genes and differ-
entially expressed protein-coding genes in KEGG path-
ways were analyzed by the KOBAS [67] software.

Quantitative reverse-transcription polymerase chain reaction
(qRT-PCR) validation

In order to verify the accuracy of highthroughput se-
quencing results, we randomly selected and confirmed
the expression of 8 miRNAs and 8 mRNAs in fresh and
capacitated sperms by qRT-PCR. Fresh and capacitated
sperm samples were prepared for resampling by mixing
sperms from 2 to 3 individual boars. All primers were ei-
ther designed based on homologous counterparts in the
GenBank database using Primer Premier 5.0 software or
adopted from previous literatures (Table 4). U6 [69] and
PPIA [70] were used as reference genes, respectively.
qRT-PCR was performed using SYBR PrimeScript
miRNA RT-PCR Kit (Takara Biotech, China) on a Ste-
pOnePlus real-time PCR system (Applied BioSystems,
USA) according to our laboratory protocol [56].

Statistical analysis

All results are shown as adjusted least squares means *
standard error means (LSM +SEM). The mean cycle
threshold (Ct) value was converted to relative expression
level using the 27t method [61]. Statistical analyses of
the expression levels of the miRNA and mRNA were
performed using unpaired ¢ test (SPSS software version
18.0, IBM). Differences of P<0.05 were considered as
statistically significant, and differences of P < 0.01 were
considered as highly statistically significant.

Additional file

Additional file 1: Raw and collated data. Table S1. Differential expression
of mMRNAs between fresh and capacitated boar sperm. Table S2. Differential
expression of miRNAs between fresh and capacitated boar sperm.
Table S3-1. 69 specifically expressed mRNAs in capacitated boar
sperm. Table S3-2. 4554 specifically expressed mRNAs in fresh boar
sperm. Table $3-3. 434 co-expressed mRNAs in fresh and capacitated boar
sperm. Table S4. 49 miRNAs with higher expression level in boar fresh
sperm compared to capacitated sperm. (XLSX 818 kb)
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