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Hippocampal adult-born granule cells drive
network activity in a mouse model of chronic
temporal lobe epilepsy
F. T. Sparks 1,2,3,5, Z. Liao1,2,3,5, W. Li1,2,3, A. Grosmark1,2,3, I. Soltesz 4 & A. Losonczy 1,2,3✉

Temporal lobe epilepsy (TLE) is characterized by recurrent seizures driven by synchronous

neuronal activity. The reorganization of the dentate gyrus (DG) in TLE may create patho-

logical conduction pathways for synchronous discharges in the temporal lobe, though critical

microcircuit-level detail is missing from this pathophysiological intuition. In particular, the

relative contribution of adult-born (abGC) and mature (mGC) granule cells to epileptiform

network events remains unknown. We assess dynamics of abGCs and mGCs during interictal

epileptiform discharges (IEDs) in mice with TLE as well as sharp-wave ripples (SPW-Rs) in

healthy mice, and find that abGCs and mGCs are desynchronized and differentially recruited

by IEDs compared to SPW-Rs. We introduce a neural topic model to explain these obser-

vations, and find that epileptic DG networks organize into disjoint, cell-type specific patho-

logical ensembles in which abGCs play an outsized role. Our results characterize identified

GC subpopulation dynamics in TLE, and reveal a specific contribution of abGCs to IEDs.
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Temporal lobe epilepsy (TLE) is a common neurological
disorder characterized by recurrent focal seizures origi-
nating in the mesial temporal lobe, most commonly the

hippocampus (HPC). While the circuit mechanisms of TLE are
not well-understood, it is thought that the pathological features of
TLE emerge from a complex series of microlevel reorganizational
steps leading to persistent perturbation of the excitatory and
inhibitory processes regulating entorhinal–HPC interactions1–4.
Hypersynchronous macrolevel network events associated with
TLE, in turn, are thought to be primarily the result of such
microlevel alterations to underlying network connectivity within
the HPC formation5–9.

Macrolevel synchronous events in epilepsy can be identified in
electroencephalography (EEG) or local field potential (LFP)
recordings as large amplitude and long duration electrographic
seizures10,11, high frequency events12, and most commonly and
frequently, interictal epileptiform discharges (IEDs)13–15. These
EEG events are thought to arise from pathophysiological changes
to excitatory and inhibitory microcircuits in the epileptic net-
work16. IEDs are transient EEG events characterized by a short
duration (<100ms) and large amplitude, and include multiphasic
discharges as well as single interictal spikes17. At the macrolevel,
these events appear to be the result of widespread, recurrent,
synchronous population firing, though recent investigations into
population dynamics at the circuit level have revealed hetero-
geneity of individual neuron responses during IEDs2,18. This
suggests that relatively sparse sub-ensemble dynamics support
IEDs, and that these dynamics may contribute to the diversity of
epileptiform activity identified in EEG or LFP recordings. These
observations have been corroborated in human epilepsy patients
via multiunit activity recordings from depth electrodes19. In
addition, observations supporting this hypothesis have been made
in animal models of TLE by imaging excitatory granule cells (GCs)
of the dentate gyrus (DG) in an in vitro slice preparation2, and
imaging either excitatory or inhibitory cell types in CA1 in vivo1.
While both excitatory and inhibitory cell classes have been shown
to be involved in IEDs, how the collective activity of heterogeneous
principal cell types gives rise to local network dynamics during
pathological activity in chronic epilepsy in vivo, especially in the
upstream nodes whose outputs shape CA1 excitation–inhibition
dynamics, remains incompletely understood.

As the entry node of the HPC, the DG plays a critical role in
cognitive processing by regulating the propagation of HPC
feedforward drive20. At the microcircuit level, strong local inhi-
bition and lack of recurrent excitation of GCs result in the sparse
GC population activity that is thought to support computational
functions such as pattern separation and novelty detection21,22.
This intrinsic low excitability is also thought to enable the DG to
restrict the relay of synchronous activity from the entorhinal
cortex into the HPC, thereby regulating the propagation of
excitatory activity, a property known as dentate gating23,24. The
breakdown of the DG gate is hypothesized to contribute to epi-
leptogenesis, leading to seizure generalization as well as cognitive
and memory deficits25,26. In the adult DG, new GCs are con-
tinually generated and functionally integrated into DG cir-
cuitry27–29. This adult-born GC (abGC) subpopulation of the DG
network is especially sensitive to seizure-induced reorganiza-
tion30–35, that may take the form of an altered level of neuro-
genesis36–38, mossy fiber sprouting33,39–43, abnormal formation
and persistence of basal dendrites on abGCs31,32,44,45 as well as
ectopic dispersion and migration of abGCs into the hilus or
CA330,46,47. A recent in vivo study of normal DG function
demonstrated that abGCs are intrinsically more active and less
stimulus-selective than their mature counterparts (mGCs)48.
Together, these findings strongly implicate abGCs in the devel-
opment of epilepsy, and support a hypothesis in which the

relative hyperactivity of abGCs is amplified through recurrent
microcircuits in the epileptic DG, resulting in generalized syn-
chronous seizure activity in TLE31,34,35,49–51. However, at present
there are no in vivo data allowing direct comparisons of the
activity patterns of major GC subpopulations and their relative
contribution to functional network structure during macrolevel
epileptic events.

In the present study, we genetically label populations of mGCs
and abGCs in the HPC, induce the intra-HPC kainic acid (KA)
model of chronic TLE, and then dissect the activity dynamics of
these neural populations using a combination of in vivo two-
photon calcium imaging and LFP recording. To uncover
ensemble structure underlying high-density calcium recordings of
the chronically epileptic DG network, we introduce a generative
model framework for ensemble recruitment that captures existing
knowledge and biological intuitions about the mechanisms of
IEDs. Performing statistical inference on this class of model is
difficult in general, but we show that our biologically motivated
model can be reduced to Latent Dirichlet Allocation (LDA), a
well-known topic model with many tractable inference algo-
rithms52. We use this reduction, in combination with tools from
the LDA literature, to infer the recruitment of microensembles by
network-level events. Consistent with previous in vitro functional
imaging from the DG of slices taken from chronically epileptic
animals2, we found structured ensemble dynamics within the GC
population during IEDs in vivo. In addition, we also identified
cell-type specific ensemble structure nested within the abGC and
mGC populations, with distinct contributions to network
dynamics in the interictal period. Finally, we found that abGC
ensembles participate in network activity during IEDs to a dis-
proportionately higher degree than mGCs, and in a desynchro-
nized manner compared to activity during physiological
high frequency electrographic events i.e., sharp-wave ripples
(SPW-Rs)53. These observations suggest that the chronically
epileptic DG network exhibits robust underlying functional
organization in temporal correlation and GC lineage. Because
abGCs are strongly reorganized in TLE compared to their mature
counterparts30–33, our results suggest that this reorganization
produces functionally distinct ensembles that have different
pathophysiological roles identifiable in vivo.

Results
Two-photon calcium imaging of the epileptic DG in vivo.
Dissecting the functional and anatomical microcircuit structure of
the DG in vivo requires techniques that allow simultaneous
recording of neural activity from a wide section of the network at
single-cell resolution, while also permitting molecular identifica-
tion of the recorded cells. This was achieved by performing two-
photon calcium imaging of the DG in head-fixed mice on a
circular treadmill48. Combining these techniques with a cell-type
specific Cre driver line allowed us to indelibly label and image
abGCs and mGCs simultaneously in a single recording48

(Fig. 1a, b), which is not feasible with electrophysiological
recordings or in freely moving animals. To indelibly label abGCs,
NestinCreERT2 mice were crossed with a conditional reporter line
(Ai9) and pulsed with tamoxifen (TMX) to express the fluor-
escent red reporter (tdTomato) in young abGCs (abGCs were
5 weeks old at the start of imaging, Fig. 1c, see “Methods” sec-
tion). Mice were then stereotactically injected in the dorsal DG
with a recombinant adeno-associated virus (rAAV) to express
GCaMP6f in all GCs. KA was injected unilaterally into the ventral
HPC ipsilateral to the viral injection site to induce status epi-
lepticus, simulating the initial insult that leads to epileptogenesis
in humans54,55. The KA injection site was chosen to minimize
associated gliosis and cell loss within the imaging field of view,
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thereby permitting imaging of the DG within the vicinity of the
main insult to the network55. Three days later, a chronic imaging
window was implanted over the dorsal DG providing optical
access necessary for cell-type-specific imaging of the GC layer in
the dorsal blade of the DG. An ipsilateral single-channel LFP

electrode was also implanted in the HPC ipsilateral to KA
injection targeting the DG, and an electromyographic electrode
implanted in the cervical trapezius neck muscle (Fig. 1b, c). After
recovering from the implant surgery, mice were continuously
video-EEG monitored, and TLE onset was determined by the
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Fig. 1 Cell-type specific functional imaging in the dentate gyrus. a Experimental schematic. GCaMP6f is virally expressed in all DG neurons at the dorsal
HPC site of injection, and kainic acid (KA) is injected into the ipsilateral ventral HPC to induce the model of epilepsy. b Left: Schematic of skull showing
locations of imaging window, ipsilateral local field potential (LFP) electrode, electromyography (EMG), and ground electrode placements. Center: Two-
photon line-scanning microscopy allows for the recording of large populations of GCs in surgically exposed dorsal DG. Representative example in vivo two-
photon two-color microscopy time average images from near simultaneous multi-plane imaging in the mouse DG. The top two planes are focused in the
dorsal GC layer while the bottom plane is located just above the polymorphic hilar region. Green represents GCaMP fluorescence in all cell types, while red
represents tdTomato expression limited to abGC in a Cre-dependent manner. Right: Schematic showing near-simultaneous multiplane imaging throughout
the DG granule cell layer. ML molecular layer, GL granule cell layer. c Experimental timeline for the labeling of abGCs, induction of the kainate model, and
two-photon imaging of the epileptic DG network (n= 5 mice). Adult-born GCs were indelibly labeled with tdTomato following injections of tamoxifen
(TMX) that drove expression of Cre in Nestin+ cells. Two weeks later, KA was injected into the ventral HPC and GCaMP6f was injected into the dorsal DG
and chronic imaging window cannula was implanted above the dorsal DG. Following injection of KA, mice were monitored for ictal activity using continuous
video-EEG. d Top: Filtered LFP showing interictal epileptiform discharges (arrows) in an IHK mouse 31 days after KA injection. Left: Example abGC and
mGC whole population activity during IEDs across a 10 second time window. Activity for each neuron is shown as a positive (purple) or negative (green)
nonparametric z-scored ΔF/F, clipped to ±2.5z for visualization. Right: LFP trace and population activity from the same abGCs and mGCs centered on an
example IED (orange) across a 2 s time window and sorted by maximum activity.
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occurrence of the first detected generalized motor seizure event,
which occurred on average 10 days after KA injection (242.9 ±
20.4 h, mean ± s.d.) in n= 5 mice.

Given that the laminar organization of GCs in the dorsal DG is
parallel to the optical field of view56, we can capture a large
number of GCs within the GC layer and the sub-granular zone
(Fig. 1b). To further increase simultaneous imaging of multiple
cell-type specific populations across these layers, we coupled our
image acquisition control to a piezoelectric crystal for fast axial
focusing and near simultaneous multiplane imaging57 (Fig. 1b).
With multiplane imaging, we were able to simultaneously capture
on the order of 433 ± 261 mGC and 56 ± 31 abGC (mean ± s.d.)
active regions of interest within a single subject (example LFP
recording, population ΔF/F to series of IEDs and example traces
triggered by one IED shown in Fig. 1d, note that only a fraction of
the GCs participate in any given IED; see below). In total, across
five mice, 2164 mGCs (tdTomato-negative) and 278 abGCs
(tdTomato-positive) (Table S1) were identified as active GC
regions of interest during three consecutive 10 min long imaging
sessions for each mouse (see “Methods” section).

Time domain, frequency domain, and mean calcium response
of IEDs. The low probability of capturing a spontaneous seizure
event during a two-photon imaging session poses a challenge to
the optical dissection of epileptic networks in vivo. However, IEDs
provide a series of functional “snapshots” of discrete components
underlying the ictogenic circuits, during which only a subset of the
network is activated1,2. Therefore, we sought to analyze network
activations during IEDs with the aim of first understanding these
“snapshots” individually, and ultimately assembling them into a
complete tapestry of the network. To this end, we segmented the
LFP into time bins matching the imaging frames, and classified the
imaging frames during which IEDs occurred. Traditionally, IEDs
are classified by hand, based on morphological properties such as
event width, deflection amplitude, and deflection shape; however,
annotating these features for each event manually is labor-
intensive. We developed a procedure for semi-supervised IED
classification and detection to generalize these principles (Fig. 2a).
Because all information about the width, amplitude, and mor-
phology of each event is contained in its frequency-domain
representation, we trained a classifier on the power spectrum of a
small set of hand-identified IEDs and allowed it to generalize and

update its predictions in an interactive manner; final classification
results were verified for correctness by the experimenters (see
“Methods” section). Other types of interictal events, such as high-
frequency oscillations were not included by the classifier and were
thus excluded from further analysis (Fig. 2a). Consistent with
previous work58, we found morphological heterogeneity within
the classified IEDs. Despite this heterogeneity, frames containing
IEDs exhibit a stereotyped LFP power spectrum after applying a 1/
f correction, supporting the reliability of this classification method
(Fig. 2b). We find an average IED rate of 1.13 ± 0.53 IED/s, with
an average of 680 ± 319 IEDs per 10-min recording session (mean
± s.d.) (Fig. 2c). We then sought to quantify the modulation of
single cells by IEDs. It has been hypothesized that IEDs are pri-
marily driven by abGC activity59, and indeed we found that
abGCs are significantly more responsive to IEDs on average
compared to mGCs (p < 0.05, Wilcoxon signed-rank test), though
both are close to 0 (Fig. S1A), without significant differences in the
responses of the two populations to onset (p= 0.89) or offset (p=
0.34) of locomotion (Fig. S1A). Nevertheless, we found that the
mean IED-triggered PSTH was flat for both abGCs and mGCs
(Fig. 2d). This observation is important as it establishes that at
least one of two conditions must hold: either (a) most IEDs only
recruit a sparse subset of cells (in which case the “average” cell’s
response to any particular IED would be small), or (b) most cells
only respond to a sparse subset of IEDs (in which case any par-
ticular cell’s response to the “average” IED would be small). In the
remainder of the paper, we show that not only are both (a) and (b)
true, but we can also identify subsets of cells that are consistently
recruited together, thereby relating macrolevel LFP activity to the
activity of individual neurons in a local network.

Different IEDs recruit different populations of GCs. IEDs
represent heterogeneous, global events in the epileptic brain58,60.
Given that we can only observe IEDs in a local network, treating
them in aggregate as if they are homogeneous obscures the
microlevel population activity patterns underlying each individual
IED. We used logistic regression to ask the question of whether
abGCs vs mGCs exhibited different IED response profiles: by
training a logistic regression linear classifier to decode cell iden-
tity based solely on the cells’ IED responses, we assessed whether
calcium responses of abGCs and mGCs differed on an IED-by-
IED basis (Fig. 3a). This classification procedure is equivalent to
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Fig. 2 Interictal spike identification and basic characterization. a Classifier schematic. Left: An Online Kernelized Perceptron was trained on the LFP
magnitude spectrum where the window size was locked to each imaging frame. Right: Examples of classified interictal spike (above) and non-spike (below)
highlighted in green, with expanded view (below left) and magnitude spectrum (below right). b Average IED magnitude spectrum. Average magnitude
spectrum of n= 459 events from one subject, with 1/f power correction applied (data presented as mean value +/− 95% CI). A peak frequency occurs in
the 250–400Hz range, exaggerated by the 1/f correction, reflecting the timescale of positive and negative deflections (on the order of 10 ms in an event
lasting ~50ms), which may be polyphasic for some IEDs. c Summary of detected IEDs rate across mice (n= 5 mice). Left: Average IED rate, mean 1.13 IED/
s, standard deviation 0.53 IED/s. Each point corresponds to a mouse (average of 3–5 sessions per mouse). Right: Total IED count per 10-min recording
session, mean count = 680 IEDs/session, standard deviation = 319 IEDs/session (each point corresponds to a single session, each color corresponds to a
different mouse). Error bars: +/− 95% CI in the mean, calculated from 1000× bootstrap sampling on recording sessions with replacement. d Spike-
triggered PSTHs showing averaged response to IED by cell type, pooled across five animals (n= 239 abGCs, red; 1736 mGCs blue). The majority of GCs
are not modulated by individual spikes on average (data presented as mean value +/− 95% CI).
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projecting the original M-dimensional responsiveness vector for
each cell (where M is the number of electrographically identified
IEDs) down to a 1D line representing a scalar “mGC-ness” score.
The histogram of scores is bimodal, i.e., mGCs (blue) are mapped
to positive scores and abGCs (red) are mapped to negative scores
(Fig. 3b). To perform the projection, a real-valued “weight” (A.U.)
shared by all cells is calculated for each IED, that can be inter-
preted as the degree to which positive modulation by that IED is
associated with mGC identity (positive weights, which we call a
“pro-mGC” IED) versus abGCs (negative weights, “anti-mGC”
IED). Under logistic regression, the two classes are assumed to be
contrastive; that is a “pro-mGC” IED is associated with both
positive modulation of mGCs or negative modulation of abGCs,
and likewise an “anti-mGC” IED is associated with negative
modulation of mGCs or positive modulation of abGCs. Sorting
the weights (thresholded to a cutoff of ±0.1) by IED time (Fig. 3b,
middle) shows that most events are associated with some pro-
mGC or anti-mGC bias, though this analysis does not permit us
to say whether the activations are structured, as the sequence of
mGC- and abGC-predictive events appears random when treat-
ing the two populations as internally homogeneous (Fig. 3b,
middle and bottom). Thus, we conclude that each IED carries a
small amount of information about cell identity, but the
recruitment profile of each event is stochastic as any particular
cell may be positively modulated, negatively modulated, or
unresponsive to any particular IED regardless of the cell’s iden-
tity. However, the complete profile of a cell’s response to all IEDs
is sufficient to predict cell identity (i.e., abGC or mGC) with high
accuracy (Fig. 3b).

We used L1 and L2 regularization of the classifier in order to
further probe how cell identity influences participation in IEDs.
The regularized classifier could find that participation in a

particular sequence of mixed events is predictive of abGC
identity, which would indicate that abGCs and mGCs are
internally coherent and respond to IEDs through population-
specific patterns. A second possibility is that the regularized
classifier may find individual “pure” or near-pure mGC-
associated IEDs, which would indicate that some IEDs are
attributable almost exclusively to one population. Finally, a third
possibility is that the regularization penalty results in a much
worse test accuracy, which would indicate that the entire profile
of a cell’s response to IEDs is necessary to classify the cells
accurately.

Based on the cells’ IED responses, an L2-regularized logistic
regression classifier achieved 85 ± 5% accuracy on a test set,
balanced to remove the effect of population size, cross-validated
over 100 random 80–20 train-test splits (Fig. 3c, left; Fig. S1E).
Subsequently, we use a sparsifying (L1) regularization penalty in
order to concurrently identify the subset of IEDs that are “most
informative” about cell identity, in the sense that knowing a cell’s
response to those events is almost as predictive of identity as
knowing the cell’s complete response profile (Fig. 3c right; see
Methods). The L1 regularization penalty resulted in a slight
reduction in test set accuracy (81 ± 5% accuracy using the same
procedure), but identified IEDs with population-specific recruit-
ment profiles and disregarded the majority that exhibited mixed
activation, suggesting the second hypothesis above holds true, i.e.,
cell identity can be decoded from participation in events that
other cells of the same type are known to participate in (Fig. 3c;
see “Methods” section). We verified the efficacy of this
classification procedure with a two-way analysis of variance,
that yielded a main effect for IED class (pro-mGC vs. anti-mGC;
F(3,54) = 14.11, p= 6 × 10−7), such that pro-mGC IEDs
significantly positively modulated mGCs compared to anti-mGC
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IEDs. The main effect of population was non-significant
(F(3,54) = 0.13, p= 0.71), suggesting that our observations
cannot be explained by intrinsic differences in responsiveness
between the two populations independent of the type of IED.
However, the interaction effect was significant (F(3,54) = 10.29,
p= 0.002), indicating a crossing over effect, i.e., that pro-mGC
IEDs significantly positively modulated mGCs over abGCs. This
verifies that single cell responses to the “most informative” IEDs
identified by this procedure showed high within-population
heterogeneity but striking between-population differences
(Fig. S1B): in contrast to the flat response to undifferentiated
IEDs (Fig. 2d), we found subsets of IEDs that significantly
modulate the mGC population (both positively and negatively),
while the abGC population is not significantly modulated in
either direction by either event type (Fig. 3d and Fig. S1C). Thus,
we conclude that most IEDs differentially recruit abGCs
compared to mGCs, but the recruitment of any particular cell
by any IED appears random. Reliance on only one population is
allowable under the assumptions of logistic regression, as an
algorithm that classifies from the mGC population with high
sensitivity and specificity can achieve high accuracy overall by
simply classifying “non-mGC” examples as abGCs. This limita-
tion highlights the need for a model that can more expressively
capture the activation of different populations, and perhaps
functionally-defined subpopulations, by different subsets of IEDs.

A generative model of latent ensemble recruitment uncovers
within-population ensemble dynamics. The linear decoding
analyses above imply heterogeneous, cell type-related dynamics
among IEDs. However, we have so far assumed that abGCs and
mGCs form internally homogeneous populations, while there is a
growing body of evidence that this is not the case61. A limitation
of logistic regression in this setting is that a mix of abGCs and
mGCs respond to most IEDs, but the mix itself may be struc-
tured. Even among the “most informative” pro-mGC and anti-
mGC IEDs identified by the sparse decoder (Fig. 3c), there is clear
heterogeneity of the responses between individual cells within a
population, even within a single mouse (Fig. S1B). Furthermore,
the linear decoding analysis classified abGCs as those cells that
did not significantly respond to pro-mGC or anti-mGC IEDs,
whereas we might also like to identify IEDs that independently
modulate the abGC population. We sought to construct a gen-
erative model that relates the population activity in the imaged
local network to macrolevel IEDs via the hidden functional
ensemble structure within the network, that can be compared
post hoc with ground truth GC identities. This model should be
able to account for the ensemble structure and activation
underlying the data with the following properties: (1) Identifies
functional ensembles that can be compared with cellular iden-
tities; (2) Infers underlying ensemble structure incrementally
revealed by successive IEDs, even if an entire ensemble is never
observed to be active all at once; (3) Sliding scale of activation:
ensembles may be activated to differing degrees by different IEDs;
(4) Mixed membership: cells may be associated with more than
one ensemble, and may be associated to differing degrees to
ensembles; and (5) Parameter inference (ensemble composition,
activation in each IED) from data is computationally tractable.

We developed a generative model motivated by Bayesian topic
modeling52,62, that we call Latent Ensemble Recruitment (LER),
and that has all of these properties. This LER model (Fig. 4a and
Fig. S2A) assumes that the network consists of K fixed,
unobserved ensembles of cells. Each IED recruits a sparse subset
of these ensembles, and each ensemble may activate a few or
many of its cells, depending on the degree to which it was excited
by that IED (see “Methods” section for full description of the

generative process). Various strategies are possible for performing
inference on this model, though the number of latent variables we
must learn compared to the number of observables presents a
challenge. One convenient inference strategy is to perform ad hoc
inference on z using bootstrapping to binarize the dataset (z′), in
order to solve the resulting inference using a standard variational
Bayes solver63. This ad hoc procedure is equivalent to reducing
our model to Latent Dirichlet Allocation, a closely related model
for which the inference problem has been well-studied, using the
topic modeling analogies: ensemble ~ “topic”, spike ~ “docu-
ment”, cell ~ “word”52 (Fig. S2A). The binarized data z′ (Fig. 4b)
contains some qualitative ensemble structure and temporally
distinct activations between abGCs and mGCs. The ensemble
activation matrix θ (Fig. 4c) shows temporally coherent
activations (i.e., an ensemble activated by event i is likely to also
be activated by events i− 1 and i+ 1), despite the exchangeability
of IEDs (i.e., the model receives no information about the order
or relative timing of events). This temporal coherence may be due
to temporary increases in excitability localized to the micro-
circuits underlying each IED, such that subsequent IEDs are more
likely to recruit the previously excited ensembles. Figure 4d shows
examples of learned ensembles σ: we say a cell “participates” in an
ensemble k if the weight of that cell in σk is >3/N (i.e., greater than
3× uniform prior level). Even though the model receives no
information about cell lineage, from these inferred results we can
clearly distinguish mGC-predominant, abGC-predominant, and
mixed ensembles (Fig. 4d). Consistent with results previously
reported in vitro2, we also find low overlap (≤3 cells) between any
pair of ensembles, as measured by the Pearson correlation
between ensemble vectors (Fig. S2B, top). Because of this low
overlap, we can interpret the LER results as a sort on the cell-cell
correlation matrix. Sorting the correlation matrix accordingly, we
find that the cells within an ensemble are highly correlated to
each other and less correlated to cells from other ensembles, as
expected (Fig. 4e and Fig. S2B, bottom), providing independent
confirmation that the ensembles discovered by the model are
reasonable. Finally, we sought to determine whether the most
active ensemble in each IED could be decoded from the power
spectrum of the IED itself. For small ensemble number (K), we
can decode the most active ensemble in a held-out test set
significantly better than chance using a random forest classifier
with 100 estimators trained on the LFP spectrum collected within
an imaging frame (Fig. 4f). We conclude that IEDs are driven by
multiple ensembles with temporal and lineage-dependent struc-
ture, and conversely, different ensembles are associated with
distinct electrographic signatures on LFP.

Statistics of ensemble structure across animals. Finally, we
sought to quantify the extent to which the underlying ensemble
structure is homologous across animals. We fit LER to data (n= 5
mice) over a range of ensemble numbers K, with ten realizations
of LER fitted per K, per mouse. We find that the latent ensembles
are disjoint for all animals: for choices of K larger than 3, the cell
vectors of distinct ensembles (σ) had Pearson correlations near 0
(Fig. S2A, top). In contrast, we find relatively higher activity
correlations between ensembles, as measured by Kendall’s tau
(Fig. S2A, bottom). For K values larger than 3, off-diagonal
entries in the cell correlation matrix are consistently weakly to
moderately correlated; this correlation increases monotonically
and reached τ= 0.5 when K= 15. This observation validates our
choice of K= 6 across mice, where activity correlation between
ensembles is weakly positive, suggesting some contribution of
multiple ensembles to each spike; selecting a larger value for K
than the true number of underlying ensembles would artificially
split the true ensembles, resulting in spurious ensembles with
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correlated activity. Importantly, we found that irrespective of the
number of ensembles specified, the fraction of abGC-dominated
ensembles remains fixed at 25% across mice, more than double
the proportion of abGCs in the extracted population (~11%)
(Fig. 4g). As abGCs themselves represent about 11% of the
identified cells in our dataset, and less than 5% of GCs in the DG

network27–29, this result strongly suggests that abGC-dominated
ensembles disproportionately drive network activity in the epi-
leptic DG during IEDs. We also compared the “purity” of the
“purest” abGC ensemble to the “purest” mGC ensemble and
found that this “maximum purity” (expressed as a fraction from 0
to 1) was increasing with K for both populations, but nearly pure
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(>90%) mGC ensembles were identified regardless of K, whereas
the purest abGC ensemble only contained 80% abGCs at K= 20
(Fig. S2F). This result further suggests that certain mGCs are
coupled to abGCs; given evidence that newborn cells have a more
active and independent role in the network while mature cells
are more integrated into the feedforward pathway57, one possible
explanation of this observation is that the abGC ensemble feeds
input to these mGCs, which in turn propagate this activity
downstream. Together, we conclude that different epileptic ani-
mals organize ensembles with similar statistical properties, sug-
gesting conserved structural and functional motifs underlying the
epileptic network.

Sharp-wave ripples recruit synchronized mixed ensembles of
abGCs and mGCs. To verify that these observations about
ensemble structure are a feature of TLE rather than a physiolo-
gical feature of the DG network in response to any electro-
physiological event, we imaged DG while recording sharp-wave
ripples (SPW-Rs) in stratum pyramidale of CA1 in non-epileptic
mice (Fig. S4A). We then used our model to examine the
ensemble structure underlying SPW-Rs in the control DG. As in
Fig. 4, we compute a binarized “recruitment” matrix of cell
activity that is significantly positively modulated within SPW-Rs
compared to non-SPW-R epochs (see “Methods” section). From
the recruitment matrices, we observe qualitatively that the abGC
and mGC populations appear to be activated more sparsely and
more synchronously with each other than in IEDs in TLE
(Fig. S4B). As before, we train the model on the binarized
recruitment matrix (Fig. S4C,D). We find that the non-epileptic
DG does not segregate into abGC and mGC ensembles; instead,
all inferred ensembles are mixed. Nonetheless, we do confirm that
the learned ensembles correspond to real correlation structure in
the underlying cells (Fig. S4E). To quantify this desynchroniza-
tion across animals, we calculated Kendall’s tau correlation
between the median event responsiveness vectors of the two
populations in each recording session, and find that abGCs are
significantly less synchronous with mGCs in IEDs in TLE com-
pared to in SPW-Rs in control (p= 0.017, Mann–Whitney U-test
on NTLE= 17 IED recording sessions from five mice, NCTRL= 8
SPW-R recording sessions from two mice; Fig. S4F). Further-
more, to correlate this abGC-mGC desynchronization with
chronic TLE, we looked at the seizure area-under-curve (AUC)
measure of electrographic seizure severity over a 24-h vEEG
period while mice were in their home cage. Regression lines fit to
either IED synchrony or “event synchrony” (also including non-
epileptic mice) vs. seizure AUC suggest an inverse relationship
between abGC-mGC event synchrony and severity of the epi-
leptic phenotype. The inverse relationship we find between

seizure AUC and abGC-mGC synchrony is consistent with our
finding that the two populations are significantly desynchronized
in IEDs in TLE compared to in SPW-Rs in the nonepileptic
animal (Fig. S4G).

Discussion
How macroscale pathological events emerge from microscale
changes at the cellular level has been a longstanding open ques-
tion in the study of TLE9. Previous imaging and electro-
physiological work examining the role of specific cell types in
epileptic pathology has shown that inhibitory circuits play a
critical role in shaping interictal dynamics in CA11,64,65. How-
ever, relatively little is known about how the activity of the DG—
the “gating” entry node to the tri-synaptic circuit—shapes
downstream excitation–inhibition dynamics in vivo through
excitatory output during these events. Changes within the DG
abGC network have been hypothesized to contribute to the
breakdown of the dentate gate which enables seizures to
occur25,26,30,34,38. This question is clinically relevant, as any
disease-modifying targeted therapy will depend on a robust
understanding of the functional targets of the disease. In this
study, we focused on the contribution of abGCs to epileptic DG
circuits involved in IEDs and present an approach to evaluate the
contribution of genetically identified neural populations to IEDs.
We recorded abGCs and mGCs during IEDs, which reveal
“snapshots” of discrete functional components underlying the
epileptic network, and collated these snapshots under a generative
model framework of ensemble recruitment to deduce the hidden
functional organization within these networks.

The results presented here describe how populations of abGC
and mGCs within the epileptic DG network differentially parti-
cipate in macrolevel interictal events in vivo. Consistent with
previous work in vitro2,18,58, we find significant heterogeneity in
LFP and calcium responses between IEDs, with distinctly iden-
tifiable pure mGC-driven events. The events in which a cell
participates constitute a unique fingerprint that is informative
about the cell’s developmental lineage (abGC vs. mGC). We also
find significant heterogeneity in the population responses of
abGC and mGC cell-types to individual events, as well as in the
within-population cell recruitment across cell-type dominated
events.

We introduce Latent Ensemble Recruitment (LER), a
biologically-motivated generative model of cell recruitment by
interictal events. This model applies Bayesian topic modeling to
in vivo two-photon calcium imaging data, and presents a con-
ceptual framework for relating interictal events to ictogenic cir-
cuits: each microlevel population event represents a “snapshot” of
a much wider macrolevel network, whose functional or synaptic

Fig. 4 A generative model of spike ensemble recruitment. Latent Ensemble Recruitment (LER) model uncovers latent ensemble structure in the data.
Shaded areas and error bars correspond to 95% confidence interval of the mean, calculated from 1000× bootstrap sampling on model realizations with
replacement unless otherwise noted. a Schematic of LER generative model. Colors represent latent (hidden) ensembles in the data. Cells (colored circles)
are colored by the ensemble they are most associated with. Cells in the same ensemble tend to be recruited together by IEDs (bottom). The ensemble
identities can be compared to known genetic identities post hoc. b Raster plot of bootstrapped “activation” variable z', 10,000 bootstraps with α= 0.05,
sorted by identity (red: abGCs, blue: mGCs) in synchronous network events excluding IEDs in three consecutive 10min recording sessions, plotted against
real time (n= 178 cells, n= 129 mGCs, n= 49 abGCs). See “Methods” section for details of bootstrapping procedure. c Ensemble activation matrix from
one subject, plotted against event number, ordered in time (K= 6 ensembles, M= 2473 events). See Fig. S2 for cross-validation across different mice and
model fits. d The spatial distribution (left) of ensemble activations from the six ensembles identified in C, colored by weights, color intensity representing
the strength of each cell’s association with an ensemble (A.U., right) (red= abGC, blue = mGC). See 4G and Fig. S2 for cross-validation across mice and
model fits. e LER learned ensembles as a sort on the cell–cell correlation matrix (Kendall tau). Cells within a single ensemble have correlated activity
patterns, while cells in different ensembles tend to have low correlation. f Decoding the most active ensemble from the LFP power spectrum during IEDs.
The activation of each ensembles is associated with some “signature” identifiable in the LFP. g Fraction of abGC (red) vs. mGC-dominated (blue)
ensembles, plotted as a function of K, defined as the proportion of ensembles in which either mGCs or abGCs are overrepresented beyond the 95th
percentile of a random shuffle (dashed line; see “Methods” section) (data presented as mean value +/− 95% CI).
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organization is not directly observable, yet whose microlevel
calcium response at each time point is. Each one of these snap-
shots reveals some information about the underlying network,
that is hypothesized to be structured on multiple scales to support
seizure initiation and propagation66,67. While each individual
event is relatively uninformative on its own, by accumulating
these snapshots in an unsupervised way, it is possible to recon-
struct a more complete picture of the underlying macro network
structure. When fit to real data, this cell type-agnostic and event
time-agnostic model discovers microensembles with clear cell-
type and temporal organization. This observation suggests that,
while the recruitment of any individual cell by IEDs may appear
to be random, the recruitment of ensembles exhibits statistical
regularities which strongly imply a role for the underlying
microcircuits in the generation of epileptiform events. In parti-
cular, the regularities which we observe correspond to biological
intuitions about the underlying circuits—e.g., the observed
repeated activations in time may correspond to a microcircuit
entering and remaining in a hyperexcited state for several sec-
onds, such that the circuit is likely to be recruited by global events
which occur within that window. Our modeling approach
revealed that IED-associated variance in network activity in the
epileptic DG is disproportionately correlated with the activity of
abGC-dominated ensembles. We finally explored the implications
of this model in the context of SPW-R related ensemble
recruitment. We find that the abGC and mGC populations are
more synchronous in SPW-Rs and organize into more sparsely
activated mixed ensembles compared to IEDs. These observations
suggest that within DG microcircuits, these two populations
perform ripple-associated computations in conjunction; in con-
trast, the emergence of desynchronized, population-specific
ensembles in TLE suggests that abGCs decoupling from mGCs
and becoming coupled to each other may be one of the patho-
mechanisms of TLE. These observations are consistent with the
hypothesis that abGC-dominated ensembles drive pathological
IED-associated network activity. However, the experiments per-
formed here cannot definitively exclude alternative hypotheses,
such as the possibility that IED and ensemble heterogeneity are
driven by variability in the origin of IEDs; testing such hypotheses
could form the basis of future experiments.

While our approach combines multipopulation two-photon
calcium imaging and LFP recording in vivo, the difference in
temporal resolution between LFP events (ms) and calcium signals
(100 s of ms) is an important limitation, meaning unambiguous
attribution of LFP events to calcium events is not always possible.
We opted not to use spike deconvolution because spike decon-
volution has not been validated for dentate granule cells, and
there remain a number of unresolved questions surrounding the
approach, especially on non-pyramidal populations68. To cir-
cumvent this problem, we average the calcium traces of many
cells and IEDs in order to isolate the cellular IED response by the
law of large numbers.

In this work, we investigated whether features of the low-
dimensional global LFP signal can be decoded from the activities
of individual cells and ensembles. The critical inverse problem of
whether the (high-dimensional) population activity can be pre-
dicted from the one-dimensional global LFP signal is of great
interest, though more difficult as it requires predicting a non-
linear statistic of high-dimensional data from a one-dimensional
LFP signal. Our finding that, for small ensemble numbers, the
most active ensemble in each IED could be decoded above chance
from the power spectrum of the IED alone suggests that specific
GC ensembles do have distinct LFP signatures (see Valero et al.69

for another example). The number of ensembles that can be
decoded from this low-dimensional signal does not necessarily
reflect the number of ensembles in the network; rather, the

complexity of decoding increases combinatorially with the
number of ensembles to be decoded. We believe decoding of
larger ensemble numbers would improve with more training data,
though this is outside the scope of this current work. While there
is no obvious way to equate ensembles across animals, whether
these LFP signatures are conserved across animals poses an
interesting open question for future work. We hypothesize that
there exists an equivalence relation between the LFP spectral
signatures of IEDs (whether from the same or different animals).
Combined with our observations here, this would imply that an
equivalence class structure exists for cellular ensembles across
animals via their LFP signatures, possibly offering an effective
bridge to the micro–macro disconnect. While our results apply to
the adult-born and mature subpopulations of the principal cell
population in the DG, our framework of latent ensemble
recruitment could motivate future experiments to also examine
DG interneurons and mossy cells, which also play critical roles in
the epileptic DG circuit70–72, and more generally, to investigate
cell type-specific ensemble dynamics in other HPC subregions
during inter-ictal and ictal events1,64,65.

Recent work73 has reported that rAAVs impair neurogenesis in
the adult mouse DG, with significant implications for functional
recordings of GCs relying on rAAV for delivery of a genetically
encode actuators or sensors. Given the design of our study, we
believe these findings have limited relevance to the work presented
here: principally, Johnston and colleagues73 found that cells born
two weeks or more prior to viral injection demonstrate no
reduction, and in our study induction of Nestin expression by
TMX occurred 2–3 weeks prior to injection with AAV1.Syn.
GCaMP6f. In addition, the total volume of virus used in this study,
196 nl, is less than 1/5 the volume found to cause death of new-
born cells at the same titer. Finally, even at the larger volume of
1000 nl, Johnston et al. only observed a “partial effect” of ablation
at the viral titer used in this study, 1 × 1012. Most compellingly,
during imaging 3 weeks post injection, we empirically see a large
and active population of abGCs indelibly labeled within the
NestinCreERT2 line—if this population has somehow been
reduced, this effect would make our observation of an identifiable
distinct role for abGCs in TLE even more remarkable.

While our method required ipsilateral partial aspiration of
dorsal CA1 to gain high-resolution optical access to DG, normal
DG-mediated neural dynamics has been demonstrated using
similar methods in non-epileptic mice57,74,75. While normal levels
of neurogenesis and general abGC morphology are not altered
following aspiration57, we cannot rule out the possibility that the
damage caused by the implant contributed to the microcircuit
reorganization and functional pathogenesis produced by the TLE
model. This is an important question, and we expect that
advances in three-photon imaging76 will permit dissection of DG
circuits with CA1 intact in the near future.

Although a rAAV-driven expression of GCaMP labels both
excitatory and inhibitory populations in the DG, excitatory
neurons form the overwhelming majority of the imaged popu-
lation in this study. To quantify the potential impact of
GABAergic neurons labeled among the DG GCs in the KA
model, we imaged the GC layer in a Vgat-cre x Ai9-tdTomato
mouse line, finding that GABAergic neurons only constitute 2.2%
of the neurons in a typical FOV (Fig. S3). Therefore, while there
may be a small number of unidentified interneurons in the
extracted GC population, we assume that their impact on the
results presented here is negligible.

Identification and characterization of circuit-level functional
organization represents a critical step toward a general framework
for resolving the micro-macro disconnect in chronic epilepsies9.
Here we provide in vivo characterization of single cell and
microcircuit-level dynamics in multiple cell populations in the
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epileptic DG and relate them to macroscale events in simulta-
neously recorded LFP. These results may suggest a new design
strategy for closed-loop systems for intervening in epilepsy, based
on actively recognizing the patient-specific microcircuit targets
for intervention in situ. Two-photon calcium imaging is currently
the only technique that permits the longitudinal functional
characterization of physiological and pathological neural circuits
at the cellular level, which is necessary for the dissection of epi-
leptic microcircuits and their recruitment during IEDs in vivo.
Currently, continuous monitoring of microcircuit dynamics using
calcium imaging is not translatable to humans. However, long-
term scalp and invasive EEG recording is routinely conducted as
part of the pre- and post-surgical evaluation for intractable focal
epilepsy syndromes, and is the de facto diagnostic and mon-
itoring tool for abnormal brain activity. The input signal to any
therapeutic closed-loop intervention system will be electrographic
for the foreseeable future, and the critical “inverse problem” for
relating electrophysiological observables back to circuit mechan-
isms is unavoidable. Our work here takes the first steps toward
solving this “inverse problem” by connecting signatures in LFP to
circuit-level events, which will be essential for the design of new-
generation functional closed-loop interventions.

Methods
Experimental model and subject details. Animals: All experiments were con-
ducted in accordance with the US National Institutes of Health guidelines and with
the approval of the Columbia University Animal Care and Use committee. Male
transgenic mice were obtained from The Jackson Laboratory to establish a local
breeding colony on a C57BL/6J background: Nestin-CreERT2 (JAX:016261) and
ROSA26-CAG-stopflox-tdTomato Ai9 (JAX:007909). The Nestin-Cre line was
crossed with the Ai9 reporter line to express tdTomato in adult-born granule cell
populations. Mice were housed in the vivarium on a 12 h light/dark cycle (lights on
at 07:00), constant temperature (21–24 °C) and humidity (30–50%), were housed
3–5 mice per cage, and had access food and water ad libitum. Mice were housed
individually during video-EEG monitoring following kainic acid injection. Mature
male and female mice (>8 weeks of age) were used for all experiments.

Induction of transgene expression and experimental timeline: Expression of the
transgene in all mice was induced at approximately eight weeks of age, two weeks
prior to kainic acid (KA) injection. Induction in Nestin-CreERT2/tdTomato mice,
involved injection of 3 mg tamoxifen (TMX) (20 mg/mL in corn oil/10% ethanol)
I.P./day for 5 consecutive days. abGCs were indelibly labeled with tdTomato
following injections of TMX that drove expression of Cre in Nestin+ cells. This
induction procedure labels approximately 90% of the immature granule cell
population expressing doublecortin48. Two weeks later, KA was injected into the
ventral hippocampus to induce the epilepsy model, and GCaMP6f injected into the
dorsal dentate gyrus. Following recovery from injection of KA, mice were placed in
video-EEG enabled housing where LFP and behavioral activity were continuous
recorded to monitor ictogenesis77. Three weeks post-KA injection, mice were
habituated to being head fixed under the two-photon microscope, and Ca2+

imaging proceeded over the following 1–2 weeks (Fig. 1c).
Imaging window implant: Recombinant adeno-associated virus carrying the

GCaMP6f gene (AAV2/1:hSyn-GCaMP6f) was obtained from Addgene (100837-
AAV1) with titer ≥1 × 1012. The dorsal dentate gyrus was stereotactically injected
using a Nanoject syringe (Drummond Scientific) with a pulled glass capillary.
Injection coordinates were −2.3 mm AP, 1.5 mmML, and −1.8, −1.65, −1.5 mm
DV relative to the cortical surface. Sixty-four nanoliter of virus was injected at each
DV location in 32 nL increments at a flow rate of 23 nL/s. Three days later, mice
were then surgically implanted with an imaging window (diameter: 2.0 mm; height:
2.3 mm) over the left dorsal dentate gyrus. Imaging cannulas were constructed by
adhering a 2 mm glass coverslip (custom cut by Potomac) to a cylindrical stainless-
steel cannula (2 mm diameter × 2.3 mm height) using optical adhesive (Norland).
The imaging window was implanted 100–200 µm above the hippocampal fissure,
providing optical access to the granule cells in the dorsal blade of the DG, and the
interneurons and mossy cells in the hilus. Briefly, following induction of anesthesia
(Isoflurane: 3.5% induction, 1.5–2.0% maintenance; 1.0 L/min O2) and
administration of analgesia (Metacam 5mg/kg i.p.; Bupivacaine 2 mg/kg s.c.), the
scalp was removed, and a 2.0 mm diameter craniotomy centered over the injection
location was performed, using a fin-tipped dental drill. The dura was removed, and
the underlying cortex aspirated until fibers within the stratum lacunosum
moleculare were visible. The cannula with window was placed within the aspirated
cavity and fixed to the skull with dental cement. A stainless steel straight headpost
was then cemented to the skull posterior to the imaging window.

Electrode implants: During the window implant surgery, electrodes were
implanted to monitor hippocampal local field potentials and neck muscle
electromyographic signals. A custom monopolar electrode was constructed from

127 μm Teflon coated stainless-steel wire (A-M Systems), and inserted near the
location of the KA injection in the ventral hippocampus (AP: −3.28 mm, ML:
2.75 mm, DV: −2.5 mm) ipsilateral to the imaging window to monitor and record
hippocampal local field potentials. The location of the monopolar depth electrode
was chosen based on previous studies showing that spontaneous seizures in the KA
epilepsy model typically arise from the hippocampal formation ipsilateral to the
KA injection site78. A stainless-steel jewelers screw was placed in the contralateral
frontal bone for a ground electrode. To record electromyographic signals, a second
stainless-steel screw was inserted in the occipital bone through overlying cervical
trapezius muscle. Electrode wires were connected to a custom plug (Mill-Max strip
connector) that was then cemented to the headpost. Following recovery from the
implant procedure, mice underwent 24 h video-EEG monitoring for seizure
detection. Following similar implant procedures, a subset of control mice was
implanted with a custom bundled 4-channel electrode constructed from 51 μm
PFA coated tungsten wire (A-M Systems) to monitor LFP sharp wave ripples. This
probe was implanted in CA1 contralateral to the imaging window, and inserted at a
45° angle lateral to midline at the coordinates 2.3 mm AP, 2.75 mmML relative to
Bregma, and 0.9744 mm DV relative to the cortical surface.

Kainic acid injection: KA (AG Scientific, USA) was dissolved in sterile
phosphate buffered saline with a final concentration of 20 mM. Using procedures
described above, mice were stereotaxically injected while under isoflurane
anesthesia, with 50 nL kainic acid unilaterally into a single location within the
ventral hippocampus (AP: −3.28 mm, ML: 2.75 mm, DV: −3.4 mm). The location
of the KA injection was chosen to allow for chronic 2-photon imaging of the dorsal
dentate gyrus ipsilateral to the KA injection. Intraventral hippocampal KA
injection results in epileptogenesis and seizure profiles similar to that found in the
dorsal hippocampal KA model55.

In vivo 2-photon imaging of dentate gyrus: All imaging was conducted using a
two-photon microscope equipped with an 8 kHz resonant scanner (Bruker).
Approximately 50–100 mW of laser power under the objective was used for
excitation (Ti:Sapphire laser, (Chameleon Ultra II, Coherent) tuned to 920 nm),
with adjustments in power levels to accommodate varying window clarity. To
optimize light transmission, we adjusted the angle of the mouse’s head using two
goniometers (Edmund Optics, +/− 10-degree range) such that the imaging
window was parallel to the objective. A piezoelectric crystal was coupled to the
objective (Nikon 40X NIR water-immersion, 0.8 NA, 3.5 mm WD), allowing for
rapid displacement of the imaging plane in the z-dimension. We continuously
acquired red (tdTomato) and green (GCaMP6f) channels separated by an emission
cube set (green, HQ525/70m-2p; red, HQ607/45m-2p; 575dcxr, Chroma
Technology) at 512 × 512 pixels covering 225 μm × 225 μm, at 8–30 Hz (dependent
on number of planes imaged) with photomultiplier tubes (green GCaMP
fluorescence, GaAsP PMT, Hamamatsu Model 7422P-40; red tdTomato
fluorescence, multi-alkali PMT, Hamamatsu R3896). A custom dual stage preamp
(1.4 × 105 dB, Bruker) was used to amplify signals prior to digitization.

For all experiments, mice were head-fixed and ran freely on a 2 m long treadmill
belt. We habituated the mice to the head-fixed condition for at least 1 h per day
over three days prior to the beginning of the experiment.

Electrophysiology recording: All mice were implanted with a hippocampal LFP
electrode and imaging window. During two-photon imaging, hippocampal LFP
was recorded so that electrographic events could be correlated and analyzed with
calcium imaging data. Electrophysiology signals were acquired with a multichannel
digital recording system (Intan Technologies, USA) at 25 kHz and synchronized
with the frame-start signal of the microscope. While not being imaged, mice were
routinely monitored for interictal and seizure events using a custom continuous
video-EEG comprising an analog multichannel recording system customized to
record up to 16 mice simultaneously (NeuraLynx, USA). Briefly, the hippocampal
LFP signal and video were acquired by a PC running a custom MATLAB (version
R2011b) seizure recording and detection algorithm77. EEG signals were acquired
for offline determination of IED, and seizure frequency and duration.

Ca2+ imaging data preprocessing: All imaging data were pre-processed using
the SIMA software package79. Motion correction was performed using whole frame
registration. In cases where motion artifacts were not adequately corrected, the
affected data were discarded from further analysis. We used the Suite2p software
package80 to identify spatial masks corresponding to neural regions of interest
(ROIs) and extracted associated fluorescence signal within these spatial footprints,
correcting for cross-ROI and neuropil contamination. Identified ROIs were curated
post-hoc using the Suite2p graphical interface to exclude non-somatic components.
ROI detection with Suite2p is inherently activity-dependent, and so for each
session, we detected only a subset of neurons that were physically present in the
FOV. To track ROIs across imaging sessions, all recordings of the same FOV were
first concatenated before calculating spatial masks with Suite2p.

Running modulation calculation: For each calcium trace triggered on an event,
the mean of the pre-event activity was subtracted from the mean of the post-event
activity (mean ΔF/Fpost-event – mean ΔF/Fpre-event) to calculate the response
magnitude. To calculate whether a cell reliably changes its activity on an event type,
the response magnitudes for that event type were sampled with replacement, and
the mean response magnitude was calculated. We repeated this calculation for 3000
bootstrap resampling iterations, to construct a 99% confidence interval (CI). The
cell was determined to have be significantly negative response if the CI was less
than 0, significantly positive response if the CI was greater than 0, and non-
significant response if the CI contained 0.
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Detection of sharp wave ripple events: LFP signals were calculated from the
wide-band 25 Hz signal by down-sampling to 1250 Hz. From the four channels on
the probe, the wire within the pyramidal layer was identified as showing the greatest
ripple-band Gabor wavelet power (100–225 Hz). After the removal of noisy LFP
epochs, SPW-R events were detected using a custom supervised algorithm based on
a template hand-labeled ground-truth data set of SPW-R events from four mice
(separate from those recorded in this study) using k-nearest-neighbor embedding
based on wavelet-derived SPW-R features (Matlab version R2019a). Candidate
events identified using the supervised template matching procedure, were
considered SPW-R-events if their within-event ripple-band wavelet power was at
least 12 median absolute deviations above the median for the session. SPW-R-event
detection was visually verified. Only SPW-R-events occurring during periods of
immobility lasting at least 3 s were included in the analysis. For calculations
requiring point time estimates, the within-SPW-R ripple-power peak was used.

Classification of cell type and epileptiform events: IEDs were determined from
single-channel LFP using a semi-supervised approach. First, the LFP signal was
aligned with each imaging frame using an external frame-trigger ADC channel.
The magnitude spectrum of the LFP snippet corresponding to each imaging frame
was calculated using the Fast Fourier Transform (FFT). The magnitude spectrum
was chosen so that IEDs could be detected regardless of phase within the frame. We
then trained an Online Kernelized Perceptron (using a Gaussian radial basis
function kernel with σ= 1) to recognize frames containing an IED by hand-
annotating a small number of LFP snippets containing IEDs, allowing the classifier
to classify all the snippets in the session based on the hand-labeled examples, and
updating annotations based on the classifier’s feedback. This classification
procedure was conducted according to an iterative feedback process, where human
input would train the algorithm while correcting the algorithm’s mistakes, so that
each session is hand-curated, but the amount of hand curation necessary is
minimized. We verified the internal consistency of this algorithm quantitatively by
plotting the 1/f corrected average IED power spectrum (Fig. 2b); we find the
classified IEDs share common spectral characteristics. An online perceptron-type
algorithm was chosen because it permits efficient human-supervised training with
immediate feedback after each labeled example and accurate phase-agnostic
classification with a small number of labeled samples. A kernelized algorithm was
chosen so that nonlinear relationships between IEDs and the magnitude spectrum
could be captured.

Responsiveness of cells to IEDs: A scalar responsiveness Δ of a cell to an event
was calculated as the cell’s mean activity in a fixed 3-s window postevent minus the
cell’s mean activity in the same window pre-event. An Ncells × Nevents data matrix
was constructed in this manner, and a Ncells × 1 vector of labels was constructed
from the red channel, with tdTomato-tagged cells labeled as “abGC” and all others
labeled as “mGC”.

Linear classification of abGCs and mGCs based on IED response profiles: A
logistic regression linear classifier was trained to classify abGCs and mGCs based
on their IED response profiles. Training and testing were performed using the
scikit-learn package version 0.23.163.

To assess the data for linear separability and examine the learned weights,
logistic regression was first trained on the entire dataset using an L2 regularization
penalty to avoid overfitting (Fig. 3a, b). To evaluate the generalization of the model,
the dataset was split by cell into 80–20 training and test sets, and test accuracies
were computed. The model was trained with L2 regularization to establish an
accuracy baseline to compare with L1 accuracy.

UMAP dimensionality reduction: We use supervised UMAP to perform
dimensionality reduction in order to visualize the cell IED response profiles in high
dimensional space. Dimensionality reduction was performed using the UMAP-
learn package81,82. The UMAP embedding was cross-validated in a similar manner
to the logistic regression: UMAP was trained on a random 80% of the cells and the
learned embedding was applied to a held-out on 20% of the cells.

Latent ensemble recruitment modeling: Synchronous network events were
identified using spectral analysis of a simultaneously collected single-channel LFP
recording in ipsilateral CA1. The scalar responsiveness Δ of a cell to an event is
defined as above. The responsiveness was binarized to an “activation” variable z′,
using the following bootstrapping procedure: a bootstrap responsiveness
distribution was calculated by drawing 10,000 random trigger frames with
replacement from the ΔF/F trace of each cell, excluding IEDs and seizures, and
then used to construct a 95% confidence interval. A cell was determined to be
“activated” by an IED if its responsiveness to that IED exceeded the 95th percentile
of the bootstrapped responsiveness distribution. Existing data from in vitro
physiological studies1 have suggested that epileptiform activity is associated with
spatially clustered, temporally coactivated neural ensembles. Our model (Fig. 4a, b)
formalizes a weaker version of this hypothesis: that each interictal spike recruits a
sparse set of pre-existing ensembles within the network, and each ensemble
activates a subset of its constituent cells.

Specifically, we assume the following generative process for a dataset consisting
of M events in a population of N cells organized into K ensembles:

(1) Once for the entire network, we sample the ensembles σk for each k from a
Dirichlet distribution parameterized by sparsity-controlling hyperparameter
β. This gives us K ensembles, where each ensemble σk is a probability vector
over the N cells in the network, whose entries correspond to the strength of
each cell’s association with that ensemble.

(2) For each event i= 1, …, M, we sample ϑi, a sparse probability vector over
ensembles, from another Dirichlet distribution parameterized by hyper-
parameter α, representing the degree to which each ensemble is recruited by
that event.

(3) For each cell,

a. We sample the indicator variable zij from a Bernoulli distribution
parameterized by p ¼ P

k θikσkj, which represents whether or not that
cell was recruited to that event.

b. We simultaneously sample an ensemble ζ from the multinomial
Multinomial(φ), which gives the ensemble from which the cell j was
recruited.

c. Finally, we draw our observed responsiveness Δ from a Gaussian, either
Nðμon; σ2onÞ or Nðμoff ; σ2off Þ depending on the value of zij.

Ensembles dominated by one population: We identified “abGC dominated” and
“mGC dominated” ensembles by sampling from a shuffle distribution as follows:
The number and sizes of ensembles were fixed from the ensembles identified in real
data. The cell type labels were then randomly permuted while preserving the
overall number of abGCs and mGCs in the entire population. This procedure was
repeated for 10,000 iterations to construct null distributions for the number of
abGCs and mGCs expected in each ensemble based on its size. Ensembles which
contained more abGCs or mGCs than the 95th percentile of its size-matched
shuffle ensemble were termed abGC-“dominated” or mGC-“dominated”,
respectively.

Inverse classification: We trained multiple iterations of the model, varying the K
hyperparameter from 2 to 10. We then decoded the most active ensemble from the
LFP power spectrum of the imaging frame during which the IED occurred using a
Random Forest classifier (from the scikit-learn package) with 100 decision tree
estimators trained on the LFP power spectrum of that frame, validated across
10 random 80–20 train-test splits.

Synchrony and seizure AUC: The “synchrony” of abGCs and mGCs is defined
as the Kendall tau correlation between the median event-activation vector of each
population. Kendall’s tau was chosen as a “soft” correlation able to tolerate small
displacements in time, meaning desynchronization in time is penalized on a
continuous basis rather than as an all-or-nothing correlation as with e.g.,
Pearson’s r.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are provided within the paper and its
supplementary information. All additional information will be made available upon
reasonable request to the authors. Source data are provided with this paper.

Code availability
The data analysis for this study was mainly performed using Python 2.7 and the open
source packages scikit-learn and SIMA, which are available at https://github.com/scikit-
learn/scikit-learn and https://github.com/losonczylab/sima/. Custom code used in this
study is also available at https://github.com/losonczylab (https://doi.org/10.5281/
zenodo.4158960 and https://doi.org/10.3389/fninf.2014.00077).
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