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Valley filter and valve effect by 
strong electrostatic potentials in 
graphene
Juan Juan Wang1, Su Liu1, Jun Wang1 & Jun-Feng Liu2

We report a theoretical study on the valley-filter and valley-valve effects in the monolayer graphene 
system by using electrostatic potentials, which are assumed to be electrically controllable. Based on a 
lattice model, we find that a single extremely strong electrostatic-potential barrier, with its strength 
exceeding the hopping energy of electrons, will significantly block one valley but allow the opposite 
valley flowing in the system, and this is dependent on the sign of the potential barrier as well as the 
flowing direction of electrons. In a valley-valve device composed of two independent potential barriers, 
the valley-valve efficiency can even amount to 100% that the electronic current is entirely prohibited 
or allowed by reversing the sign of one of potential barriers. The physics origin is attributed to the 
valley mixing effect in the strong potential barrier region. Our findings provide a simple electric way of 
controlling the valley transport in the monolayer graphene system.

Recently, the valley transport in 2D graphene-like materials has attracted much attention of researchers, because 
it is expected that the valley degree of freedom of electrons can exert the same effect as the electron spin in car-
rying and manipulating information1–3. This newly rising discipline is referred to as the valleytronics in a much 
similar way to spintronics. In graphene, the valley degree of freedom comes from the fact that the six corners of 
the hexagonal Brillouin zone are divided into two inequivalent groups, labeled as the K or K′ valley. These two 
valleys are related by the time-reversal symmetry and can be transformed into each other by spatial inversion 
operation. Due to much momentum difference between the two valleys, the intervalley scattering is suppressed4–7 
in clean graphene samples and valley is largely a conserved quantum number in electron transports.

There were tremendous works devoted to the valleytronics field, especially, after several research groups have 
measured and confirmed valley currents driven by the Valley Hall effect in the monolayer8 or bilayer graphene9, 

10 system. At present, the production and measurement of an imbalance of valley carriers are still the principal 
tasks in this field, since the valleytronics is still in its infancy. A lot of proposals in the literature were put forward 
to generate valley-polarized currents by using graphene nanoribbon/nanoconstriction11, 12, electromagnetic or 
optical field13–21, and line defects22–24, as well as lattice strain25–34.

Since graphene has excellent flexibility and the lattice deformation can bring about the opposite pseudo-gauge 
potential or magnetic field for two valleys34, the lattice strain is an ideal method to affecting the valley-dependent 
transport of electrons. For example, Settnes et al.35 has recently proposed to use the nanobubble-type lattice 
deformation in graphene to filtrate and split valleys, and showed that some concrete lattice deformation makes 
valley polarization of electrons quite high or valley completely splitted in real space. Milovanović and Peeters36 
studied the same strain-induced bump structure in a graphene ribbon system and found an effective valley filter 
phenomenon under some special parameters. Certainly, the accurate control of strains in graphene is a great chal-
lenge in order to obtain a special pseudomagnetic field. The ideal way of controlling the valley degree of freedom 
in experiment should be an electric one like that in spintronics.

Given the fact that the valley in graphene is defined in the momentum space with the electron energy around 
the Dirac points, one can see that the valley definition is no longer valid if the electron energy is far from the Dirac 
points. i.e., the valley will be severely mixed when the electron transport occurs at this energy level. According 
to this inference, we study the possible valley-filter and valley-valve effect in monolayer graphene modulated 
by extremely strong electrostatic-potential barriers, which are assumed to be constructed by gate voltage. It is 
shown that the potential barrier almost blocks one valley but allows the opposite valley passing through, and 
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the filtering efficiency is quite high even amounting to 100%. The filtered valley is dependent on the sign of the 
potential barrier and the transport direction of electrons. It is also found that the two opposite potential barriers 
can bring about an efficient valley-valve effect similar to the GMR effect in the spintronics field. This method by 
using the electrostatic potentials to controlling valleys does not involve any external magnetic field or material, 
and is favorable to experiment observation.

Model and Method
We first consider a simple two-terminal device in Fig. 1(a), where an electrostatic-potential barrier V0 is con-
structed in pristine graphene and connects directly with the left and right graphene leads. The barrier length is 
L and its shape is set as a rectangle one, which does not bring any qualitative effect on our results. Since we focus 
on the valley filter and valve effects, which are induced by the possible valley-mixing effect in the strong potential 
barrier, a lattice model is employed to describe the system

∑ ∑= − + . . +† †H t c c c c V c c( ) ,
(1)ij

i j
i

i i0

where the first term stands for pristine graphene, 〈ij〉 denotes the nearest neighboring sites, †c c( )i i  is the creation 
(annihilation) operator at the site i, and V0 is the on-site energy representing the barrier region, which is 
assumed controllable by gate voltages. The spin degree of freedom of electrons is omitted here and the graphene 
leads are absent of any interaction of electrons. The valley-dependent transmission Tττ′ at the Fermi energy E 
is given by
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where τ, τ′(=K, K′) is the K or K′ valley index. Tττ′ stands for the transmission coefficient of the τ′ valley electrons 
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by usual recursion method, while the self-energy of the graphene lead can be constituted by the left- or 

Figure 1.  (a) Schematic of a two-terminal graphene device with a strong electrostatic potential barrier V0 
constructed by a gate voltage. The barrier can filter K or K′ valley depending on the sign of V0 and the electron 
transport direction. (b) Two opposite V0 barriers are constructed in a monolayer graphene layer consisting of 
a Valley-Valve device. Energy dispersion E-k for the zigzag-edge graphene (c) and the armchair-edge graphene 
(d) with a periodic boundary condition. The valleys are separated in momentum space for the former case while 
the valley are degenerate in latter one.
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right- propagating electron eigenfunctions at the Fermi energy. It is assumed that H0 is the Hamiltonian of a unit 
cell of the uniform graphene lead, and the hopping matrix between the neighboring cells is HLR as well as its her-
mite conjugate HRL = [HLR]†. Then the eigenfunction |χ〉 satisfies

χ χ= + + −H k H e H e H( ) ( ) , (3)ika
LR

ika
RL0

where H(k) is the Bloch Hamiltonian, k is the wavevector, and a is the lattice constant. The energy dispersion of 
electrons in the graphene lead is worked out by diagonalizing H(k). One can follow the method in ref. 37 to obtain 
the left-going (+) or right-going (−) valley-dependent wavefunction χ ±τ( )m  at the Fermi energy E with its cor-
responding wavevector ±τk ( )m , where m = (1, …, M) and M is the matrix dimension of the unit cell H(k). 
Afterwards, the left and right propagation matrices Fτ(±) can be directly constructed as
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where χ χ± = ± … ±τ τ τU ( ) ( ( ), , ( ))M1  is a matrix from the eigenfunction χ ±τ( )m  at the Fermi energy E. 
According to these propagation matrix, one can build directly the valley-dependent self-energies of the left and 
right leads as

Σ = −τ τ −H F[ ( )] , (5)L RL
1

and

Σ = + .τ τH F ( ) (6)R LR

The electron transporting is assumed along the zigzag edge of graphene as shown in Fig. 1(a), because in this case, 
the wavefunctions of electrons are clearly valley-separated, i.e., the propagating wavevectors of two valleys are 
different and one can easily construct the valley-dependent self-energy of leads. Notice that we take an periodic 
boundary condition along the transverse direction in order to avoid the zero-edge state in the zigzag nanoribbon 
system and simulate a very large graphene system. The energy band of the graphene lead is shown in Fig. 1(c), 
where the two Dirac points explicitly denotes two valleys at K = 2π/3a and K′ = −2π/3a. At E > t, there is no clear 
definition of valley and thus, the valley-dependent scattering will occur. The energy diagram of the armchair-edge 
graphene is also plotted in Fig. 1(d), where the valley is shown degenerate around Dirac points. This implicates 
that the valley transport should heavily depend on the propagation direction of electrons in the graphene lattice, 
e.g., along the zigzag-edge or the armchair edge. The K-valley (K′-valley) transmission of electrons is defined as 
TK = ∑τTKτ (TK′ = ∑τ TK′τ), so the valley filtering efficiency can be represented by the dimensionless transmission 
as

η =
+

.′

′

′

T
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A valley-valve device similar to the spin-valve one is also considered as schematically shown in Fig. 1(b), where 
two opposite potential barriers are put onto the monolayer graphene, which may be regarded as an antiparallel 
configuration. Similarly, the device is termed as the parallel configuration when the two potential barriers have 
the same sign. The valley-valve efficiency (vve) is defined as the difference between the conductances of these two 
configurations.

=
−

+
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T T
T T

,
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where Tp,ap = TK + TK′ is the total transmission of electrons in the parallel (antiparallel) structure of the 
valley-valve device. Certainly, vve should critically depend on the efficiency of the valley filtering effect in a single 
barrier region which is relied on V0.

Results and Discussions
In our calculations, we take the hopping energy t = 1 as the energy unit, the temperature as zero T = 0 K, and 
the Fermi energy as E = 0.1t. The transverse width of the device is set as 2048 atoms in a unit cell amounting to 
220 nm or so with the lattice constant a = 2.44 Å.

We first present the electron transmission in the simple two-terminal device in Fig. 2(a), where TK and TK′ is 
plotted as a function of the barrier strength V0. It is shown that the electrostatic potential < .



V t/ 0 20  near the 
Dirac point E = 0 does not lead to serious valley splitting of the electron transmissions. When |V0| is far from the 
Dirac point significantly, the valley splitting becomes conspicuous. At >∼V t/ 10 , one valley transmission exceeds 
plumb the other one. As a result, the device functions as a valley filter and this is clearly shown in Fig. 2(b). The 
valley filter efficiency can amount to as high as η ∼′ 94%K K( ) . The clear oscillations come from the resonant trans-
mission of electrons through the rectangle potential barrier V0 region.

In Fig. 2, the efficient valley filtering effect becomes evident just at >∼V t/ 10  and keeps almost unchanged 
afterwards. This stems from the fact that when the electron energy meets E > t in Fig. 1(c), the valley degree is no 
longer valid, and more importantly, the transport modes are shrunk by half because of no valley degeneracy. This 
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immediately indicates that one valley species of electrons incident from leads will be blocked, which is certainly 
determined by the wavevector match. Therefore, for the electrons incident from the opposite graphene leads, the 
opposite valley is blocked. This is also the requirement of the time-reversal symmetry. In addition, for a weak V0, 
there is no valley (mode) shrinkage so as to no valley filter effect.

Since our studied system has the time-reversal symmetry, we have = − −′T V E T V E( , ) ( , )K K
0 0  and Tττ′ = Tτ′τ. 

The curves are not rigorously symmetric upon V0 = 0 in Fig. 2, because the Fermi energy E = 0.1t is fixed in 
numerics. Certainly, for the strong barrier case V E0 , the symmetry is recovered. Moreover, the opposite sign 
of potentia barrier V0 will lead to opposite filtering effect. In other words, reversing the sign of V0 will lead to the 
opposite valley filter effect. Additionally, the K and K′ valley electrons have the opposite wave vectors, so the 
left-going K′ valley would be blocked by the potential barrier V0 if the right-going K valley is prohibited by the 
same barrier potential.

The single potential barrier V0 can filtrate valley and the efficiency is quite high, but it is not perfect, since the 
intervalley scattering due to V0 cannot be depressed entirely and the symmetry of Tττ′ = Tτ′τ persists. A superla-
ttice structure consisting of multiple V0 barriers should in principal enhance the efficiency further. In Fig. 3, the 
two- and four-barrier superlattice devices resembling that in Fig. 1(b) are studied and ηK(K′) is shown. One can 
see that the overall efficiency η is enhanced and the maximum efficiency even arrives at 100% in the case of the 

Figure 2.  K and K′ valley-dependent transmission coefficients TK(TK′) (a) and the valley filter efficiency ηK(K′) 
versus the barrier strength V0. The length of the two-terminal device is L = 20a and the Fermi energy is E = 0.1t.

Figure 3.  Valley filter efficiency ηK(K′) versus the barrier strength V0 for the two-barrier (a) and four-barrier (b) 
superlattice device. All barriers are assumed to be the same, and the barrier length and the distance between two 
neighboring barrier are L = L0 = 20a.
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four-barrier device in Fig. 3(b). This is attributed to the resonant tunneling effect. Certainly, the dips in those 
curves are also strengthened. The curves are not as smooth as ones in Fig. 2, because several different oscillating 
periodicities superposition together from either the barrier length, L, or the distance between the two barriers, L0.

Based on the above results, it is naturally envisaged that two opposite barriers consisting in a double-barrier 
device should block the current totally, which is similar to the GMR effect. This opposite barrier structure can be 
dubbed as the antiparallel configuration, while the two same barriers V0 is the parallel configuration. The latter 
structure shall allow one valley electrons flowing and thus, its conductance should be much sizable in comparison 
to the former one. Similar to the spin-valve effect, we calculate the conductances of these two configurations and 
present the valley-valve efficiency vve in Fig. 4. It is shown that the transmission Tp of the parallel-configuration 
device is mostly larger than that of the antiparallel one (Tap) in Fig. 4(a). At some resonances, however, Tap exceeds 
Tp, and the valley-valve effect is not ideal as expected. This is clearly shown in Fig. 4(b). The exact reason is the 
coherent transport and the resonant tunneling, which accounts for such oscillating behaviors.

In a realistic device, there generally exist some interactions like disorders and electron-phonon coupling, 
which will smear the phase-coherent transport and may improve the valley-valve effect provided that the inter-
valley scattering does not severely occur in the process of the incoherent scattering. In our calculations, we simply 
consider a zero distance between two opposite barriers of Fig. 1(b) (L0 = 0) in order to diminish the resonant 

Figure 4.  Transmission coefficients Tp(Tap) (a) and the valley-valve effect vve as a function of V0. The two 
barriers are the same in the parallel configuration whereas they are opposite in the antiparallel configuration. 
The length of barrier and the interval distance is set as L = L0 = 20a.

Figure 5.  Transmission coefficients Tp (Tap) (a) and the valley-valve effect vve (b) as a function of V0. 
Parameters are the same as those in Fig. 4 except L0 = 0.
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tunneling effect. The results are shown in Fig. 5, where the parameters are the same as those in Fig. 4 except for 
L0 = 0. It is shown that Tp > Tap is valid in nearly all V0 range ( >∼V t/ 10 ), Tap are entirely suppressed in Fig. 5(a), 
which in turn leads to a saturated valley-valve efficiency vve = 1 in Fig. 5(b).

We also consider a four-barrier superlattice structure as that studied in Fig. 3(b), which is actually a parallel 
structure. While the antiparallel configuration is defined as V0/−V0/V0/−V0 with an alternative V0 serial. Both 
nonzero and zero L0 cases are calculated and shown in Fig. 6(a,b). Similarly, the efficiency vve shows a strong 
resonant tunneling feature when L0 is nonzero in Fig. 6(a), i.e., the conductance of the parallel structure does not 
always exceed the antiparallel one and the peaks and dips are strengthened. Whereas for the case of L0 = 0, a sat-
urated value vve = 1 appears again at > .∼V t/ 1 10  in Fig. 6(b), i.e., the current is totally blocked in the antiparallel 
structure, which is the same as that in Fig. 5(b) again.

In above numerics, the rectangle profile of the potential barrier was employed, however, other continuous and 
smooth functions of V0 were also computed but showed no qualitative influence on our obtained results. Actually, 
a real factor influencing the filtering effect is the transport direction of electrons. As stated earlier, the electron 
transport is assumed along the zigzag edge and there is a valley (mode) shrinkage phenomenon at E > t as shown 
in Fig. 1(c), which is necessary to bring about the valley filter and valve effect. When the transport direction 
along the armchair edge is considered, the valley is almost degenerate whatever V0 is taken, and there shall be no 
valley-filtering or valley-valve effect. Since the doping level of pristine graphene was proved to be changed easily 
by gate voltages38, it is not difficult to observe our proposal of the valley-filter or valley-valve effect.

Conclusion
In summary, we have proposed a simple method to filter valley in the monolayer graphene system by introducing 
an extremely strong potential barrier. It is shown that the potential barrier can block one valley but allow the 
opposite valley tunneling through it, which is dependent on the sign of the barrier as well as the current direction. 
The valley filtering efficiency can be further enhanced in a multi-barrier superlattice structure. The valley-valve 
effect was also studied and the device conductance can be significantly controlled by reversing the barrier sign, 
when the distance between barriers are short enough for suppressing the resonant tunneling effect. These findings 
are dependent on the electron transport being along the zigzag edge direction of the graphene lattice. Our find-
ings may shed light on fully electric controlling of the valley transport in graphene.

References
	 1.	 Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409 (2012).
	 2.	 Behnia, K. Condensed-matter physics: polarized light boosts valleytronics. Nat. nanotech. 7, 488 (2012).
	 3.	 Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 

236809 (2007).
	 4.	 Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene. 

Phys. Rev. Lett. 97, 196804 (2006).
	 5.	 Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).
	 6.	 Gorbachev, R. V., Tikhonenko, F. V. & Mayorov, A. S. et al. Weak localization in bilayer graphene. Phys. Rev. Lett. 98, 176805 (2007).
	 7.	 Chen, J. H., Cullen, W. G. & Jang, C. et al. Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009).
	 8.	 Gorbachev, R. V., Song, J. C. W. & Yu, G. L. et al. Detecting topological currents in graphene superlattices. Science 346, 448 (2014).
	 9.	 Sui, M., Chen, G. & Ma, L. et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027 (2015).
	10.	 Shimazaki, Y., Yamamoto, M. & Borzenets, I. V. et al. Generation and detection of pure valley current by electrically induced Berry 

curvature in bilayer graphene. Nat. Phys. 11, 1032 (2015).
	11.	 Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172 (2007).

Figure 6.  Valley-valve effect as a function of V0 in a four-barrier superlattice structure for L0 = 20a (a) and 
L0 = 0 (b). Other parameters are the same as those in Fig. 5.



www.nature.com/scientificreports/

7Scientific ReportS | 7: 10236  | DOI:10.1038/s41598-017-10460-5

	12.	 Akhmerov, A. R., Bardarson, J. H. & Rycerz, A. et al. Theory of the valley-valve effect in graphene nanoribbons. Phys. Rev. B77, 
205416 (2008).

	13.	 Golub, L. E., Tarasenko, S. A. & Entin, M. V. et al. Valley separation in graphene by polarized light. Phys. Rev. B 84, 195408 (2011).
	14.	 Kirczenow, G. Valley currents and nonlocal resistances of graphene nanostructures with broken inversion symmetry from the 

perspective of scattering theory. Phys. Rev. B 92, 125425 (2015).
	15.	 Wehling, T. O., Huber, A. & Lichtenstein, A. I. et al. Probing of valley polarization in graphene via optical second-harmonic 

generation. Phys. Rev. B 91, 041404R (2015).
	16.	 Assili, M., Haddad, S. & Kang, W. Electric field-induced valley degeneracy lifting in uniaxial strained graphene: Evidence from 

magnetophonon resonance. Phys. Rev. B 91, 115422 (2015).
	17.	 Pratley, L. & Zülicke, U. Valley filter from magneto-tunneling between single and bi-layer graphene. Appl. Phys. Lett. 104, 082401 

(2014).
	18.	 Kundu, A., Fertig, H. A. & Seradjeh, B. Floquet-Engineered Valleytronics in Dirac Systems. Phys. Rev. Lett. 116, 016802 (2016).
	19.	 Cao, T., Wang, G. & Han, W. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 

(2012).
	20.	 Shan, W. Y., Zhou, J. & Xiao, D. Optical generation and detection of pure valley current in monolayer transition-metal 

dichalcogenides. Phys. Rev. B 91, 035402 (2015).
	21.	 Zeng, H., Dai, J. & Yao, W. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012).
	22.	 Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).
	23.	 Liu, Y., Song, J. & Li, Y. et al. Controllable valley polarization using graphene multiple topological line defects. Phys. Rev. B 87, 

195445 (2013).
	24.	 Chen, J. H., Autes, G. & Alem, N. et al. Controlled growth of a line defect in graphene and implications for gate-tunable valley 

filtering. Phys. Rev. B 89, 121407(R) (2014).
	25.	 Fujita, T., Jalil, M. B. A. & Tan, S. G. Valley filter in strain engineered graphene. Appl. Phys. Lett. 97, 043508 (2010).
	26.	 Low, T. & Guinea, F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano. Lett. 10, 3551 (2010).
	27.	 Khatibi, Z., Rostami, H. & Asgari, R. Valley polarized transport in a strained graphene based Corbino disc. Phys. Rev. B 88, 195426 

(2013).
	28.	 Wu, Z., Zhai, F. & Peeters, F. M. et al. Valley-dependent Brewster angles and Goos-H?nchen effect in strained graphene. Phys. Rev. 

Lett. 106, 176802 (2011).
	29.	 Jiang, Y., Low, T. & Chang, K. et al. Generation of pure bulk valley current in graphene. Phys. Rev. Lett. 110, 046601 (2013).
	30.	 Pereira, V. M. & Neto, A. H. C. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 103, 046801 (2009).
	31.	 Nguyen, V. H., Dechamps, S. & Dollfus, P. et al. Valley filtering and electronic optics using polycrystalline graphene. Phys. Rev. Lett. 

117, 247702 (2016).
	32.	 Hsieh, S. H. & Chu, C. S. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions. Appl. Phys. 

Lett. 108, 033113 (2016).
	33.	 Wu, Q. P., Liu, Z. F. & Chen, A. X. et al. Full Valley and Spin Polarizations in Strained Graphene with Rashba Spin Orbit Coupling 

and Magnetic Barrier. Sci. Rep. 6, 21590 (2016).
	34.	 Levy, N., Burke, S. A. & Meaker, K. L. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. 

Science 329, 544 (2010).
	35.	 Settnes, M., Power, S. R. & Brandbyge, M. et al. Graphene Nanobubbles as Valley Filters and Beam Splitters. Phys. Rev. Lett. 117, 

276801 (2016).
	36.	 Milovanovič, S. P. & Peeters, F. M. Strain controlled valley filtering in multi-terminal graphene structures. Appl. Phys. Lett. 109, 

203108 (2016).
	37.	 Ando, T. Quantum point contacts in magnetic fields. Phys. Rev. B 44, 8017 (1991).
	38.	 Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 

81, 109 (2009).

Acknowledgements
The work described in this paper is supported by the National Natural Science Foundation of China (NSFC, Grant 
Nos 11204187, and 11574045).

Author Contributions
J.F.L. and J.W. conceived the study. J.J.W. and S.L. performed the numerical calculations. J.J.W. wrote the main 
manuscript text. All authors contributed to discussion and reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Valley filter and valve effect by strong electrostatic potentials in graphene

	Model and Method

	Results and Discussions

	Conclusion

	Acknowledgements

	Figure 1 (a) Schematic of a two-terminal graphene device with a strong electrostatic potential barrier V0 constructed by a gate voltage.
	Figure 2 K and K′ valley-dependent transmission coefficients TK(TK′) (a) and the valley filter efficiency ηK(K′) versus the barrier strength V0.
	Figure 3 Valley filter efficiency ηK(K′) versus the barrier strength V0 for the two-barrier (a) and four-barrier (b) superlattice device.
	Figure 4 Transmission coefficients Tp(Tap) (a) and the valley-valve effect vve as a function of V0.
	Figure 5 Transmission coefficients Tp (Tap) (a) and the valley-valve effect vve (b) as a function of V0.
	Figure 6 Valley-valve effect as a function of V0 in a four-barrier superlattice structure for L0 = 20a (a) and L0 = 0 (b).




