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OBJECTIVE—Diabetic retinopathy displays the features of a
neurodegenerative disease. Oxidative stress is involved in the
pathogenesis of diabetic retinopathy. This investigation sought to
determine whether hypertension exacerbates the oxidative
stress, neurodegeneration, and mitochondrial dysfunction that
exists in diabetic retinopathy and whether these changes could
be minimized by the angiotensin II type 1 (AT1) receptor blocker
(ARB) losartan.

RESEARCH DESIGN AND METHODS—Diabetes was in-
duced in spontaneously hypertensive rats (SHRs) and normoten-
sive Wistar-Kyoto (WKY) rats. The diabetic SHRs were assigned
to receive or not receive losartan.

RESULTS—The level of apoptosis in the retina was higher in
diabetic WKY rats than in the control group, and higher levels
were found in diabetic SHRs. The apoptotic cells expressed
neural and glial markers. The retinal glial reaction was more
evident in diabetic WKY rats and was markedly accentuated in
diabetic SHRs. Superoxide production in retinal tissue increased
in diabetic WKY rats, and a greater increase occurred in diabetic
SHRs. Glutathione levels decreased only in diabetic SHRs. As a
consequence, the levels of nitrotyrosine and 8-hydroxy 2�-deox-
yguanosine, markers of oxidative stress, were elevated in dia-
betic groups, mainly in diabetic SHRs. Mitochondrial integrity
was dramatically affected in the diabetic groups. The ARB
treatment reestablished all of the above-mentioned parameters.

CONCLUSIONS—These findings suggest that concomitance of
hypertension and diabetes exacerbates oxidative stress, neuro-
degeneration, and mitochondrial dysfunction in the retinal cells.
These data provide the first evidence of AT1 blockage as a
neuroprotective treatment of diabetic retinopathy by reestablish-
ing oxidative redox and the mitochondrial function. Diabetes
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D
iabetic retinopathy is a vision-threatening dis-
ease presenting neurodegenerative features as-
sociated with extensive vascular changes. At
present, there is no established neuroprotec-

tive treatment that avoids visual disturbance in patients
with diabetes. Earlier studies have focused on improv-
ing glycemic control for prevention and treatment of
diabetic retinopathy (1,2). However, with the publica-
tion of EURODIAB EUCLID (Controlled Trial of Lisinopril
in Insulin-Dependent Diabetes) (3) and U.K. Prospective
Diabetes Study results (1), controlling blood pressure and,
specifically, interference in the renin-angiotensin system
have emerged as important strategies for treating diabetic
retinopathy. More recently, DIRECT (Diabetic Retinopa-
thy Candesartan Trial), a randomized double-blind place-
bo-controlled study with type 1 or type 2 diabetic patients
into daily placebo or 32 mg candesartan groups, an angio-
tensin II receptor blocker (4,5), showed the importance of
the renin-angiotensin system in diabetic retinopathy. In
patients with type 1 diabetes, candesartan had a mild
effect on reducing the incidence of retinopathy by 18%, and
in post hoc analyses, candesartan reduced the incidence of
retinopathy by three or more steps by 35%. In patients with
type 2 diabetes, treatment with candesartan decreased the
progression of retinopathy by 34% in participants with
early retinopathy. These data showed that the potential
benefits of the angiotensin II type 1 (AT1) receptor blocker
(ARB) candesartan might be seen in early stages of
diabetic retinopathy.

Previous studies had demonstrated the presence of all
renin-angiotensin system components in the retina (6,7).
Clinical studies by Funatsu et al. (8) have showed in-
creased angiotensin II levels in vitreous specimens of
diabetic patients with retinopathy, demonstrating that the
renin-angiotensin system is activated in diabetic retinopa-
thy. Besides the vascular effects of renin-angiotensin sys-
tem components, a mechanism of neuronal dysfunction
involving this system was described in the diabetic retina
in vivo and in vitro through phosphorylated extracellular
signal–regulated kinase, downregulating synaptophysin,
the major synaptic vesicle protein (9).

Diabetes increases oxidative stress, which plays a key
regulatory role in the development of its complications
(10,11). Reactive oxygen species (ROS) generated by high
glucose are considered a causal link between elevated
glucose and the pathways of development of diabetic
complications (12). In the retina, mitochondrial dysfunc-
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tion is present in hyperglycemic conditions and is an
important source of superoxide production (12,13). Re-
cently, our group has demonstrated that there is an
increase in superoxide retinal production in diabetic spon-
taneously hypertensive rats (SHRs) concomitant with a
decrease in reduced GSH, an important antioxidant sys-
tem present in the retina (14). As a consequence, extensive
retinal oxidative damage, evaluated by retinal tyrosine
nitration and 8-hydroxy-2�-deoxiguanosine (8-OHdG), was
observed (14).

Oxidative stress may lead to cell death (15) via
apoptotic means, and it is widely known that apoptosis
of retinal cells is a consummated phenomenon in dia-
betic retinopathy. Retinal capillary cells undergo accel-
erated apoptosis, which precedes the detection of any
histopathological changes characteristic of diabetic ret-
inopathy (16). The retinal vascular changes present in
the retina from diabetic models were well documented
(17,18), but some investigators have demonstrated pro-
found retinal abnormalities, evaluated by electroreti-
nography, and potential visual changes evoked before
the onset of the first vascular change is detectable in the
diabetic retina (19,20). In this regard, it has been
recently reported that both apoptosis and glial activa-
tion, two characteristic features of retinal neurodegen-
eration, are present in the retinas of diabetic donors free
of microvascular abnormalities according to the oph-
thalmoscopic examinations performed in the preceding
2 years (21,22). In view of the good evidence suggesting
that the protective benefits of renin-angiotensin system
inhibition extend beyond blood pressure control, the aim of
the current study was to determine whether hypertension
exacerbates oxidative stress–induced neuronal damage in
the diabetic retina and whether treatment with the ARB
losartan abrogates retinal neurodegeneration in diabetic hy-
pertensive rats.

RESEARCH DESIGN AND METHODS

The protocol complies with the guidelines of the Brazilian College of Animal
Experimentation (COBEA) and the Statement for the Use of Animals in
Ophthalmic and Vision Research (ARVO), and it was approved by the local
committee for ethics in animal research (CEEA/IB/Unicamp). The SHRs and
normotensive control Wistar Kyoto (WKY) rats used were provided by
Taconic (Germantown, NY) and bred in our animal facility. The rats were
housed at a constant temperature (22°C) on a 12-h light/dark cycle with ad
libitum access to food and tap water.

Experimental diabetes was induced in 12-week-old hypertensive male
SHRs and WKY rats with a single intravenous injection of streptozotocin (50
mg/kg in sodium citrate buffer, pH 4.5; Sigma, St. Louis, MO). From the day
after diabetes induction, the diabetic SHRs were randomly assigned to receive
no antihypertensive treatment or to be treated with the ARB losartan (200
mg/l; Merck Sharp & Dome Farmaceutica, São Paulo, Brazil) in drinking
water. During the study, diabetic rats received 2 units of insulin (human
insulin HI-0310; Lilly) three times per week subcutaneously to promote
survival and prevent ketoacidosis. Control rats received only vehicle. Blood
glucose levels were measured by the colorimetric GOD-PAP assay (Merck,
Darmstadt, Germany). Values �15 mmol/l were indicative of diabetes. Systolic
blood pressure (SBP) was obtained by tail-cuff plethysmography (Physiograph
MK-III-S; Narco Bio-System, Houston, TX) as previously reported (14). Body
weight, blood glucose levels, and SBP were measured at 0, 4, 8, and 12 weeks
of duration of diabetes. At 12 weeks after diabetes induction, the rats were
killed, and the retinas in one eye were detached from the retinal pigmented
epithelium cell layer and used for protein extraction or colorimetric assays;
the other eye was used for immunohistochemical or immunofluorescence
assays.
Terminal deoxynucleotidyl transferase–mediated dUTP nick-end

labeling. To determine whether retinal cell apoptosis was influenced by
diabetes or rat strain, the terminal deoxynucleotidyl transferase (TdT)–
mediated dUTP nick-end labeling (TUNEL) method for detecting DNA
breaks in situ was applied to retinal tissue. After quenching endogenous
peroxidase, the sections were rinsed in One-Phor-All buffer (Amersham
Pharmacia Biotech, Piscataway, NJ) and incubated with TdT (Amersham
Pharmacia Biotech) and biotinylated dUTP (Gibco/BRL, Life Technologies,
Grand Island, NY) in TdT buffer. Labeled nuclei were detected with ABC
Vectastain (Vector Laboratories, Burlingame, CA) and diaminobenzidine
tetrahydrochloride/chloride/hydrogen peroxide and counterstained with
hematoxylin. As a positive control, some slides were treated with DNase
(Sigma). The quantitative analysis for TUNEL-positive cells was performed
by an observer with no knowledge of the studied groups and expressed as
the number of positive cells per retinal section.

TABLE 1
Physiological parameters evaluated monthly in each of the studied groups

n Weeks
Body weight

(g)
SBP

(mmHg)
Glycemia
(mmol/l)

Control WKY rats 27 0 372 � 29 125 � 4 8.9 � 1.2
Diabetic WKY rats 30 0 368 � 37 126 � 6 35 � 5.8*
Control SHRs 26 0 252 � 22† 188 � 15‡ 8.6 � 1.0
Diabetic SHRs 31 0 248 � 15† 189 � 13‡ 36.2 � 5.7*
Diabetic SHRs with losartan 25 0 253 � 14† 189 � 11‡ 36.4 � 5.8*
Control WKY rats 27 4 419 � 26 126 � 8 10.1 � 1.5
Diabetic WKY rats 30 4 351 � 19§ 123 � 2 37 � 5.4*
Control SHRs 26 4 299 � 44 190 � 11‡ 9.7 � 1.8
Diabetic SHRs 31 4 235 � 47§ 191 � 9‡ 36.8 � 5.9*
Diabetic SHRs with losartan 25 4 247 � 36§ 136 � 6 37.2 � 5.2*
Control WKY rats 27 8 489 � 33 126 � 1 9.9 � 1.8
Diabetic WKY rats 30 8 357 � 25§ 121 � 4 37 � 7.1*
Control SHRs 26 8 325 � 33 192 � 13‡ 10.1 � 1.4
Diabetic SHRs 31 8 229 � 30§ 194 � 15‡ 37.9 � 6.0*
Diabetic SHRs with losartan 25 8 238 � 27§ 135 � 8 37.9 � 6.1*
Control WKY rats 27 12 519 � 40 124 � 6 10.8 � 1.7
Diabetic WKY rats 30 12 372 � 52§ 121 � 6 38.0 � 6.2*
Control SHRs 26 12 334 � 25 194 � 17‡ 10.3 � 1.5
Diabetic SHRs 31 12 210 � 27§ 197 � 20‡ 38.7 � 6.1*
Diabetic SHRs with losartan 25 12 223 � 28§ 135 � 7 37.8 � 6.3*

*P � 0.0001 vs. respective control groups; †P � 0.0001 vs. WKY group; ‡P � 0.0001 vs. WKY groups and diabetic SHRs treated with the ARB
losartan; §P � 0.0001 vs. respective control groups.
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Double-immunofluorescence for caspase-3 and glial fibrillary acidic

protein or nestin to identify the cell type origin. The eyes were
enucleated and fixed with 4% paraformaldehyde, cryoprotected in 30%
sucrose in phosphate buffer, frozen in embedding medium (OCT; Sakura
Finetek, Torrance, CA), and cut perpendicularly to the vitreal surface. The
slides were blocked with BSA and the sections were stained with both
primary antibodies to polyclonal cleaved caspase-3 (1:10; Cell Signaling), a
marker of apoptosis, and polyclonal anti– glial fibrillary acidic protein
(GFAP) antibody (1:10; Santa Cruz Biotechnology, Santa Cruz, CA) for
Müller glial cell or anti-rat nestin monoclonal antibody (1:10; BD Pharm-
ingen, Franklin Lakes, NJ) for neural cell identification. The sections were
then incubated with the appropriate secondary antibodies. Afterwards, the
sections were rinsed and cover-slipped with Vectashield antifading me-
dium containing 4�,6�-diamino-2-phenylindole used for nuclei staining
(Vector). The sections were examined with a confocal laser scanning
microscope (LSM510; Zeiss) using appropriate emission filters. Digital
images were captured using specific software (LSM; Zeiss).
Immunofluorescence for GFAP for estimation of glial reaction on

retinal tissue. The immunofluorescence labeling of GFAP was performed as
described above in double-immunofluorescence staining assay. The sections
were examined using an Olympus BX51 fluorescence microscope. Digital
images were captured using specific software (Image Pro Express 6.0). The
GFAP analyses were determined using the public domain program Image J
(National Institutes of Health, available online at http://rsb.info.nih.gov/ij). The
semiquantitative analyses were performed as mentioned above in TUNEL
assay. The fluorescence of GFAP was expressed as the percentage of
fluorescence per millimeter squared of retina.
Detection of superoxide anion production in retinal tissue. Lucigenin
(bis-N-methylacridinium nitrate; Invitrogen, Eugene, OR) was used to mea-
sure superoxide anion production (23). Briefly, the retinas were isolated and
placed into tubes containing RPMI-1640 medium (Gibco/BRL, Life Technolo-
gies, Gaithersburg, MD) at 37°C in a humidified atmosphere of 95% air/5% CO2.
Then, 25 mmol/l of lucigenin was added, and photon emission was measured
over 10 s; repeated measurements were made over a 3-min period using a
luminometer (TD 20-E; Turner). Superoxide production was expressed as the
relative luminescence units (RLU) per minute per milligram protein. Protein
concentration was measured using the Bradford method (24) using BSA
standard.
Determination of reduced glutathione levels in the retina. Retinal
glutathione (GSH) levels were measured using a method described previously
(25), with a few modifications described previously (14). The absorbance was
read at 412 nm and the GSH concentration expressed as micromoles per liter
GSH per microgram of retinal protein. GSH was used as an external standard
for preparation of a standard curve.
Immunohistochemistry for nitrotyrosine and 8-OHdG in retinal

slides. Briefly (14), after quenching endogenous peroxidase, the sections
were incubated with nonfat milk. Tissue sections were incubated with
polyclonal rabbit anti-nitrotyrosine antibody (Upstate Cell Signaling Solu-
tions, Lake Placid, NY) and a mouse monoclonal anti– 8-OHdG antibody
(1:50, N45.1; Japan Institute for the Control of Aging). Afterwards, second-
ary appropriated antibodies were applied to the sections. Labeled nuclei
were detected as described above in the section on immunohistochemistry
for TUNEL. Staining was performed, omitting the primary antibody for
negative controls. For nitrotyrosine, quantitative analyses were performed
as a positivity percentage in all retinal layers, grading from 0 for no
positivity to 4 for �80% of positivity (14). The 8-OHdG analyses were
determined using the public domain program Image J (National Institutes
of Health) and expressed by percentage of positivity per retinal field.
Semiquantitative analyses were performed as described above in the
section on GFAP immunofluorescence assay.
Western blotting analysis for Bcl-2 protein. The retinas were lysed in a
buffer containing 2% SDS and 60 mmol Tris-HCl (pH 6.8) supplemented with
a protease inhibitor cocktail (Complete; Boehringer-Mannheim, Indianapolis,
IN). After centrifugation, the protein concentrations were measured by the
Bradford method. For analysis, 100 �g of total retinal protein was loaded into
SDS polyacrylamide gels. Molecular weight markers (Rainbow; Amersham
Pharmacia) were used as standards. Proteins were transferred to nitrocellu-
lose membranes (Bio-Rad, Hercules, CA). Membranes were blocked in nonfat
milk, incubated with primary antibody (rabbit polyclonal anti–Bcl-2; Santa
Cruz), subsequently incubated with goat anti-rabbit IgG horseradish peroxi-
dase (HRP) secondary antibody, and developed by chemiluminescence
method (Super Signal CL-HRP substrate system; Pierce, Rockford, IL). Ex-
posed films were scanned with a densitometer (Bio-Rad) and analyzed
quantitatively with Multi-Analyst Macintosh Software for Image Analysis
Systems. Equal loading and transfer were ascertained by reprobing the
membranes for �-actin.

Immunoprecipitation of retinal protein extract for mitochondrial

uncoupling protein-2. The retinas were lysed directly with buffer A contain-
ing 100 mmol/l Tris, 10 mmol/l sodium pyrophosphate, 100 mmol/l sodium
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FIG. 1. A: A representative immunohistochemical identification of
TUNEL-positive cells in the retinal sections of control and diabetic
WKY rats and SHRs and losartan-treated diabetic SHRs. The positive
controls were retinal slides treated with DNase. The majority of
positive cells were localized in the outer nuclear layer of the retina,
indicating, therefore, that the photoreceptors are the most affected
cells. B: Summary of the number of TUNEL-positive cells per retinal
section (0.5 � 0.1 vs. 2.3 � 0.9 positive cells per retinal section for
control WKY vs. diabetic WKY rats, P � 0.03; 2.3 � 0.9 vs. 4.4 � 2.0
positive cells per retinal section for diabetic WKY rats vs. diabetic
spontaneously hypertensive rats, P � 0.01; 0.6 � 0.3 vs. 4.4 � 2.0
positive cells per retinal section, control spontaneously hypertensive
vs. diabetic spontaneously hypertensive, P � 0.0003; 4.4 � 2.0 vs. 2.0 �
0.4 positive cells per retinal section for diabetic spontaneously hyper-
tensive vs. diabetic spontaneously hypertensive–losartan, P � 0.01).
*P � 0.03; †P � 0.01. CT, control; DM, diabetic; GCL, ganglion cell
layer; INL, inner nuclear layer; IPL, inner plexiform layer; Los, losar-
tan; ONL, outer nuclear layer; OPL, outer plexiform layer. (A high-
quality digital representation of this figure is available in the online
issue.)
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fluoride, 10 mmol/l EDTA, 2 mmol/l phenylmethylsulfonyl fluoride, 10 mmol/l
sodium ortovanadate, and 1% Triton X-100. The protein concentrations were
measured by the Bradford method (24). Samples containing 1 mg of total
protein were incubated with antibody goat polyclonal IgG uncoupling pro-
tein-2 (UCP-2; Santa Cruz) overnight, followed by the addition of protein A
Sepharose for 1 h. After centrifugation, the pellets were repeatedly washed in
buffer C (100 mmol/l Tris, 10 mmol/l sodium vanadate, 10 mmol/l EDTA, and
1% Triton X-100). For immunoblotting, 400 �g of protein was loaded into 5%
glycerol/0.03% bromophenol blue/10 mmol dithiothreitol and then loaded onto
15% SDS polyacrylamide gels. Molecular weight markers were used as
standards. Proteins were transferred to nitrocellulose membranes (Bio-Rad),
and the membranes were blocked in nonfat milk and then incubated with
primary antibody goat polyclonal IgG UCP-2 (1:500). The blots were subse-
quently incubated with secondary antibody donkey anti-goat IgG HRP and
developed using a chemiluminescence method. Equal loading and transfer
were ascertained by Ponceau S staining.
Statistical analysis. The results are expressed as the means � SD. The
groups were compared by one-way ANOVA, followed by the Fisher protected
least-significant difference test. StatView statistics software for Macintosh was
used for all comparisons with a significance value of P � 0.05.

RESULTS

Physiological characteristics of the studied groups.
The final body weight was lower after streptozotocin
injection in both WKY and SHRs (P � 0.0001), and it was
not affected by treatment with losartan in diabetic SHRs.
As expected, SBP was significantly higher in SHRs than in
WKY rats, and it was reduced in the treated SHRs (P �
0.0001). Blood glucose levels were higher in diabetic rats
compared with nondiabetic groups, and these were not
modified by ARB treatment (P � 0.0001) (Table 1).

TUNEL staining is modified by diabetes or rat strain.

TUNEL staining was a rare event in the retina from control
rats. After 12 weeks of diabetes in WKY rats, an increment
of retinal cells staining positive for TUNEL was observed
(P � 0.03). The diabetic SHRs exhibited an increased
number of TUNEL-positive cells in the retina compared
with diabetic WKY rats (P � 0.01) and control SHRs (P �
0.0003). Losartan significantly reduced the number of
TUNEL-positive cells in all retinal layers compared with
diabetic SHRs (P � 0.01) (Fig. 1).
Identification of apoptotic cell type. To further char-
acterize the apoptotic cells in the retina of adult rats, we
labeled retinal sections for GFAP and nestin. A caspase-
3–positive cell colabeled with the GFAP marker was
observed (Fig. 2A), and another caspase-3–positive cell
expressed nestin (Fig. 2B); both cells were in the outer
nuclear layer. These findings indicate that the apoptotic
retinal cells are of glial and neural origin.
Immunofluorescence for detection of glial reactivity

induced by diabetes and hypertension. Retinal glial
reaction, demonstrated by a local increase in GFAP ex-
pression, is an early marker in the pathogenesis of diabetic
retinopathy (26). In the retina of control WKY rats, GFAP
positivity is minimally apparent. In contrast, after diabetes
induction there was an accentuated increase in glial
reactivity (P � 0.0001). Similarly observed in diabetic WKY
rats, there was a moderate glial reaction throughout the
retina in control SHRs (P � 0.4), and the concomitance of
both diabetes and hypertension extensively exacerbated
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FIG. 2. A: Retinal section with a caspase-3–positive cell colabeled with GFAP antigen localized on outer nuclear layer, as indicated by the arrow.
This is indicative of the glial nature of the apoptotic cell. B: Caspase-3–positive cell expressing the intermediate filament nestin in the outer
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the GFAP staining in retinal tissue (P � 0.0001). The
treatment prevented the retinal glial reaction seen in
diabetic SHRs, which remained similar to control levels
(P � 0.0001) (Fig. 3).
Superoxide anion production and GSH levels. After 12
weeks of diabetes, a significant increase of superoxide
anion production was observed in diabetic WKY rats
compared with the control WKY rats (0.9 � 0.3 vs. 2.0 �
0.8 RLU � min�1 � mg protein�1, P � 0.03), and the
concomitance of diabetes and hypertension exacerbated
the superoxide production compared with the other
groups (P � 0.0002). To identify the source of superoxide
production, we used diphenyliodonium, an inhibitor of
flavin-containing oxidases, and rotenone, an inhibitor of

complex I of the mitochondrial respiratory chain, in vials
containing retina from diabetic SHRs. Preincubation of the
retinal tissue with diphenyliodonium (20 �mol/l) did not
affect superoxide production, whereas preincubation with
rotenone (100 �mol/l) resulted in a marked reduction in
superoxide production. This indicates that mitochondria
are an important source of the superoxide in retinal tissue
(Fig. 4A). Therefore, we evaluated the effect of the treat-
ment with losartan on retinal superoxide production. It
was observed that the ARB restored the superoxide pro-
duction in retina in diabetic SHRs to control WKY levels
(P � 0.0003) (Fig. 4B).

Antioxidant defense was examined using the quantita-
tive measurement of GSH levels in the retinal tissue; it was
diminished in diabetic WKY rats compared with control
WKY rats, but not significantly (P � 0.1). However, the
concomitance of diabetes and hypertension led to a
marked diminution in GSH concentration (�2.5-fold de-
crease) compared with control SHRs (P � 0.0005). The
treatment with losartan reestablished this parameter to
control SHR levels (P � 0.006) (Fig. 5).
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FIG. 3. Evaluation of glial cell reactivity by GFAP immunofluorescence
in retinas of control and diabetic WKY and spontaneously hypertensive
rats. The presence of diabetes or hypertension alone induced a clear
increase in GFAP immunoreactivity throughout the retina. The con-
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diabetic SHRs vs. diabetic losartan (Los)-treated SHRs, †P < 0.0001.
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plexiform layer. (A high-quality digital representation of this figure is
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Diabetes elevated the nitrosative imbalance and was
prevented by ARB treatment in diabetic SHRs. The
nitration of tyrosine, an effect of peroxynitrite on proteins,
was assessed by nitrotyrosine expression. The immuno-
histochemistry for nitrotyrosine showed stronger staining
throughout retinal layers in diabetic WKY rats and control
SHRs compared with control WKY rats (P � 0.0001 and
P � 0.0003, respectively). The presence of diabetes alone
showed an increment in nitrotyrosine values compared
with hypertension alone (P � 0.004). The concomitance of
diabetes and hypertension further increased nitrotyrosine
expression in all retinal layers compared with other
groups (P � 0.001). Losartan completely reestablished
retinal nitrosative status in the retinas of diabetic SHRs
(P � 0.0001). These findings suggest that losartan protects
the retinal tissue against nitrosative stress in diabetic
SHRs (Fig. 6A).
Oxidative DNA damage in diabetic SHR retina was
prevented by treatment with losartan. The distribution
of positive 8-OHdG, a marker of oxidative damage on
nucleic acids, was heterogeneous in retinal tissue, present-
ing higher positivity in the outer nuclear layer of diabetic
WKY rats and in all cellular layers of diabetic SHRs. The
presence of diabetes or hypertension alone induced a
significant increment in 8-OhdG–positive cells in retinal
tissue compared with the control WKY group (P � 0.003).
The concomitance of both resulted in a marked increase in
oxidative DNA damage compared with control SHRs (P �
0.0001). Similarly, as observed with nitrotyrosine, losartan
significantly protected the retinal cells against DNA dam-
age (P � 0.0001) (Fig. 6B).
Diabetes induced retinal mitochondrial dysfunction
and was prevented by losartan. The overexpression of
Bcl-2 mitochondrial protein inhibits the release of cyto-
chrome c into the cytosol, protecting the cells against
early death (27). Therefore, the estimation of Bcl-2 may be
indicative of mitochondrial involvement in the apoptotic
cascade. The expression of Bcl-2 in total retinal lysates
was decreased in both diabetic groups when compared

with the controls (P � 0.01) and reestablished in diabetic
SHRs treated with losartan (Fig. 7A).

UCP-2 expression reflects the mitochondrial energy
metabolism and might play a role in retinal neurodegen-
eration (28). Similarly, as observed in Bcl-2 protein, the
expression of UCP-2 was diminished in both diabetic
groups compared with the respective control groups
(P � 0.03), and it was restored to the levels of the
control groups in losartan-treated diabetic SHRs (P �
0.04) (Fig. 7B).

DISCUSSION

The ARB used in the treatment of hypertension exerts a
variety of pleiotropic effects, including antioxidant, anti-
apoptotic, and anti-inflammatory effects (29). However,
the possible antioxidant/antiapoptotic effects of ARB in
the diabetic retina have never been addressed. In the
current study, we investigated the potential effect of the
losartan on retinal neurodegeneration in a model that
combines diabetes and hypertension. We observed that
the apoptotic rate was higher in the retina of diabetic
SHRs compared with control WKY rats, and the cells
exhibited neural and glial characteristics, as demonstrated
by specific antigens. The oxidative imbalance, character-
ized by an increase in superoxide production and a de-
crease in reduced GSH levels in retinal tissue, was higher
in diabetic rats and accentuated in diabetic SHRs in the
presence of mitochondrial involvement, as demonstrated
by decreased expression of Bcl-2 and UCP-2 mitochondrial
proteins. Losartan treatment led to amelioration of the
apoptotic rate in neural and glial retinal cells, reestablish-
ment of redox status by decreasing superoxide production
and improving the antioxidative enzymatic system GSH,
and restoration of mitochondrial protein expression lev-
els. Therefore, the ARB seemed to offer neural protection,
including antiapoptotic and antioxidant benefits, in the
retina of diabetic hypertensive rats.

The increased number of TUNEL-positive cells detected
in the retinas of diabetic SHRs occurred mainly in the
outer nuclear layer, and this may contribute to widespread
retinal dysfunction. In line with previous studies of elec-
troretinography, Phipps et al. (30) demonstrated a signifi-
cant reduction in the rod photoreceptor response in
diabetic Ren-2 rats compared with nondiabetic Ren-2 rats,
which in turn translated losses to b-wave and oscillatory
potentials. Other studies had confirmed that rod photore-
ceptors are the primary retinal neuron affected by diabetes
(31,32). The photoreceptors are most vulnerable to oxida-
tive damage because of the high content of polyunsatu-
rated fatty acids in their membranes; oxidative stress may
cause lipid peroxidation reactions (33) and therefore
damage their structure and function. In this study, we
observed glial reactivity, as evaluated by GFAP immuno-
reactions, but not apoptosis of photoreceptor, as evalu-
ated by TUNEL, in hypertensive rats. This is explained by
the fact that glial cells and photoreceptors are damaged by
oxidative stress through different mechanisms. The glial
cells possess mechanisms providing high intracellular
GSH concentration (34). Depending on the insult, the
depletion of GSH in glial cells and the subsequent heme
oxygenase-1 induction (35) is associated with the produc-
tion of bilirubin, a potent free radical scavenger (36), and
with the reduction of heme, a powerful pro-oxidant (37).
One reason for this is that Müller cells provide metabolic
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support to adjacent neural cells, providing protective
mechanisms for photoreceptors.

Previous studies demonstrated that local angiotensin II
expression was extremely elevated during retinal inflam-
mation, thereby influencing the condition of the retinal
neural and vascular cells through AT1 receptor signaling.
The ARB was effective in keeping the retinal neural cells
from losing their physiological activities and normal elec-
troretinography responses; therefore, the ARB plays a key
role in neuroprotection, and it preserves good visual
function by reducing inflammatory reactions in the retinal
neural and vascular cells, preventing the development of
diabetic retinopathy (7,38). This treatment also reduced
the accumulation of one of the advanced glycation end
products as well as vascular endothelial growth factor

expression in a model of type 2 diabetes (39). Other
studies also showed that treatment with ARBs in hyper-
tensive diabetic Ren-2 rats prevented acellular capillary
and endothelial cell proliferation as well as development
of neuronal deficits in diabetes, namely loss of function in
photoreceptors and neurons, independent of controlling
hypertension (30,40). These findings support the concept
that ARBs may be useful as a therapeutic target for
diabetic retinopathy. Although in this study we did not
treat the diabetic SHRs with another antihypertensive drug
that does not act on the renin-angiotensin system, to avoid
the hypotensive effect of the losartan treatment, the nor-
motensive diabetic WKY rats still had markers of oxidative
stress and mitochondrial dysfunctions that were not
present in diabetic SHRs treated with losartan.
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The marked effect in reducing the oxidative damage in
diabetic retinal tissue of hypertensive rats treated with
losartan may be attributable to its antioxidant effect
through ARB and an increase in nitric oxide (NO) biodis-
ponibility via the angiotensin II type 2 receptor (41). A
recent study demonstrated that intravenous application of
angiotensin II reduces plasma NO levels and increases the
peroxynitrite concentration, which significantly increases
nitrosative stress. Treatment with valsartan, an ARB sim-
ilar to losartan, suppressed this effect (42). The question of
how NO can attenuate oxidative damage is still intriguing.
A previous study provided direct evidence that NO inacti-
vates xanthine oxidase by reacting first with the superox-
ide anion to form peroxynitrite, which in turn reduces
both xanthine oxidase activity and superoxide generation
(43), thus reestablishing the oxidative status.

It was previously demonstrated that hyperglycemia-
induced production of ROS is associated with the devel-

opment of diabetic microvascular complications (11) and
that the normalization of mitochondrial superoxide pro-
duction blocks the pathways of diabetic damage (44).
Normalization of mitochondrial ROS production prevents
pathways involved in the development of diabetic micro-
vascular complications (44). In the current study, the
blockage of mitochondria complex I using rotenone re-
vealed a significant reduction in its superoxide production.
This fact may be explained by the observation of diversity
in electron chain transport components present in differ-
ent neuron subpopulations, as demonstrated by a study
where mitochondria from retinal ganglion cells decreased
the superoxide production in response to rotenone (45).

Mitochondria are a major endogenous source and target
of superoxide and hydroxyl radicals (46). Reactive oxidant
intermediates can trigger mitochondria to release cyto-
chrome c, resulting in activation of caspase-3 (27,46).
Increasing evidence indicates that mitochondria are inti-
mately associated with the initiation of apoptosis (47,48).
In this study, mitochondrial integrity was evaluated by
determining Bcl-2 and UCP-2 protein expressions. The
mechanism that involves angiotensin II in mitochondrial
ROS production is supported by the fact that in vivo
preconditioning effects of angiotensin II for cardiac isch-
emia/reperfusion injury may be mediated by cardiac mito-
chondria–derived ROS enhanced by NAD(P)H oxidase
(49). The superoxide production via NAD(P)H oxidase
stimulates the opening of reconstituted mitochondrial
ATP-sensitive K	 channels via a direct action on the
sulfhydryl groups of this channel (50). Thus, the over-
stimulation of angiotensin II and renin-angiotensin system
may account for mitochondrial dysfunction, in line with
the observed effect that AT1 blockage with losartan rees-
tablished the UCP-2 and Bcl-2 contents in retinal tissue.

In summary, the findings of this study provides evidence
for the first time of the benefits of the AT1 blocker losartan
in ameliorating diabetic retinal neurodegeneration, mito-
chondrial function, and oxidative balance.
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