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Abstract: This article focuses on a stochastic viral model with distributed delay and CTL responsive-
ness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than
one. However, when the stochastic reproductive ratio is more than one, the viral infection system
consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness
of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate
our results by numerical simulation.
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1. Introduction

It is confirmed that approximately 100–250 million people are infected every year
by different viruses, especially in regions of Asia and Africa [1]. To control epidemic
viral diseases, an epidemic viral model is very useful, which can provide insights into the
dynamics of viruses in vivo and offer a better understanding of viral diseases [2–10].

CTLs (Cytotoxic T Lymphocytes) play a significant role in antiviral mechanisms.
On the one hand, CTLs imply the main immune factor inhibiting cell that limits the
development of virus replication in vivo and depends on viral load [11–13]; on the other
hand, it has recently been demonstrated that infected cells are killed not by the virus but by
specific CTLs in some infectious diseases such as hepatitis B [3,14]. Therefore, the dynamics
of the epidemic viral model with CTL responsiveness have drawn much attention from
researchers in related areas [11–16].

The CTL immune response against a single pool of infected viral cells has been
considered in [15–17], which is described by the following system:

dx(t) = (λ− hx− exy)dt,
dy(t) = (exy− ay− pyz)dt,
dz(t) = ( f (y, z)− bz)dt,

(1)

where the definitions of the variables are described in the following Table 1.
Note that time-series data of the immune state of patients look rather irregular.

The possibility of dynamics of infinite delay has been introduced into the equations used in
mathematical biology models since Volterra [18–22] translated the cumulative effect of the
history of a system. K. Wang et al. [13] incorporate a time delay of the immune response in
the system (1) to obtain the following system:

dx(t) = (λ− hx(t)− ex(t)y(t))dt,
dy(t) = (ex(t)y(t)− ay(t)− py(t)z(t))dt,
dz(t) = (cy(t− τ)− bz(t))dt,

(2)
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They described the relationship between virus replication and the instantaneous
immune response.

Table 1. Variables in the model (adapted from [15,16]).

Variables Definition

x(t) the number of susceptible host cells at time t
y(t) the virus population at time t
z(t) the number of CTLs at time t
λ susceptible host cells generation rate
hx susceptible host cells death rate
exy rate at which susceptible host cells become infected by the virus
ay infected cells death rate
pyz rate at which infected cells are killed by the CTL
f (y, z) rate of immune response due to virus activation

In the real world, epidemic models are also affected by escapable environmental white
noise [5–9,23–28], full of randomness and stochasticity. As we understand it, there is little
to no work researching the extinction and the ergodic stationary distribution of a system (2)
with stochasticity and distributed delay, which is mainly due to the fact that Equation (2)
is of a degenerate type. In this paper, we use an asymptotic approach [6,8,9,25] and give
the following system:

dx(t) = (λ− hx(t)− ex(t)y(t))dt− σ1xdB1(t),
dy(t) = (ex(t)y(t)− ay(t)− py(t)z(t))dt− σ2ydB2(t),
dz(t) = (cw(t)− bz(t))dt− σ3zdB3(t),
dw(t) = σ(y(t)− w(t))dt,

(3)

The main purpose of this paper is to study the ergodic stationary distribution and
extinction of the system (3). The existence and uniqueness of the global positive solution
are also introduced.

The remainder of the paper is organized as follows. In Section 2, we introduce
some necessary results throughout this paper. In Section 3, we show the uniqueness
and positivity of global positive solutions of a stochastic system (3) with any positive
initial value. In Section 4, we prove the existence and uniqueness of an ergodic stationary
distribution of the solutions to the system (3) by constructing a suitable stochastic Lyapunov
function; furthermore, we establish the persistence in the mean of the solutions of the
system (3). In Section 5, we establish sufficient conditions for the extinction of the viral
model. Some numerical simulations are introduced to demonstrate the theoretical results
and reveal the effects of white noise. Finally, some concluding remarks and future directions
are presented to close this paper.

2. Preliminaries

Throughout this paper, we first give some basic conceptions, as in [6]. Let (Ω, F ,
{Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., it is right continuous, and F0 contains all P−null sets). Define

R4
+ = {x ∈ R4 : xi > 0 f or all 1 ≤ i ≤ 4}, R4

+ = {x ∈ R4 : xi ≥ 0 f or all 1 ≤ i ≤ 4}.
In addition, if g(t) is an integral function on t ∈ [0, ∞), define gµ = sup{g(t) | t ≥ 0},
gl = in f {g(t) | t ≥ 0}.

Firstly, we consider the general 4-dimensional stochastic differential equation

dx(t) = l(x(t), t)dt + q(x(t), t)dB(t), for t ≥ t0 (4)



Life 2021, 11, 766 3 of 12

with initial value x(t0) = x0 ∈ R4, where B(t) denotes 4-dimensional standard Brownian
motion defined on the above probability space. Define the differential operator L associated
with Equation (4) by Mao [6] as

L =
∂

∂t
+ Σli(x, t)

∂

∂xi
+

1
2

Σ[qT(x, t)q(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(R4 × R̄+; R̄+), then

LV(x, t) = Vt(x, t) + Vx(x, t) +
1
2

trac[qT(x, t)Vxx(x, t)q(x, t)],

where Vt = ∂V
∂t , Vx = ( ∂V

∂x1
, · · · , ∂V

∂x4
) and Vxx = ( ∂2V

∂xi∂xj
)4×4. Let x(t) be a homogeneous

Markov process in R4, which is described as the following stochastic differential equation
by Itô′s formula [6]:

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)r(x(t), t)dB(t).

The diffusion matrix is defined as follows:

A(x) = (aij(x)), aij =
4

∑
r=1

gi
r(x)gj

r(x).

3. Existence and Uniqueness of the Global Positive Solution

To study the dynamical behaviors of a viral model, where the solution is global
and positive, because the coefficients of the system (3) do not satisfy the linear growth,
the solutions of the system (3) may explode at a finite time. In this section, we show that
there is a unique global positive solution of the system (3) from the idea in [8], the main
theorem as follows.

Theorem 1. For any initial value (x(0), y(0), z(0), w(0)) ∈ R4
+, there is a unique positive

solution (x(t), y(t), z(t), w(t)) of system (3) on t ≥ 0, and the solution will remain in R4
+ with a

probability of one; that is to say, (x(t), y(t), z(t), w(t)) ∈ R4
+ for all t ≥ 0, almost surely.

Proof. Our proof is based on the works of Mao et al. [9]. We know the coefficients of system
(3) are locally Lipschitz continuous; thus, there is a unique solution (x(t), y(t), z(t), w(t))
on [0, τ0) for any initial value (x(0), y(0), z(0), w(0)) ∈ R4

+, where τ0 is an explosion time.
If τ0 = ∞ a.s, we can determine that the local solution is global. Let n0 be a sufficiently large
positive number for every component of (x(0), y(0), z(0), w(0)) lying in [ 1

n0
, n0]; for any

n ≥ n0, the stopping time

τn = inf{t ∈ [0, τ0) : min{x(t), y(t), z(t), w(t)} ≤ 1
n or max{x(t), y(t), z(t), w(t)} ≥ n}. (5)

We set inf φ = ∞. Obviously, τn is increasing as n→ ∞. Set τ∞ = lim
n→∞

τn; thus, τ∞ ≤ τ0

a.s. If we can prove that τ∞ = ∞ a. s., then τ0 = ∞, which implies (x(t), y(t), z(t), w(t)) ∈ R4
+

a. s. for all t ≥ 0. If τ∞ < ∞ a. s., it is the same. If we want to complete the proof, we should
verify that τ∞ = ∞ a. s. If this assertion is false, there are two constants T ≥ 0 and ε ∈ (0, 1),
such that

P{τ∞ ≤ T} ≥ ε.

In addition, there is an integer n1 ≥ n0, such that

P{τn ≤ T} ≥ ε f or all n ≥ n1.
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We define a fundamental C2-function U : R4
+ → R̄+, which is

U = (x(t)− α− α ln x(t)
α ) + (y(t)− β− β ln y(t)

β ) + (z(t)− 1− ln z(t)) + γ(w(t)− 1− ln w(t)), (6)

where α, β, γ are positive constants, which will be determined in the following text. The non-
negativity of the function U can be seen from x− 1− ln x ≥ 0 for any x > 0.

Applying Itô′s formula [6], we obtain

dU(x, y, z, w) = LUdt− σ1(x(t)− α)dB1(t)− σ2(y(t)− β)dB2(t)− σ3(z(t)− 1)dB3(t), (7)

where

LU(x, y, z, w) = (1− α
x )dx + (1− β

y )dy + (1− 1
z )dz + γ(1− 1

w )dw + 1
2 (ασ2

1 + βσ2
2 + σ2

3

= λ− dx− exy− αλ
x + dα + αey + exy− ay− pyz− βe x

+βa + βpz + cw− bz− cw
z + b + γσy− γσw− γσy

w + γσ + 1
2 (ασ2

1 + βσ2
2 + σ2

3 .

(8)

Choosing

α =
a− c

e
, β =

b
p

, γ =
c
σ

,

such that αe + γσ = a, βp = b, γσ = c, we can then obtain

LU(x, y, z, w) ≤ λ + ad + βa + b + γσ ≤ λ + ad + ab
p + b + c + 1

2 (
a−c

e σ2
1 + b

p σ2
2 + σ2

3 ) := K, (9)

where K is a positive constant. The remainder of the proof is similar to Theorem 3.1 in
Mao [9]. Hence, we omit it here.

4. Ergodic Stationary Distribution

Here, we present some theories about the stationary distribution in this section. Al-
though there is no endemic equilibrium point of the stochastic system (3), we want to
obtain the existence of an ergodic stationary distribution, which indicates the persistence of
the disease. Firstly, we define R∗0 as a stochastic reproductive ratio of the system (3), such as

R∗0 =
λea

(a + 1
2 σ2

2 )
2(d + 1

2 σ2
1 )

,

which is equal to R0 = λe
ad when σ1 = σ2 = 0 [13]. Some known results about the theory of

Has’Minskii are found in [28].

Lemma 1 ([28]). The Markov process X(t) has a unique ergodic stationary distribution µ(·) if
there exists a bounded domain U ⊂ El with regular boundary Γ, and

(A.1) there is a positive number M such that ∑l
i,j=1 aij(x)ξiξ j ≥ M|ξ|2, x ∈ U, ξ ∈ Rl .

(A.2) there exists a non-negative C2 function V, such that LV is negative for any El\U. Then,

Px

{
lim

T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)µ(dx)
}
= 1,

for all x ∈ El , where f (·) is a function integrable with respect to the measure µ.

Based on the theory of Has’minskii [28], we will give conditions which guarantee the
existence of an ergodic stationary distribution.

Theorem 2. Assume that R∗0 > 1, then the solution (x(t), y(t), z(t), w(t)) of system (3) has an
ergodic unique stationary distribution for any initial value (x(0), y(0), z(0), w(0)) ∈ R4

+.
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Proof. The proof of Theorem 2 should satisfy the conditions of Lemma 1. Verify that (A.1)
holds. Apparently, the corresponding diffusion matrix of system (3) is given by

A =


σ2

1 x2 0 0 0
0 σ2

2 y2 0 0
0 0 σ2

3 z2 0
0 0 0 w2

.

Choosing M̃ = min
(x,y,z,w)∈Dε

{σ2
1 x2, σ2

2 y2, σ2
3 z2, w2} > 0, we obtain

4

∑
i,j=1

aij(x, y, z, w)ξiξ j = σ2
1 x2ξ2

1 + σ2
2 y2ξ2

2 + σ2
3 z2ξ2

3 + w2ξ2
4 ≥ M̃ | ξ |2,

for all (x, y, z, w) ∈ Dε, ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4
+, where

Dε = {(x, y, z, w) ∈ R4
+ : ε < x <

1
ε

, ε < y <
1
ε

, ε < z <
1
ε

, ε < w <
1
ε
}

is a bounded closed set, and ε > 0 is a sufficiently small number. Thus, condition (A.1) is
completed.

Now, we construct a C2-function V : R4
+ → R as follows:

V(x, y, z, w) = M(− ln x− c0 ln y)− c1 ln y− ln z− ln w +
1

θ + 1
(x + y +

a
4c

z +
a

2σ
w)θ+1,

where θ ∈ (0, min a
a+σ2

2
, b

b+σ2
3

, d
d+σ2

1
) is a positive constant, and c1 ≤ −

2+b+σ+ 1
2 (σ

2
2+σ2

3 )
a .

When R∗0 > 1, the constant M satisfies the following condition:

0 < M ≤ −2
(d + 1

2 σ2
1 )(1− R∗0)

.

Applying Itô′s formula to the function V(x, y, z, w), denote

V1 = − ln x− c0 ln y, V2 = −c1 ln y,

V3 = − ln z, V4 = − ln w,

V5 =
1

θ + 1
(x + y +

a
4c

z +
a

2σ
w)θ+1.

We can apply the differential operator L to the above functions, respectively,

LV1 = − 1
x x′ − c0

1
y y′ + 1

2 (σ
2
1 + c0σ2

2 )

= − λ
x + d + ey− c0ex + c0a + c0 pz + 1

2 (σ
2
1 + c0σ2

2 )
≤ −2

√
λc0e + c0a + 1

2 c0σ2
2 + d + 1

2 σ2
1 + ey + c0 pz.

(10)

Supposing

g(c0) = −2
√

λc0e + c0a +
1
2

c0σ2
2 ,

g′(c0) = −
λe√
λc0e

+ a +
1
2

σ2
2 = 0,

we can obtain
c0 =

λe
(a + 1

2 σ2
2 )

2
.
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Hence,

LV1 = g(c0) + d + 1
2 σ2

1 + ey + c0 p z
≤ − λea

(a+ 1
2 σ2

2 )
2 + d + 1

2 σ2
1 + ey + c0 p z

= (d + 1
2 σ2

1 )(1−
λea

(a+ 1
2 σ2

2 )
2(d+ 1

2 σ2
1 )
) + ey + λep

(a+ 1
2 σ2

2 )
2 z

= (d + 1
2 σ2

1 )(1− R∗0) + ey + λep
(a+ 1

2 σ2
2 )

2 z;

(11)

LV2 = −c1
1
y

y′ +
1
2

σ2
1 = −c1ex + c1a + c1 pz +

1
2

σ2
2 ; (12)

LV3 = −1
z

z′ +
1
2

σ2
3 = − cw

z
+ b +

1
2

σ2
3 ; (13)

LV4 = − 1
w

w′ = −σy
w

+ b + σ; (14)

LV5 = (x + y + a
4c z + a

2σ w)θ(x′ + y′ + a
4c z′ + a

2σ w′)
+ θ

2 (x + y + a
4c z + a

2σ w)θ−1(σ2
1 x2 + σ2

2 y2 + ( a
4c )

2σ2
3 z2)

≤ (x + y + a
4c z + a

2σ w)θ(λ− dx− a
2 y− a

4 w− ab
4c z)

+ θ
2 (x + y + a

4c z + a
2σ w)θ−1(σ2

1 x2 + σ2
2 y2 + ( a

4c )
2σ2

3 z2)

≤ λ(x + y + a
4c z + a

2σ w)θ − (dx + a
2 y + ab

4c z + a
4 w)(xθ + yθ + ( a

4c )
θzθ + ( a

2σ )
θwθ)

+ θ
2 (x + y + a

4c z + a
2σ w)θ−1(σ2

1 x2 + σ2
2 y2 + ( a

4c )
2σ2

3 z2)

≤ λ(x + y + a
4c z + a

2σ w)θ − dxθ+1 − a
2 yθ+1 − ( a

4c )
θ+1bzθ+1 − a

4 (
a

2σ )
θwθ+1

+ θ
2 (x + y + a

4c z + a
2σ w)θ−1(σ2

1 x2 + σ2
2 y2 + ( a

4c )
2σ2

3 z2)

≤ B− dθxθ+1 − a
2 θyθ+1 − ( a

4c )
θ+1bθzθ+1 − aθ+1

2θ+3σθ wθ+1,

(15)

where

B = sup{λ(x + y +
a

4c
z +

a
2σ

w)θ +
θ

2
(x + y +

a
4c

z +
a

2σ
w)θ−1(σ2

1 x2 + σ2
2 y2 + (

a
4c

)2σ2
3 z2),

−d(1− θ)xθ+1 − a
2
(1− θ)yθ+1 − (

a
4c

)θ+1b(1− θ)zθ+1 − aθ+1

2θ+4σθ
wθ+1},

where θ ∈ (0, min a
a+σ2

2
, b

b+σ2
3

, d
d+σ2

1
) is a positive constant, and B < 0. From the above

analysis, we have

LV(x, y, z, w) = MLV1 + LV2 + LV3 + LV4 + LV5

≤ M((d + 1
2 σ2

1 )(1−
λea

(a+ 1
2 σ2

2 )
2(d+ 1

2 σ2
1 )
) + ey + λep

(a+ 1
2 σ2

2 )
2 z)

−c1ex + c1a + c1 pz + 1
2 σ2

2
− 1

z z′ + 1
2 σ2

3 = − cw
z + b + 1

2 σ2
3 −

1
w w′ = − σy

w + b + σ

+B− dθxθ+1 − a
2 θyθ+1 − ( a

4c )
θ+1bθzθ+1 − aθ+1

2θ+3σθ wθ+1,

(16)

and we define
f1(x) = c1a + b + σ +

1
2
(σ2

2 + σ2
3 )− c1ex− dθxθ+1,

f2(y) = M((d +
1
2

σ2
1 )(1−

λea
(a + 1

2 σ2
2 )

2(d + 1
2 σ2

1 )
) + ey)− a

2
θyθ+1,

f3(z) = M
λep

(a + 1
2 σ2

2 )
2

z + c1 pz− cw
z
− (

a
4c

)θ+1bθzθ+1,

f3(w) = B− σy
w
− aθ+1

2θ+3σθ
wθ+1.

We can divide R4
+ \ Dε into the following eight domains:

D1 = {(x, y, z, w) ∈ R4
+ : 0 < x < ε}; D2 = {(x, y, z, w) ∈ R4

+ : 0 < y < ε};
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D3 = {(x, y, z, w) ∈ R4
+ : 0 < z < ε, ε < w <

1
ε
}; D4 = {(x, y, z, w) ∈ R4

+ : ε < z <
1
ε

, 0 < w < ε};

D5 = {(x, y, z, w) ∈ R4
+ : x >

1
ε
}; D6 = {(x, y, z, w) ∈ R4

+ : y >
1
ε
};

D7 = {(x, y, z, w) ∈ R4
+ : z >

1
ε
}; D8 = {(x, y, z, w) ∈ R4

+ : w >
1
ε
}.

Clearly, Dε =
⋃8

j=1 Dj. In the following text, we will show that LV(x, y, z, w) ≤ −1 on
R4
+ \ Dε, which is equivalent to prove it on the above eight domains.

Case 1. If (x, y, z, w) ∈ D1, one can choose

c1 ≤ −
2 + b + σ + 1

2 (σ
2
2 + σ2

3 )

a
,

and
LV(x, y, z, w) ≤ c1a + b + σ +

1
2
(σ2

2 + σ2
3 )− c1ex− dθxθ+1 ≤ −2;

Case 2. If (x, y, z, w) ∈ D2, one can choose R∗0 > 1 and

0 < M ≤ −2
(d + 1

2 σ2
1 )(1− R∗0)

,

LV(x, y, z, w) ≤ M((d +
1
2

σ2
1 )(1− R∗0) + ey)− a

2
θyθ+1 ≤ −2;

Case 3. If (x, y, z, w) ∈ D3,

LV(x, y, z, w) ≤ M
λep

(a + 1
2 σ2

2 )
2

z + c1 pz− cw
z
− (

a
4c

)θ+1bθzθ+1 ≤ − cw
z
≤ −2;

Case 4. If (x, y, z, w) ∈ D4,

LV(x, y, z, w) ≤ B− σy
w
− aθ+1

2θ+3σθ
wθ+1 ≤ −σy

w
≤ −2;

Case 5. If (x, y, z, w) ∈ D5,

LV(x, y, z, w) ≤ c1a + b + σ +
1
2
(σ2

2 + σ2
3 )− c1ex− dθxθ+1 ≤ −c1ex− dθxθ+1 ≤ −2;

Case 6. If (x, y, z, w) ∈ D6,

LV(x, y, z, w) ≤ M((d + 1
2 σ2

1 )(1− R∗0) + ey)− a
2 θyθ+1

≤ M((d + 1
2 σ2

1 )(1− R∗0) + ey)− a
2 θ( 1

ε )
θ+1

≤ −2;
(17)

Case 7. If (x, y, z, w) ∈ D7, because M λep
(a+ 1

2 σ2
2 )

2 + c1 p− ( a
4c )

θ+1bθ( 1
ε )

θ < 0, we deter-

mine that

LV(x, y, z, w) ≤ M λep
(a+ 1

2 σ2
2 )

2 z + c1 pz− cw
z − ( a

4c )
θ+1bθzθ+1

≤ z(M λep
(a+ 1

2 σ2
2 )

2 + c1 p)− cwε− ( a
4c )

θ+1bθzθ+1

≤ z(M λep
(a+ 1

2 σ2
2 )

2 + c1 p− ( a
4c )

θ+1bθ( 1
ε )

θ)

≤ − 1
ε

≤ −2;

(18)
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Case 8. If (x, y, z, w) ∈ D8, because B < 0, we determine that

LV(x, y, z, w) ≤ B− σy
w
− aθ+1

2θ+3σθ
wθ+1 ≤ B− aθ+1

2θ+3σθ
(

1
ε
)θ+1 ≤ −2.

Therefore, for all (x, y, z, w) ∈ R4
+ \ Dε, V(x, y, z, w) ≤ −1, which indicates that

assumption (A.2) holds.
We can know that the system (3) is ergodic and has a unique stationary distribution.

This completes the proof.

5. Extinction of the System 3

For the dynamical behavior of epidemic viral models, the main concern is finding the
condition in which the virus will be eradicated in a long time when R∗0 > 1. In this section,
we shall consider the extinction of the system (3).

According to the results in [9], we can obtain the following lemma.

Lemma 2. For any initial value, the solution of the stochastic model satisfies

lim
t→∞

ln x(t)
t
≤ 0, lim

t→∞

ln y(t)
t
≤ 0, lim

t→∞

ln z(t)
t
≤ 0, lim

t→∞

ln w(t)
t
≤ 0 a.s. (19)

lim
t→∞

x(t) + y(t) + z(t) + w(t)
t

= 0, a.s.. (20)

Moreover,

lim
t→0

1
t

∫ t

0
x(m)dB1(m) = 0 , lim

t→0

1
t

∫ t

0
y(m)dB2(m) = 0, lim

t→0

1
t

∫ t

0
z(m)dB3(m) = 0 a.s.. (21)

Theorem 3. Let (x, y, z, w) be the solution of system (3) with any initial value (x(0), y(0), z(0),
w(0)) ∈ R4

+. If R∗0 < 1, then the solution (x, y, z, w) of system (3) satisfies

lim sup
t→∞

ln y(t)
t
≤ (a +

1
2

σ2
2 )(R∗0 − 1) < 0 a.s..

Namely, the disease will be eradicated in the long term.

Proof. Applying Itô’s formula to ln y(t), we obtain

d ln y(t) = (ex− a− pz− 1
2 σ2

2 )dt + σ2dB2(t)
≤ [ex− (a + 1

2 σ2
2 )]dt + σ2dB2(t).

(22)

Integrating the above formula from 0 to t on both sides, then

ln y(t)− ln y(0) ≤
∫ t

0
[ex− (a +

1
2

σ2
2 )]ds +

∫ t

0
σ2dB2(s).

According to the strong law of large numbers [29], we have

lim
t→0

1
t

∫ t

0
dB2(s) = 0 a.s..

For,
d ln x(t) = 1

x (λ− dx(t)− ex(t)y(t)− xσ2
1 )dt + σ1dB1(t)

≤ [ λ
x − (d + 1

2 σ2
1 )]dt + σ1dB1(t).

(23)

From (23), we can obtain

d ln x(t) ≥ −(d +
1
2

σ2
1 )dt,
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and
1

d ln x(t) ≤ −
1

(d+ 1
2 σ2

1 )dt
. (24)

Meanwhile,
λ

x
≥ d ln x(t) + (d +

1
2

σ2
1 ) + σ1dB1(t),

which indicates that

x ≤ λ
d ln x(t)+(d+ 1

2 σ2
1 )+σ1dB1(t)

≤ λ
d+ 1

2 σ2
1
+ λ

d ln x(t)+σ1dB1(t)
. (25)

There exists a small number σ2, such that∫ t
0 x(s)ds ≤ λ

d+ 1
2 σ2

1
t +

∫ t
0

λ
d ln x(s)+σ1dB1(s)

d s

≤ λ
d+ 1

2 σ2
1

t + λ
∫ t

0
1

d ln x(s)d s

≤ λ
d+ 1

2 σ2
1

t− λ
∫ t

0
1

(d+ 1
2 σ2

1 )
ds

≤ λ
d+ 1

2 σ2
1

t

≤ λa
(d+ 1

2 σ2
1 )(a+ 1

2 σ2
2 )

t.

(26)

Taking the superior limit and using the stochastic comparison theorem, combining
(26), we obtain

lim sup
t→∞

ln y(t)
t = lim sup

t→∞
e 1

t
∫ t

0 x(s)ds− (a + 1
2 σ2

2 )

≤ e λa
(d+ 1

2 σ2
1 )(a+ 1

2 σ2
2 )
− (a + 1

2 σ2
2 )

= (a + 1
2 σ2

2 )(
λea

(a+ 1
2 σ2

2 )
2(d+ 1

2 σ2
1 )
− 1)

= (a + 1
2 σ2

2 )(R∗0 − 1)
< 0 a.s..

(27)

Therefore, this indicates that

lim
t→∞

y(t) = 0 a. s..

Consequently, this means that the virus will be eradicated in a long time. This
completes the proof.

6. Examples and Numerical Simulations

In this section, we will introduce some examples and numerical simulations to demon-
strate the above theoretical results. Using the Milstein higher-order method developed
in [23], we obtain the discretization equation of the system (3).

x(k + 1) = x(k) + [λ− dx(k)− ex(k)y(k)]4t + σ1x(k)
√
4tξk +

σ2
1 x(k)

2 4t(ξ2
k − 1),

y(k + 1) = y(k) + [ex(k)y(k)− ay(k)− py(k)z(k)]4t + σ2y(k)
√
4tηk +

σ2
2 y(k)

2 4t(η2
k − 1),

z(k + 1) = z(k) + [cw(k)− bz(k)]4t + σ3z(k)
√
4tζk +

σ2
3 z(k)

2 4t(ζ2
k − 1),

w(k + 1) = w(k) + σ[y(k)− w(k)]4t.

(28)

where the time increment4t is positive, and ξk, ηk, ζk are the Gaussian random variables
which follow the distribution N(0, 1), k = 1, 2, 3.

In system (3), according to [27]:

Example 1. In order to check the existence of an ergodic stationary distribution, we choose the val-
ues of the system parameters as follows: (σ1, σ2, σ3) = (0.1, 0.1, 0.1), λ = 1000, d = 0.1, e = 0.002,
a = 5, p = 0.2, c = 0.2, b = 0.3, σ = 0.2, then R∗0 = 3.208 > 1, where R∗0 is defined before
Theorem 2 and choosing c1 = −15, M = 7. In other words, the conditions of Theorem 2 hold, and
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there is an ergodic stationary distribution µ(·) of system (3), which will persist for a long time.
Figure 1 confirms this.

0 200 400 600 800 1000
Time
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5000

10000
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t)

0 2000 4000 6000 8000 10000
The density functions of x(t)

0

50

100

0 200 400 600 800 1000
Time
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50

100
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0 200 400 600 800 1000
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0

1000

2000
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The density functions of z(t)

0

100
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Figure 1. The red curve represents the result of the stochastic model, whereas the green curve represents
the result of the deterministic model. The right column shows the density function of the stochastic model
(3). Choosing (σ1, σ2, σ3) = (0.1, 0.1, 0.1), when R∗0 = 3.208 > 1, the disease will persist for a long time.

Example 2. In order to check the extinction of the system (3), we choose the values of the system
parameters as follows: (σ1, σ2, σ3) = (0.1, 0.1, 0.1), λ = 250, d = 0.1, e = 0.002, a = 5,
p = 0.2, c = 0.2, b = 0.3, σ = 0.2; then, R∗0 = 0.849 < 1, where R∗0 is defined before Theorem 3
and choosing c1 = −20, M = 5. In other words, the conditions of Theorem 3 hold, which will be
extinct in a long time. Figure 2 confirms this.
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Figure 2. The red curve represents the result of the stochastic model, whereas the green curve
represents the result of the deterministic model. The right column shows the density function of the
stochastic model (3). Choosing (σ1, σ2, σ3) = (0.1, 0.1, 0.1), when R∗0 = 0.849 < 1, the disease will be
extinct in a long time.
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7. Discussion

This paper considers the parameters d, a, and b disturbed by the white noise and
assumes the dynamics of the corresponding stochastic system (3) with the time delay and
CTL responsiveness. The reason for choosing the three disturbed parameters is that these
three parameters are important in controlling the viral disease. Of course, in the following
research, we will focus on the general situation to investigate the influence of white noise.
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