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INTRODUCTION

The factor that controls the transfer of certain characteristics 
and specificities of a species from one generation to the 
next is the genetic material.[1] The genetic material carries 
the instructions, which determine the specificities of any 
living organism.[2] The genetic material is made up of nucleic 
acids, which is found in two types: Deoxyribonucleic acid 
(DNA) and ribonucleic acid.[2] DNA molecules are composed 
of two polymer strands.[3] Each polymer strand’s formula is 
composed of DNA monomer units or nucleotides.[3] Each 
nucleotide within the polymer consists of three components; 
a sugar (furanose-derivative deoxyribose), a heterocyclic 
(5-carbonic) nitrogenous base, and a phosphate group. As 
part of the nucleotides, bases are categorized into four 
different types: Adenine (A) and guanine (G) of the purine 
category and thymine (T) and cytosine (C) of the pyrimidine 
category.[4] The sugar is attached to one of the four bases 
through a β-glycosidic bond and makes up one of the four 
nucleotides: Adenosine, guanosine, cytidine, and thymidine. 
A nucleotide is derived from the phosphorylation of a sugar 
with the hydroxyl group.[4]
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The aim of this paper is to improve the performance of the conventional Goertzel algorithm in determining the protein coding 
regions in deoxyribonucleic acid (DNA) sequences. First, the symbolic DNA sequences are converted into numerical signals using 
electron ion interaction potential method. Then by combining the modified anti-notch filter and linear predictive coding model, 
we proposed an efficient algorithm to achieve the performance improvement in the Goertzel algorithm for estimating genetic 
regions. Finally, a thresholding method is applied to precisely identify the exon and intron regions. The proposed algorithm is 
applied to several genes, including genes available in databases BG570 and HMR195 and the results are compared to other 
methods based on the nucleotide level evaluation criteria. Results demonstrate that our proposed method reduces the number 
of incorrect nucleotides which are estimated to be in the noncoding region. In addition, the area under the receiver operating 
characteristic curve has improved by the factor of 1.35 and 1.12 in HMR195 and BG570 datasets respectively, in comparison with 
the conventional Goertzel algorithm.
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Amino acids are the building blocks of proteins. The basic 
concern of molecular biology in the twentieth century is to 
create a set of genetic codes by which a strand of protein 
is encoded in a DNA.[5] A sequence of three nucleotides in a 
DNA molecule is called a codon. As the primary unit for the 
encoding of amino acids, each codon specifies a particular 
amino acid. Since there are 64 different types of codon and 
20 different types of amino acids, the mapping from codons 
to amino acids forms a multiple-to-one relation. This means 
that amino acids may be specified by more than one codon. 
The AUG codon, which is used for coding methionine amino 
acids, indicates the beginning of protein synthesis in the 
DNA sequence.[1,6] In addition, three TAA, TAG and TGA 
codons, known as a stop codon or termination codon, can 
mark the end of protein synthesis.
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In eukaryotes, DNA is divided into genic and intergenic 
regions. Only the genic region does carry data for the 
synthesis of proteins. Each gene consists of exon and 
intron regions. Exons carry the codes for the production of 
proteins. That is why they are called protein coding regions. 
Coding regions account for only about 2–5% of the entire 
human DNA sequence.[7]

Unlike intron regions, exon regions feature oscillating 
patterns. There are different periods for exon regions in 
eukaryotic genomes including 10.5, 200, 400, and 3 bases. 
Among them, the period-3 property is known as the main 
feature of protein coding regions in eukaryotic genomes. 
This feature can be due to the nonhomogeneous use of 
codons (i.e., codon bias). In other words, even though 
several codons may codify a particular amino acid, not all of 
them appear with equal probability in living organisms. For 
example, the G nucleotide finds its place in the codons of 
exon regions in certain situations.[8,9]

Several algorithms have been proposed for determining 
period-3 regions using signal processing. The basic idea 
behind signal processing techniques, as proposed by 
Vaidyanathan	 and	 Yoon,	 rests	 on	 the	 use	 of	 the	 discrete	
Fourier transform (DFT) and the calculation of its power 
spectrum.[10] The main problem with DFT-based methods 
is that their performance is dependent on the length of 
the window. The length of the window, therefore, must be 
so high so that the peaks caused by the period-3 patterns 
overcome the background noise. In the same vein, the 
length of the window must not be so high as to cause 
computational complexity and reduce the resolution for 
determining the initial and final exon positions. As a result, 
coding regions with long or short lengths, which reduce 
the precision of estimation, are measured by window 
length in DFT-based methods. To resolve this problem, the 
continuous wavelet transform method was proposed in.[11] 
In addition, the modified wavelet transform method was 
proposed by Singh et al.[12] However, the theory of using 
wavelet transform as an efficient tool in bioinformatics had 
been discussed some time earlier by Lio.[13] Filters are widely 
used in determining genetic regions for their higher speed 
compared with DFT-based methods. Using time-frequency 
filters as proposed by Sahu and Panda,[14] null filters as 
recommended by Zhang et al.[15] and anti-notch filters as 
suggested by Hota and Srivastava[16] lead to an acceptable 
reduction in the volume of calculations and an increase 
in the precision of estimation. The amplitude response of 
such filters has a sharp peak at θ	=	2π/3.	Multistage	filters	
are recommended for gene estimation.[17] Multistage filters 
are very important in signal processing because they make 
possible sampling at different speeds and subsequently, 
facilitate the use of new equipment in accordance with 
already existing hardware.

This article proposes a new algorithm by combining a 

modified anti-notch filter with linear predictive coding 
(LPC) model to achieve performance improvement in the 
Goertzel Algorithm proposed in[18] for estimating genetic 
regions. Furthermore, a new thresholding method has been 
presented to precisely identify the exon/intron regions. 
Using the proposed algorithm leads to reduce the correlation 
of signal samples. Furthermore, the execution speed of 
the algorithm also rises due to the use of the Goertzel 
algorithm. The rest of the paper is organized as follows; 
Section 2 introduces the database(s) used in this paper. The 
main stages of the proposed algorithm are presented in 
Section 3. Evaluation criteria for the nucleotide level are 
also discussed in Section 4 for comparing the proposed 
algorithm with other methods. Implementation results of 
the proposed algorithm are described in Section 5. Finally, 
Section 6 contains a summary of the article.

DATABASES

The proposed algorithm was applied to the gene F56F11.4 in 
the Caenorhabditis elegans chromosome III. C. elegans is an 
intestinal parasite containing five exon regions at positions 
928–1039, 2528–2857, 4114–4377, 5465–5644, and 
7265–7605. This gene was extracted from the GenScan test 
dataset of human genes (accession no. AF099922 from the 
GenBank database).[19] The proposed algorithm was also 
applied to other genes available in two other databases 
– HMR195 and BG570. HMR195 is a database containing 
195 sets of human, mouse, and rat genes.[20] The assessment 
was carried out on the AJ223321.1 gene from this database 
containing one exon region at position 1196-2764. BG570 
contains 570 gene sequences related to vertebrate and was 
created in 1996 by Burset and Guigo; the BABAPOE gene was 
selected from this database for assessment which has three 
coding regions in 854–896, 2654–2846, and 3467–4184.[21] 
Table 1 summarizes the specificities of BG570 and HMR195 
databases.

PROPOSED ALGORITHM

Figure 1 shows a block diagram of the proposed algorithm 
for locating protein coding regions in DNA sequences. The 
main stages of the proposed algorithm are as follows:
•	 Specifying	symbolic	DNA	sequences
•	 Converting	symbolic	DNA	sequences	to	numeric	signals	

using electron-ion interaction potential (EIIP) method
•	 Reducing	background	noise	using	a	modified	anti‑notch	

filter

Table 1: A summary of HMR195 and BG570 databases
Database Organism Number of 

base‑pairs
Number 
of genes

Number 
of exons

Density 
of protein 

domains (%)

BG570[21] Vertebrates 2,892,149 570 2649 15.37
HMR195[20] Mammals 1,383,720 195 948 14
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•	 Eliminating	the	correlation	between	samples	using	LPC	
model

•	 Extracting	period‑3	patterns	in	numeric	DNA	sequences	
using the Goertzel algorithm, and

•	 Using	 a	 suitable thresholding method for detecting 
genetic and nongenetic regions.

Conversion of Symbolic Deoxyribonucleic Acid 
Sequences to Numeric Signals Using the Electron 
Ion Interaction Potential Method

In recent years, several methods have been proposed for 
mapping symbolic DNA sequences onto numerical values. 
Despite some differences, all these methods convert 
symbolic DNA sequences into numerical sequences – from at 
least one sequence up to four sequences. Some specificities 
of a desirable numeric representation of a DNA sequence 
are as follows:
•	 Each	nucleotide	has	an	equal	weight
•	 The	distance	between	each	pair	of	nucleotides	must	be	

the same
•	 The	numeric	 representation	of	 a	DNA	 sequence	must	

be compressed; especially, the redundancy must be 
minimized, and

•	 The	numeric	 representation	of	 a	DNA	 sequence	must	
provide access to a range of mathematical tools for 
analysis.

In this paper, we used the EIIP mapping method for 
converting symbolic DNA sequences to numerical signals. 
This method is defined based on the electron-ion interaction 
in each nucleotide. EIIP values for each nucleotide are as 
follows; A = 0.1260, G = 0.0806, T = 0.1335, and C = 
0.1340.[22]

Figure 2 shows the primary signal after converting to 
numerical signal for F56F11.4 gene sequence.

Reduction of Background Noise Using a Modified 
Anti-notch Filter

Filters are the main tool for isolating particular frequencies 
in signal processing. To reduce the flux in the estimation of 
genetic regions, there is the need for a window with high 

Figure 2: Primary signal of the F56F11.4 gene sequence after converting to 
numerical signal by electron ion interaction potential method

dimensions. This leads to computational complexity and 
resolution reduction. To overcome this problem, we can 
use filters with an unlimited amplitude response known 
as anti-notch filters (ANF).[16] The amplitude response of 
such filters has a sharp peak at θ	=	2π/3.	However,	filters	
exhibit distortion at passband edges. In other words, they 
may detect higher or lower frequencies or attenuate some 
frequencies at borders. In this sense, combined filters are 
an efficient way to solve this problem since they overlap 
and ensure that no frequency will be attenuated within the 
desirable frequency spectrum.

ANFs are narrow band-pass filters whose its central frequency 
θ	is	2π/3.	In	other	words,	the	amplitude	response	of	ANFs	
has a sharp peak at θ	=	2π/3.	An	ANF	can	be	calculated	by	
reference to the real coefficients of second-order all-pass 
filters. It is a second order, stable and real infinite impulse 
response filter whose transfer function is defined as:

H z
R Z

R Z R Z
( )

( ) ( )
( cos )

= ×
− −

− +− −

1
2

1 1
1 2

2 2

1 2 2θ
 (1)

In Eq. 1, radius R at the poles is on the Z-plane. For a stable 
condition, we need an R2 of lower than one (R2 < 1). The 
frequency response of the ANF as defined in Eq. 1, can be 
specified by drawing radius R closer to the unit value for 
adjusting the sharpness of the filter. However, increasing 
radius R excessively to near 1 leads to visible round-off 
noise, and subsequently, to reduced resolution in locating 
exon regions. The ANF passes the frequency component at 
2π/3	along	with	its	conjugate	at	‑	2π/3	and	4π/3	[Figure 3a]. 
Conjugate frequency components are defined in relation 
to the complex conjugate nature of zeros and poles. These 
complex components contribute to the strength of the peaks 
in exon and intron regions. This could yield wrong measures 
of coding and noncoding regions. Therefore, the band-pass 
filter is suppressed because of the presence of conjugate 
frequency components. To resolve this problem, an ANF is 
applied in the first stage followed by a first-order complex 
finite impulse response (FIR) filter in the second stage. In 
the second phase, the first-order complex FIR filter has a 
zero	in	the	unit	circle	at	a	theta	rhythm	of	4π/3	and	a	pole	

Figure 1: Block diagram of the proposed algorithm
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Figure 3: Zero‑pole diagram and the frequency response of the (a) conventional anti‑notch filters and (b) modified anti‑notch filters filters

b

a

in its origin. The proposed second-stage filter is capable of 
suppressing frequency components at a theta rhythm of 
4π/3.	Thus,	this	new	filter	is	named	conjugate	suppression	
anti‑notch	filter	(CSANF)	with	the	central	frequency	of	2π/3	
[Figure 3b]. The transfer function of this filter is as follows:

4
j 13( ) 1H z e z


−= −  (2)

In Figure 4, the improvement impact of the proposed 
modified ANF filter has been shown as we discussed in 
theory.

Elimination of the Correlation between Samples 
Using Linear Predictive Coding Model

The theory of LPC in speech signal processing, and its 
summarization by a linear predictive coder, as effective 
specificities of the human speech signal, have numerous 
applications.[23,24] The proposed algorithm uses this 
technique to eliminate noise and reduce correlation between 
the samples. In coding region prediction methods based on 
spectrum estimation, sample correlation reduction is used 
as a technique for noise elimination and a more accurate 
detection of original frequencies. 

Suppose that s (n), n ∈ 1, 2,…, N is a DNA sequence, of 
N length, whose elements represent the values yielded 
by an EIIP mapping of the DNA strands. The objective is 
to estimate the volume of the s (n) sample using a linear 
combination of N previous samples. The estimation value 
is represented by ŝ (n) and is calculated with the following 
equation:

p

k 1
s n a s n kkˆ( ) ( )

=
= −∑  (3)

where p is the level of linear prediction. ak estimation 
coefficients can be calculated by minimizing the mean 
square error defined as follows:

E e n s n a s n k2

k 1

p

n 1

N

n 1

N

= = − −










===
∑∑∑ ( ) ( ) ( )k

2

 (4)

by calculating the derivative of the above function in relation 
to ak and equalizing it with zero, we have:

Ra = r (5)

where
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where R is the autocorrelation matrix of p ×p, r is the 
autocorrelation matrix of p × 1, and a is the estimated 
coefficient vector of p × 1. LPC predicts signal samples 
by considering the correlation between the samples. The 
correlation between the samples is higher in exon regions 
than in intron regions. That is why the power spectrum 
has a peak in exon regions. In contrast, the correlation 
between the samples is lower in intron regions because 
of their biological nature. LPC causes new estimated 
samples to have lower/higher values in intron/exon regions, 
respectively. Therefore, it can be concluded that LPC yields 
effective specificities of gene sequences.

Calculating Period-3 Components in Numeric 
Deoxyribonucleic Acid Sequences Using the 
Goertzel Algorithm

The Goertzel algorithm is an optimal method for finding 
monotone components whereby the DFT obtains input data 
for the frequency index. This algorithm is used in the analysis 
of DNA sequences to extract period-3 components at 
w	=	2π/3.	The	Z-transform of the Goertzel-algorithm-based 
FIR’s is as follows:[18]

H z
e z

z zK

j

k

k
−

−

− −( ) = −
− +

1
1

1 2

1
1 2

ω

ωcos
 (10)

The Goertzel algorithm-based filter has two parts: Recursive 
and nonrecursive. DFT coefficients are obtained as 
the output of the system after N repetitions. The recursive 
section is a second order digital oscillator whose oscillation 
frequency is set at equal frequency intervals. In the proposed 
algorithm, the frequency is set at w	=	 2π/3.	 In	 practice,	
only the recursive section of the filter is calculated in each 
new sample whereas the nonrecursive section is calculated 
only after the Nth repetition, which reduces computational 
complexity.

EVALUATION CRITERIA AT 
NUCLEOTIDE LEVEL

To compare the performance of the proposed algorithm 
with other gene-finding methods in the literature, we 
use nucleotide level evaluation criteria whose parameters 
are defined by changing the output threshold level. The 
following parameters are determined to assess an algorithm:
• Number of exon nucleotides that have been identified 

correctly (TP),
• Number of exon nucleotides that have been identified 

as introns (FN),
• Number of intron nucleotides that have been identified 

correctly (TN), and

Figure 4: Results of the different algorithms for locating protein coding 
regions in the gene sequence F56F11.4 (a) conventional anti‑notch filters 
and (b) modified anti‑notch filters filters

b

a
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• Number of intron nucleotides that have been identified 
as exons (FP).

Based on the above parameters, the following criteria are 
defined.

Sensitivity, Specificity, Precision, Approximate 
Correlation and Mean Correlation Coefficient

The sensitivity (Sn) parameter is a measure of the proportion of 
encoding nucleotides that have been identified correctly. The 
specificity (SP) parameter is a measure of the ratio of predicted 
coding nucleotides that belong to coding regions. Finally, the 
precision (P) parameter is a measure of the system’s correct 
identification. These parameters are defined as follows:[25]

S
TP

TP FNn = +
 (11)

S
TP

TP FPP = +
 (12)

P
TP TN

TP FP TN FN
=

+
+ + +

 (13)

Sn and SP parameters are not adequate for measuring the 
performance of proposed algorithms since SP is low in 
high levels of Sn, and vice versa. Instead, the approximate 
correlation (AC) criterion, which is a combination of Sn and 
SP, is defined as follows:[25]

ACP
TP

TP FP
TP

TP FN
TN

TN FP
TN

TN FN
AC ACP

=
+

+
+

+
+

+
+







= × −
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 (14)

Mean correlation coefficient (Mcc) is also another criterion, 
which is defined as follows:[25]

Mcc
TP TN FP FN

TP FN TP FP TN FP TN FN
=

× − ×
+ × + × + × +( ) ( ) ( ) ( )

 (15)

System Performance Characteristic Curve

The receiver operating characteristic (ROC) curve evaluates 
TP and FP effects at different threshold levels and is defined 
as a diagram in which the true TP is plotted in function 
of FP via an exon-intron region separation technique at 
different threshold levels. The area under the ROC curve 
(AUC) in an algorithm is equivalent to the probability that 
the differentiation technique evaluates a positive, rather 
than a negative, random value. A higher AUC value, thus, 
represents a better algorithm performance.[26,27]

Sensitivity versus Specificity

Calculating SP, FP, and AC with constant Sn, provides us 
with informative data for facilitating algorithm behavior 

analysis. In this sense, system performance improvement 
corresponds with lower levels of FP and higher levels of SP.

IMPLEMENTATION RESULTS

Experiment 1: Gene F56F11.4 from the GenScan 
Database

Figure 5 shows the results of applying the proposed 
algorithm on gene F56F11.4. For comparing the performance 
of the proposed method, the simple Goertzel algorithm and 
CSANF + Goertzel methods were also implemented. As can 
be seen, background noise was eliminated to a large extent 
in the proposed method due to the use of both LPC and the 
modified anti-notch filter such that the correlation between 
samples is reduced. The simultaneous use of the Goertzel 
algorithm and CSANF + Goertzel methods facilitates the 
detection of the period-3 component in the proposed 
method such that a short-length exon (the first exon of the 
gene sequence F56F11.4) is identified with good precision.

Figure 5: Results of the different algorithms for locating protein coding 
regions in the gene sequence F56F11.4 (a) Goertzel (b) conjugate 
suppression anti‑notch filter + Goertzel, and (c) proposed algorithms

c

b

a
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Table 2 shows the quantitative values of FP, AC, SP and 
AUC parameters for the gene F56F11.4 in the proposed 
algorithm and the other two methods for different Sn 
values. As can be seen, the proposed algorithm features the 
highest AUC. AUC improvement in the proposed algorithm 
is 17.58% and 8.58% compared with the simple Goertzel 
algorithm and CSANF + Goertzel, respectively. In addition, 
the proposed algorithm features the lowest number of 
intron nucleotides identified as exons for all Sn values. 
For example, at Sn= 60%, the FP value is equal to 244 in 
the proposed algorithm, whereas it is equal to 651 and 
410 in the conventional Goertzel algorithm and CSANF + 
Goertzel, respectively. The same condition applies to the SP 
and AC parameters in the proposed algorithm. At Sn= 60%, 
the proposed algorithm yielded an improvement in the SP 
parameter with coefficients of 1.41 and 1.17 compared with 
the conventional Goertzel algorithm and CSANF + Goertzel, 
respectively. The amount of AC also has the same superiority 
at Sn = 60% in the proposed algorithm. This improvement 

is 29.94% and 12.42% in comparison by Goertzel and CSANF 
+ Goertzel methods, respectively. From Table 2, we can see 
that only at Sn = 40%, AC and SP values in the proposed 
algorithm are lower than those in the Goertzel and CSANF 
+ Goertzel methods.

Figure 6a plots, the ROC curve in the proposed algorithm 
and other methods for the gene sequence F56F11.4. 
Figure 6b and c show the Sn curve in the function of SP and AC 
parameters based on the threshold. It should be noted that 
in locating genetic regions, the goal is to find the position 
of nucleotides in exon regions. To this end, we must search 
the regions near the peaks of the spectrum obtained in 
Figure 4 and select a suitable threshold level. A thresholding 
method is presented in the following equation:

X
X

X
=

≥

<







1

0

,�

,

T

T
 (16)

Figure 6: Comparison of different curves in the gene sequence F56F11.4 (a) receiver operating characteristic curve, (b) sensitivity curve in terms of specificity, 
and (c) approximate correlation curve in terms of threshold

c

ba

Table 2: Comparison of quantitative parameters in the proposed algorithm and other methods in the gene sequence F56F11.4
F56F11.4 AUC Sn

40% 60% 80%

FP SP AC FP SP AC FP SP AC

Method
Goertzel 0.7832 40 0.9247 0.6113 651 0.5306 0.482 3590 0.2148 0.2145
CSANF + Goertzel 0.846 17 0.9667 0.635 410 0.6425 0.5571 2511 0.2818 0.3352
LPC + CSANF + Goertzel 0.9184 56 0.8976 0.5965 244 0.751 0.6263 693 0.5863 0.6244

CSANF – Conjugate suppression anti‑notch filter, LPC – Linear predictive coding, AUC – Area under the receiver operating characteristic curve, AC – Approximate correlation, SP – Specificity
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Table 3: The position of exon regions as yielded by the 
proposed algorithm, the simple Goertzel method, and 
conjugate suppression anti‑notch filter + Goertzel methods
LPC + CSANF 
+ Goertzel

CSANF + 
Goertzel

Goertzel Exon positions 
in NCBI

1007‑1104 (98)
2611‑2940 (340)
4103‑4431 (329)
5492‑5623 (132)
7445‑7699 (255)

1020‑1105 (86)
2661‑2869 (209)
4116‑4419 (304)
5486‑5616 (131)
7448‑7516 (69)

978‑1061 (84)
2639‑2793 (155)
3681‑3741 (61)
4087‑4352 (266)
5446‑5574 (129)
5991‑6050 (60)
7408‑7482 (75)
7596‑7622 (27)

928‑1039 (112)
2528‑2857 (330)
4114‑4377 (264)
5465‑5644 (180)
7265‑7605 (340)

CSANF – Conjugate suppression anti‑notch filter, LPC – Linear predictive coding

As can be seen, exon positions obtained in the proposed 
algorithm are more in line with those in the NCBI database.

Experiment 2: Gene AJ223321.1 from the 
HMR195 Database

The second experiment was conducted on gene AJ223321.1 
from the HMR195 database. Figure 7 shows the results 
of the proposed algorithm applied on this gene and also 
the simple Goertzel, and CSANF + Goertzel methods. 
Furthermore, Table 4 shows the values of AUC, FP, AC, 
and SP parameters for different Sn values. The superiority 
of the proposed algorithm is clearly visible in all of these 

Table 4: Comparison of quantitative values of area under the receiver operating characteristic curve, FP, approximate 
correlation and specificity parameters in the proposed algorithm and other methods in the gene sequence AJ223321.1
AJ223321 AUC Sn

40% 60% 80%

FP SP AC FP SP AC FP SP AC

Method
Goertzel 0.6224 799 0.4908 0.1728 1095 0.6333 0.3021 1236 0.2122 0.3693
CSANF + Goertzel 0.7528 383 0.7559 0.2596 596 0.6927 0.6201 776 0.5054 0.5368
LPC + CSANF Goertzel 0.8421 215 0.863 0.3053 426 0.9128 0.7285 555 0.6463 0.6211

CSANF – Conjugate suppression anti‑notch filter, LPC – Linear predictive coding, AUC – Area under the receiver operating characteristic curve, AC – Approximate correlation, 
SP – Specificity

in Eq. 16, the borders of exon regions are detected by 
recourse to the start and end points of X–

 signal’s pulse 1. 
Selecting a suitable threshold level improves the precision 
of coding region detection. The important issue, thus, is 
how to choose a threshold level to increase the precision of 
detection. This paper uses the relation Eq. 17 to select the 
threshold level. So we have:

T =
sdP3e×meanP3i+sdP3i×meanP3e

sdP3e+sdP3i
 (17)

where sdP3e represents the standard deviation of exon 
regions and sdP3i represents the standard deviation of 
intron regions. Similarly, meanP3e represents the mean 
value of exon regions, and meanP3i represents the mean 
value of intron regions.

As shown in Figure 6c, the highest AC value for the proposed 
algorithm and CSANF + Goertzel methods occurs at the 
same threshold. However, in the simple Goertzel algorithm, 
the highest correlation occurs at a different threshold level. 
This indicates that the best performance for each algorithm 
occurs at a specific threshold. In more powerful algorithms, 
correlation with the threshold level decreases and an 
optimal yield is achieved at a fixed threshold.

Table 3 shows the position of exon regions in the gene 
sequence F56F11.4 from the NCBI database as well as 
estimated positions using the proposed algorithm, the 
simple Goertzel method, and CSANF + Goertzel methods. 

Figure 7: Results of the different algorithms for locating protein coding 
regions in the gene sequence AJ223321.1 (a) Goertzel, (b) conjugate 
suppression anti‑notch filter + Goertzel and (c) proposed algorithms
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Table 6: Comparison of quantitative values of area under the receiver operating characteristic curve, FP, approximate 
correlation and specificity parameters in the proposed algorithm and other methods in the gene sequence BABAPOE
BABAPOE AUC Sn

40% 60% 80%

FP SP AC FP SP AC FP SP AC

Method
Goertzel 0.8386 25 0.9386 0.6005 233 0.7109 0.577 1393 0.3542 0.3581
CSANF + Goertzel 0.8982 25 0.9387 0.6012 51 0.9184 0.7074 1269 0.3761 0.3877
LPC + CSANF + Goertzel 0.9405 0 1 0.6349 42 0.9317 0.7147 108 0.8761 0.7999

CSANF – Conjugate suppression anti‑notch filter, LPC – Linear predictive coding, AUC – Area under the receiver operating characteristic curve, AC – Approximate correlation, 
SP – Specificity

parameters for all Sn values. At Sn = 40%, the quantity of SP 
in our algorithm is improved by the factor of 2.05 and 1.1 
compared with Goertzel and CSANF + Goertzel methods. 
Furthermore, the reduction ratio of FP in the proposed 
algorithm is more than 50% relative to two other methods. 
In Table 5, the values of AC, Mcc, P, Sn and SP parameters 
by selecting the threshold as defined in Eq. 17 are shown. 

The proposed algorithm yielded a Mcc value of 0.6813 with 
improvement coefficients of 2.84 and 1.22 in relation to 
the simple Goertzel method and CSANF + Goertzel. This 
superiority can also be seen in Figure 8a and b.

Experiment 3: Gene BABAPOE from the BG570 
Database

Finally, the proposed algorithm was applied to the gene 
sequence BABAPOE from the BG570 database and was 
compared with other methods. Results of the proposed 
algorithm and also the Goertzel algorithm and CSANF 
+ Goertzel are shown in Figure 9. Table 6 presents the 
comparison of quantitative values of AUC, FP, AC, and SP 
parameters for different Sn values. The superiority of the 
proposed algorithm for this gene is clearly visible. At 
Sn = 80%, the FP value in the proposed algorithm is equal 
to 108 whereas it is equal to 1269 in the best next method 
(i.e., CSANF + Goertzel). In the proposed algorithm, AC 
and SP parameters exhibit an improvement of 13.36% and 
28.30%, in comparison with CSANF + Goertzel, respectively. 
A similar advantage is obtained for this gene in AC, Mcc, 
P, Sn, and SP parameters by selecting the threshold as 
defined in Eq. 17, [Table 7]. This advantage is also visible 
in Figure 10a and b, which represent the ROC curve and 
Sn curve in the function of SP, respectively, based on the 
threshold as defined in Eq. 17.

CONCLUSION

In this paper, by combining the modified anti-notch 
filter and LPC model, an efficient algorithm has been 
presented to improve the performance of Goertzel 

Figure 8: Comparison of different curves in the gene sequence AJ223321.1 
(a) receiver operating characteristic curve, and (b) sensitivity curve in terms 
of specificity

b

a

Table 5: Comparison of quantitative values of approximate correlation, mean correlation coefficient, accuracy, specificity, 
and sensitivity parameters in the proposed algorithm and other methods in the gene sequence AJ223321.1 by selecting the 
threshold as defined in Eq. 17
AJ223321 Goertzel CSANF + Goertzel LPC + CSANF + Goertzel

AC 0.2394 0.5726 0.6892
Mcc 0.2392 0.5594 0.6813
Accuracy 0.6942 0.8265 0.8709
Specificity 0.479 0.8782 0.9375
Sensitivity 0.4219 0.478 0.6023
CSANF – Conjugate suppression anti‑notch filter, LPC – Linear predictive coding, AC – Approximate correlation, Mcc – Mean correlation coefficient
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Table 7: Comparison of quantitative values of approximate correlation, mean correlation coefficient, accuracy, specificity, 
and sensitivity parameters in the proposed algorithm and other methods in the gene sequence BABAPOE by selecting the 
threshold as defined in Eq. 17
BABAPOE Goertzel CSANF + Goertzel LPC + CSANF + Goertzel

AC 0.6047 0.7197 0.8202
Mcc 0.5923 0.7135 0.8201
Accuracy 0.8818 0.9139 0.9429
Specificity 0.8388 0.8965 0.8667
Sensitivity 0.5073 0.6447 0.8449
CSANF – Conjugate suppression anti‑notch filter, LPC – Linear predictive coding, AC – Approximate correlation, Mcc – Mean correlation coefficient

Figure 9: Results of the different algorithms for locating protein coding 
regions in the gene sequence BABAPOE (a) Goertzel, (b) conjugate 
suppression anti‑notch filter + Goertzel and (c) proposed algorithms
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algorithm in exon prediction in DNA sequences. An 
important advantage of the proposed algorithm is that 
the amount of noise reduction in it is high because of 
using LPC model. By comparing the performance of 
the proposed algorithm with other existing methods, 
it is seen that this algorithm, for datasets HMR195 and 
BG570, improves the AUC from 4.23% to 21.97%. Our 
proposed method also reduces the number of incorrect 
nucleotides which are estimated to be in the noncoding 
region. This reduction results in an increase of the SP. For 
example, for Sn = 0.80, SP recovery rate of the proposed 
algorithm relative to other methods is from 17.35% to 
52.19% in HMR195 and BG570 database.

Many signal processing-based methods such as filter-based 
methods have been developed to improve the performance in 
gene prediction. In near future, we will consider of integrating 
the modified versions of LPC model and comparative methods 
for a hybrid signal-processing-based method in gene prediction.
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