
Using Nocturnal Flight Calls to Assess the Fall Migration
of Warblers and Sparrows along a Coastal Ecological
Barrier
Adam D. Smith*, Peter W. C. Paton, Scott R. McWilliams

Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America

Abstract

Atmospheric conditions fundamentally influence the timing, intensity, energetics, and geography of avian migration. While
radar is typically used to infer the influence of weather on the magnitude and spatiotemporal patterns of nocturnal bird
migration, monitoring the flight calls produced by many bird species during nocturnal migration represents an alternative
methodology and provides information regarding the species composition of nocturnal migration. We used nocturnal flight
call (NFC) recordings of at least 22 migratory songbirds (14 warbler and 8 sparrow species) during fall migration from eight
sites along the mainland and island coasts of Rhode Island to evaluate five hypotheses regarding NFC detections. Patterns
of warbler and sparrow NFC detections largely supported our expectations in that (1) NFC detections associated positively
and strongly with wind conditions that influence the intensity of coastal bird migration and negatively with regional
precipitation; (2) NFCs increased during conditions with reduced visibility (e.g., high cloud cover); (3) NFCs decreased with
higher wind speeds, presumably due mostly to increased ambient noise; and (4) coastal mainland sites recorded five to nine
times more NFCs, on average, than coastal nearshore or offshore island sites. However, we found little evidence that (5)
nightly or intra-night patterns of NFCs reflected the well-documented latitudinal patterns of migrant abundance on an
offshore island. Despite some potential complications in inferring migration intensity and species composition from NFC
data, the acoustic monitoring of NFCs provides a viable and complementary methodology for exploring the spatiotemporal
patterns of songbird migration as well as evaluating the atmospheric conditions that shape these patterns.

Citation: Smith AD, Paton PWC, McWilliams SR (2014) Using Nocturnal Flight Calls to Assess the Fall Migration of Warblers and Sparrows along a Coastal
Ecological Barrier. PLoS ONE 9(3): e92218. doi:10.1371/journal.pone.0092218

Editor: Verner Peter Bingman, Bowling Green State Universtiy, United States of America

Received November 5, 2013; Accepted February 6, 2014; Published March 18, 2014

Copyright: � 2014 Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded largely via Cooperative Agreement (50181-9-J111) with the Rhode Island National Wildlife Refuge Complex. Additional funding
was provided by the State of Rhode Island for the Ocean Special Area Management Plan to SRM and PWCP, Rhode Island Agricultural Experiment Station to SRM
(Contribution No. 5358), and a Nature Conservancy grant to ADS. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: adamsmith@my.uri.edu

Introduction

Atmospheric dynamics fundamentally influence the timing,

intensity, energetics, and geography of avian migration [1–3].

Wind conditions (i.e., direction and speed) around low and high

pressure systems and associated frontal boundaries are particularly

influential [4]. During fall migration in the northern hemisphere,

many birds migrate preferentially when winds provide some

tailwind component after the passage of a cold front [2,4,5; but see

6]. However, wind conditions during migratory flight can

concentrate migrants at topographic barriers [7–9]. The increased

densities of migrants at stopover sites along these ‘leading lines’

[10] can reduce energy replenishment rates via competition as well

as increase the risk of predation [11–14]. These potential density-

dependent consequences substantiate the need to identify the

environmental factors that direct the movements and distribution

of songbirds during migration, particularly along ecological

barriers that may experience disproportionately high migrant

densities.

In the northeastern United States during southbound fall

migration, many nocturnal passerine migrants concentrate along

the Atlantic Coast and on offshore land masses under specific

weather conditions [15–17]. In particular, hatching-year migrants

often fail to compensate for prevailing winds and are displaced to

the coast or offshore (the so-called ‘‘coastal effect’’; [18]), with

offshore birds typically reorienting towards or along the nearest

land mass near dawn [17,19–21]. Although reverse migration and

reorientation are common phenomena along the Atlantic Coast

(e.g., [16,17,19,22]), their occurrence and extent depend on a

complex interplay between wind, topography, ‘on-the-ground’

distribution of resources and risk, and individual histories (e.g.,

[23–27]). The context- and weather-dependent response of

nocturnal passerine migrants to coastlines, as well as their

subsequent redistributional movements, implies that spatiotempo-

ral variation in the geographic distribution of migrants aloft occurs

at multiple scales along the Atlantic Coast.

The influence of weather on the magnitude and spatiotemporal

patterns of nocturnal bird migration has been inferred primarily

using radar (e.g., [2,4,28]), although the use of nocturnal flight

calls (NFCs) provides a possible alternative approach. Many bird

species produce distinct vocalizations during sustained flight,

particularly nocturnal migration, potentially enabling the simulta-

neous evaluation of the magnitude, spatiotemporal patterns, and

species composition of nocturnal migration [29–31]. In general,
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the temporal patterns of NFC detections associate positively with

the migration intensity inferred from radar [32–34]. However,

certain atmospheric conditions complicate the relationship

between NFC detections and the number of birds aloft – NFC

detections increase when visual communication is limited (e.g., low

visibility and cloud ceiling, high cloud cover; summarized in [35]),

but decrease with increasing ambient noise [32,36]. Understand-

ing these influences on the spatiotemporal patterns of NFCs will

improve our ability to infer the spatial distribution and abundance

of songbirds along their migration routes and ecological barriers.

We evaluated five hypotheses regarding the detection of migrant

songbird NFCs along the Atlantic Coast of southern New England

in relation to atmospheric and ambient conditions, as well as

coastal context: (1) NFC detections vary strongly with the

atmospheric conditions that influence the intensity of bird

migration in general and coastal migration in particular (e.g.,

front passage, wind conditions, and precipitation; [2,4]); (2) NFC

detections increase under conditions expected to hinder visual

communication (i.e., cloudy skies with low ceilings and reduced

visibility); (3) NFC detections decrease in association with weather

conditions that increase ambient noise, particularly high winds, as

well as other non-wind sources of ambient noise. Finally, we

expected NFC detections to vary with geographic context (i.e.,

relative coastal position) among sites in coastal Rhode Island.

Specifically, we expected (4) more NFC detections at mainland

sites relative to offshore sites, and that (5) total NFC detections and

intra-night patterns of NFC detections on an offshore island would

vary according to well-documented latitudinal patterns of migrant

abundance on the island (i.e., migrants concentrate at the northern

end of the island; [20,37]).

Materials and Methods

During fall 2010–2011, we monitored NFC of songbirds at eight

sites in southern Rhode Island, USA: two along the mainland

coast (Figure 1; sites N and T), one along the southern coast of

Aquidneck Island, a large (98 km2) nearshore island at the

southern end of Narragansett Bay (Figure 1; site S), and five sites

along the periphery of Block Island (25 km2), an offshore island

located approximately 15 km south of mainland Rhode Island

(Figure 1; sites C, K, L, P and W). We placed six microphones

(Figure 1; sites K, L, N, S, T, and W) on protected, public lands

with the authorization of the property manager; we placed the

remaining two microphones (Figure 1; sites C and P) on private

property with the authorization of the property owners. At each

site, we recorded NFCs with a microphone (SMX-NFC; Wildlife

Acoustics, Inc., Concord, MA) attached to a passive recorder

(SM2BAT, 24 kHz sampling rate; Wildlife Acoustics, Inc.,

Concord, MA) set to maximum gain (+60 dB). The SMX-NFC

possessed a relatively flat frequency response from 2–12 kHz. We

mounted each microphone approximately 5–5.5 m above the

ground and above the height of prevailing coastal shrub

vegetation. We located monitoring sites far from artificial lighting

which can disorient and concentrate nocturnal songbird migrants

(reviewed in [38]), as well as anthropogenic disturbance and noise.

Thus, we expected little anthropogenic influence on the calling

patterns documented herein. We recorded NFCs from evening

civil twilight to morning civil twilight (i.e., sun elevation

approximately 6o below the horizon), from 8 September to 8

November in 2010 and from 8 September to 10 November in

2011. However, we truncated the recordings 15 min prior to

morning civil twilight (about 45 min prior to sunrise) due to

frequent vocalizations from birds on the ground near the

microphone; the resulting nightly recordings increased in length

(10.3–13.0 h) over the course of the recording seasons. Occasional

equipment malfunctions resulted in incomplete coverage during

these periods, and we did not record at all sites in each year

(Table 1).

We filtered potential flight calls from nightly recordings using a

band-limited energy detector algorithm in Raven Pro 1.3 (Build

32, Cornell Lab of Ornithology, Ithaca, NY). We specified the

algorithm to extract high frequency band flight calls (i.e., within

the frequency range of 6–11 kHz), which included most migratory

species of warblers (Parulidae) and sparrows (Emberizidae) in

eastern North America [29,30]. We restricted our analysis to high

frequency flight calls because ambient noise in the 1–5 kHz

frequency range (e.g., wind, insects, or amphibians) consistently

precluded the extraction of flight calls from species producing low-

and mid-frequency vocalizations (e.g., thrushes, grosbeaks, tana-

gers). Within this 6–11 kHz frequency range, we configured the

algorithm to extract potential calls 23–398 ms in duration and

separated by at least 98 ms, with a signal-to-noise threshold of

3.5 dB and 30% minimum signal occupancy. We estimated the

background noise against which the signal of potential calls was

compared as the median power (dB) within a 12 s block with a hop

size of 243 ms. We exported potential calls to individual time-

stamped audio (*.wav) files. We then generated a spectrogram of

each audio file using GlassOFire (www.oldbird.org) from which we

manually classified calls and discarded false detections (e.g., wind,

insects, rain drops, non-flight call vocalizations). To assess the

effects of varying ambient noise on the detection of high frequency

flight calls, we used Raven Pro to calculate the average power (dB)

in the 6–11 kHz frequency range during the first hour of each

night at each microphone.

Figure 1. Microphone and weather station locations used to
assess nocturnal flight call activity of migrating songbirds.
Locations of microphones (circles) and National Weather Service ASOS
stations (flags) used to examine the relationship between atmospheric
conditions and the nocturnal flight call activity of migrating songbirds
in southern Rhode Island (RI), Connecticut (CT), and New York (NY), USA,
from September to November, 2010–2011. Microphone locations: N –
Ninigret, T – Trustom, S – Sachuest, K – Kurz, W – Wash, L – Lapham, P –
Pyne, and C – Comings. ASOS stations: 1 - Providence/T. F. Green State
Airport, 2 - Newport State Airport, 3 - Westerly State Airport, 4 - Groton-
New London Airport, and 5 - Montauk Airport. See text for more details.
doi:10.1371/journal.pone.0092218.g001
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We assigned NFCs to species when possible, but more

commonly into a complex of similar species [30]. We further

aggregated these species complexes into two families for analysis:

warblers and sparrows (Table 2). While some species complexes

initially contained NFCs from both families, we carefully separated

presumed sparrow from warbler NFCs, typically by call length.

Approximately 10% of detected flight calls were too weak to assign

confidently to the level of family (9%) or belonged to other bird

families (e.g., Indigo Buntings, Passerina cyanea; 1%); we excluded

these calls from further analyses.

Regional atmospheric conditions
We derived atmospheric conditions based primarily on weather

data from observations at five National Weather Service

Automated Surface Observing System (ASOS) stations occurring

within 50 km of the centroid of microphone locations (Figure 1).

ASOS reports wind speed and direction (recorded approximately

10 m above ground level), as well as precipitation amount, every

minute, although the data are derived from accumulations over

the previous 1 or 2 min; visibility, cloud cover, and cloud ceiling

data were reported every 5 min. We calculated wind profit from

wind direction and wind speed [39]; wind profit represents the

distance a bird is drifted toward a specified target direction in a

fixed time interval through only the effect of wind. Typically, the

target direction is the migratory goal, but we specified due

southeast (135o) as the target direction to better capture those

combinations of wind direction and speed that indicate recent cold

front passage and are also more likely to induce a coastal flight

path, and perhaps the coastal effect [18], in migrating birds. We

calculated nightly averages for weather variables from evening to

morning civil twilight, thus encompassing the period of active

monitoring. We also calculated the proportion of hours during a

given night with at least one ASOS station reporting precipitation.

Additional details of weather data acquisition and manipulation

are available from the authors.

Analysis
We used generalized additive models (GAMs; [40,41]) to

explore the association between regional atmospheric conditions

on NFC detections and differences in NFC rates among sites.

GAMs accommodate potential nonlinear changes in calling

activity with predictor variables while allowing us to incorporate

serial correlation [41]; we implemented them using the gamm

function of the mgcv package [42] in R, version 2.15.2 [43]. We

estimated GAMs separately for warblers and sparrows. For each

group, we modeled the number of nightly NFC detections as a

sum of explanatory variables using a GAM with the following

formulation:

E½NFC�~ exp½b0zfseason(season, site)zbsite(site)

zbyear(year)zbwindspeed(windspeed)

zbwindprofit(windprofit)zbprecipitation(precipitation)

zbskycover(skycover)

zbvisibility(visibility)zbnoise(noise)�

where NFC , NegativeBinomial(h), b0 is an intercept, and the

remaining bs describe their associated explanatory variables; bsite

and byear are categorical variables and comprise seven and two

parameters, respectively. We fit a single smooth term (fseason, site) to

allow for potential nonlinear seasonal (i.e., day of year) effects

using the default thin plate regression spline; we allowed this

smooth to interact with the categorical site variable, resulting in the

possible estimation of separate smooths for each site. We did not

evaluate any additional interactions to avoid over-parameterizing

the model relative to the data, nor did we expect interactions

among atmospheric conditions to possess much ecological

relevance. We estimated the h parameter for the negative binomial

distribution with a similarly-structured generalized linear model,

although replaced the spline for seasonal effects with a third-order

polynomial. A first-order autoregressive (AR-1) error structure

reasonably accounted for serial correlation in residuals. We

grouped the correlation structure within each site and year

combination to expedite GAM estimation [41]. We centered and

scaled by one standard deviation all continuous model input

variables to improve estimation and facilitate the assessment of the

relative importance of atmospheric conditions to NFC detections

[44]; we did not modify the categorical site or year variables. We

omitted cloud ceiling from consideration prior to analysis due to its

high collinearity with cloud cover (i.e., variance inflation factor

.10; r = 20.97, df = 124, P,0.0001). To avoid biased parameter

estimates and standard errors when evaluating hypotheses, we did

not eliminate any terms from the models [45]. Finally, we

estimated the average seasonal discrepancy in NFC detections

between mainland sites and island sites with two additional GAMs

(i.e., warblers and sparrows) that dichotomized recording sites

according to this geographic context.

We compared automated detections with manually quantified

NFCs in a sample of 10-minute recordings to evaluate the

effectiveness of our automated detector settings. We selected 12

recordings from each site, with two notable constraints: recordings

contained $4 warbler or sparrow NFCs (median = 7; maximum

= 45) and occurred on separate nights. We again ignored NFCs

too weak to assign confidently to warblers or sparrows, or NFCs

Table 1. Operational summary of nocturnal flight call microphones at eight locations in southern Rhode Island, USA, during the
2010 - 2011 fall migrations.

Mainland Block Island

Year Ninigret Trustom Sachuest Kurz Wash Lapham Pyne Comings

2010 Start night - - 14 Sep 8 Sep 11 Sep 8 Sep 9 Sep 12 Sep

# nights operated/recorded - - 56/45 62/52 59/51 62/24 61/61 58/58

2011 Start night 8 Sep 8 Sep 8 Sep 9 Sep 9 Sep 9 Sep - 9 Sep

# nights operated/recorded 64/63 64/58 64/58 63/57 63/31 63/51 - 63/29

Discrepancies between the number of nights operated and number of nights recorded indicate that an equipment malfunction precluded recording. Monitoring ended
on 8 November in 2010 and 10 November in 2011.
doi:10.1371/journal.pone.0092218.t001
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belonging to other bird families. Thus, we estimated detector

efficiency under generally favorable recording conditions and

compared efficiency among sites and across a restricted range of

ambient noise conditions. We modeled the logit of the proportion

of successfully detected NFCs in each recording (Pdetect) as a

function of two explanatory variables, and weighted by the

number of manually detected NFCs, using a generalized linear

model (glm function in base R) with the following formulation:

Table 2. Classification of nocturnal flight calls (NFCs) of migrating warblers (Parulidae) and sparrows (Emberizidae) recorded in
southern Rhode Island, USA, during autumn in 2010 and 2011.

Classificationa Number of NFCs

Group Complex 2010 2011 Dominant constituent speciesb

Warbers ZEEP 2,424 14,712 Blackpoll Warbler, Northern Waterthrush, Common Yellowthroat*, Magnolia Warbler; minor: Bay-
breasted Warbler, Yellow Warbler, Connecticut Warbler, Chestnut-sided Warbler*, Black-and-white
Warbler, Cape May Warbler; rare: Hooded Warbler, Blackburnian Warbler, Worm-eating Warbler

1BUP 2,776 2,415 Yellow-rumped Warbler*; minor: Ovenbird, American Redstart, Black-throated Blue Warbler; rare:
Blue-winged Warbler, Golden-winged Warbler

1BDN 295 1,337 Northern Parula, Palm Warbler*; minor: Cape May Warbler, Pine Warbler*; rare: Prairie Warbler*

NOPA 218 576 Northern Parula*

AMRE 282 394 American Redstart

COYE 119 421 Common Yellowthroat*

2BUP 112 383 Yellow-rumped Warbler*, Nashville Warbler, Tennessee Warbler; minor: Black-throated Green
Warbler, Mourning Warbler; rare: Orange-crowned Warbler

BAWW 92 198 Black-and-white Warbler

OVEN 95 137 Ovenbird

PAWA 96 134 Palm Warbler*

BTBW 17 47 Black-throated Blue Warbler

CSWA 20 41 Chestnut-sided Warbler*

NOWA 13 38 Northern Waterthrush

MOWA 17 18 Mourning Warbler

CAWA 9 6 Canada Warbler

WIWA 0 10 Wilson’s Warbler

Sparrows SPAR 2,396 5,501 Chipping Sparrow, White-throated Sparrow, Song Sparrow, Savannah Sparrow; minor: Swamp
Sparrow, Lincoln’s Sparrow, White-crowned Sparrow; rare: Field Sparrow, Vesper Sparrow,
Grasshopper Sparrow

SAVS 716 3,111 Savannah Sparrow

WTSP 360 1,170 White-throated Sparrow

CHSP 351 760 Chipping Sparrow

LISW 34 220 Swamp Sparrow; also Lincoln’s Sparrow

DEJU 94 128 Dark-eyed Junco

FISP 3 18 Field Sparrow

GRSP 1 13 Grasshopper Sparrow

aClassification complexes comprised of species with similar call notes, based on and modified slightly from (Evans and O’Brien 2002): ZEEP – ‘‘zeep’’ complex plus
warbler members of the ‘‘buzz calls’’ complex and Cape May Warbler; 1BUP – warbler species producing single-banded calls in the ‘‘short rising seep’’ complex; 1BDN –
warblers producing single-banded calls in the ‘‘descending seep’’ complex, plus Cape May Warbler; 2BUP – warbler species producing double-banded calls in the ‘‘short
rising seep’’ complex; SPAR – sparrow members of the ‘‘descending seep,’’ ‘‘short rising seep,’’ and ‘‘buzz calls’’ complexes, plus long single- or double-banded sparrow
calls (Chipping Sparrow, Song Sparrow, White-throated Sparrow, and Grasshopper Sparrow); LISW – sparrow members of the ‘‘buzz calls’’ complex.
bScientific names: Warblers – American Redstart (Setophaga ruticilla), Bay-breasted Warbler (S. castanea), Black-and-white Warbler (Mniotilta varia), Blackburnian Warbler
(S. fusca), Blackpoll Warbler (S. striata), Black-throated Blue Warbler (S. caerulescens), Black-throated Green Warbler (S. virens), Blue-winged Warbler (Vermivora
cyanoptera), Canada Warbler (Cardellina canadensis), Cape May Warbler (S. tigrina), Chestnut-sided Warbler (S. pensylvanica), Common Yellowthroat (Geothlypis trichas),
Connecticut Warbler (Oporornis agilis), Golden-winged Warbler (V. chrysoptera), Hooded Warbler (S. citrina), Magnolia Warbler (S. magnolia), Mourning Warbler (G.
philadelphia), Nashville Warbler (Oreothlypis ruficapilla), Northern Parula (S. americana), Northern Waterthrush (Parkesia noveboracensis), Orange-crowned Warbler (O.
celata), Ovenbird (Seiurus aurocapilla), Palm Warbler (S. palmarum), Pine Warbler (S. pinus), Prairie Warbler (S. discolor), Tennessee Warbler (O. peregrina), Wilson’s Warbler
(C. pusilla), Worm-eating Warbler (Helmitheros vermivorum), Yellow Warbler (S. petechia), Yellow-rumped Warbler (S. coronata); Sparrows – Chipping Sparrow (Spizella
passerina), Dark-eyed Junco (Junco hyemalis), Field Sparrow (Spizella pusilla), Grasshopper Sparrow (Ammodramus savannarum), Lincoln’s Sparrow (Melospiza lincolnii),
Savannah Sparrow (Passerculus sandwichensis), Song Sparrow (Melospiza melodia), Swamp Sparrow (M. georgiana), Vesper Sparrow (Pooecetes gramineus), White-
crowned Sparrow (Zonotrichia leucophrys), and White-throated Sparrow (Z. albicollis).
Dominant constituent species are grouped according to their expected contribution based on general impression of authors (i.e., some calls left unidentified to species
were suggestive of a given species), knowledge of occurrence and migratory phenology in the region, and 5,526 banding records of relevant species from
approximately 8 September to 10 November from five fall migration banding operations in southern Rhode Island in 2010–2011 (A. D. Smith unpubl. data; USFWS
unpubl. data; K. Gaffett and S. Reinert unpubl. data; P. W. C. Paton unpubl. data). Species listed first are presumed to be the most common contributors; species
following ‘minor’ are presumed to make minor contributions; species following ‘rare’ are presumed rare contributors. Species marked with an asterisk possess flight calls
that occur to some extent below 6 kHz (see text for details).
doi:10.1371/journal.pone.0092218.t002
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logit½Pdetect�~b0zbsite(site)zbnoise(noise)

where b0 is the intercept and the remaining bs describe their

associated explanatory variables. We sampled from all eight sites,

so bsite comprises seven parameters. The noise variable represents

the average power (dB) in the 6–11 kHz frequency range in each

10-minute recording.

Results

We recorded 27,452 warbler and 14,876 sparrow flight calls in

638 microphone nights (,7,250 h of recordings) during the fall

migrations of 2010–2011 (Table 2). Most warbler NFCs (62%)

were classified into a single complex (‘ZEEPs’; Table 2) dominated

presumably by four species with similar flight calls; several

additional species likely are represented in this complex, but to a

much lesser extent. Four sparrow species were presumed

responsible for nearly all (,97%) sparrow NFCs (‘SPARs’;

Table 2), although a few other species likely are represented

(Table 2).

Warblers and sparrows exhibited similar general patterns of

NFC detections, but slightly different phenologies (Figures 2 and

3). Generally, NFC detections peaked in late September/early

October (warblers) or mid-October (sparrows) and declined

through the end of the season (Figure 3), regardless of site,

although the data did not justify a curvilinear fit for a few sites (i.e.,

Figure 3D, F, G). Averaged over the entire migration period,

mainland sites (Figure 3A–B) detected nearly five times the warbler

NFC detections and nearly nine times the sparrow NFC detections

relative to island sites (Figure 3C–H); warbler and sparrow NFC

detections were similar between the single nearshore island

location (Figure 3C) and Block Island locations (Figure 3D–H).

Warblers exhibited similar intra-night NFC detection patterns

regardless of geographic context (Figure 4). Specifically, warbler

NFC detections increased sharply in the first few hours after civil

sunset and peaked before the middle of the night, then decreased

more slowly through civil sunrise. The primary discrepancy

among locations was the relatively reduced warbler NFC

detections in the last quarter of the night prior to civil sunrise at

southern Block Island sites (Figure 4D). Additionally, the non-zero

density of NFC detections at civil sunset suggests warbler

migration was underway by this time (Figure 4). Compared to

warblers, sparrow NFC detections increased more slowly after civil

sunset and exhibited a more protracted period of peak activity

centered around the middle of the night, roughly 2330 h EST

(Figure 4). Again southern Block Island sites were the exception to

this general pattern, as sparrow NFC detections was distinctly

reduced near civil sunset and sunrise, producing a more

pronounced peak of activity near the middle of the night

(Figure 4D).

Warbler and sparrow NFC detections increased substantially

with wind conditions indicative of recent cold front passage and

favorable for coastal migration (Table 3, Figure 5A). Additionally,

warbler and sparrow NFC detections decreased with an increasing

regional presence of rain (Table 3, Figure 5D). Warbler and

sparrow NFC detections increased under cloudier skies (and lower

cloud ceilings; Table 3, Figure 5C), but decreased visibility was

associated with increased detections only in warblers (Table 3,

Figure 5E). NFC detections decreased considerably with increas-

ing wind speeds (Table 3, Figure 5B). Ambient noise only

marginally decreased the detection of warbler flight calls and

exhibited little association with the detection of sparrow NFCs

(Table 3, Figure 5F).

We found little evidence that the efficiency of our automated

detector algorithm varied among sites (likelihood ratio test [LRT]:

x2 = 9.92, df = 7, P = 0.19) or with background noise in relatively

low-noise conditions (LRT: x2 = 0.03, df = 1, P = 0.86). The

automated detector extracted 55–60% (95% confidence interval)

of flight calls attributable to warblers and sparrows under

reasonably good recording conditions.

Discussion

We used NFC recordings of at least 22 migratory songbirds (14

warbler and 8 sparrow species) during fall migration from multiple

sites along mainland and island coasts of Rhode Island to evaluate

hypotheses regarding NFC detections. Patterns of warbler and

sparrow NFC detections largely supported our expectations that

(1) NFC detections were associated positively and strongly with

wind profit and negatively with regional precipitation; (2) NFCs

increased with reduced visibility for migrants (e.g., increased cloud

cover); (3) NFCs decreased with higher wind speeds, presumably

due mostly to increased ambient noise; and (4) coastal mainland

sites recorded five to nine times more NFCs, on average, than

coastal nearshore or offshore island sites. However, we found little

evidence that (5) nightly or intra-night patterns of NFCs reflected

the well-documented latitudinal patterns of migrant abundance on

Block Island.

Associations of NFC detectability with atmospheric
conditions

Atmospheric and ambient conditions can influence the detec-

tion rates of NFCs directly by inducing a change in the rate at

which migrants call, or indirectly by influencing the number of

birds aloft or NFC detectability. Certain atmospheric conditions

commonly are associated with increased numbers of birds aloft in

north temperate areas (e.g., front passage, wind conditions, and

precipitation; [1,2,4]) and increase the likelihood of migrant

concentrations along the Atlantic Coast of North America [22,28].

We formulated wind profit to reflect wind conditions favorable for

migration in general (i.e., the northerly component that typically

Figure 2. Seasonal variation in warbler and sparrow nocturnal
flight call rates. Seasonal variation in the number of nocturnal flight
calls (NFCs) detected per active microphone for warblers (white fill) and
sparrows (gray fill) during fall migration in (A) 2010 and (B) 2011 at eight
coastal sites in southern Rhode Island, USA.
doi:10.1371/journal.pone.0092218.g002
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follows cold front passage and building high pressure) but also to

favor a westerly component more likely to induce a flight path

towards the coast and offshore displacement. While northeast and

east winds may provide favorable tailwinds to migrating songbirds

in our region [2,4], we expected winds from these directions to

diminish the concentrating influence of the Atlantic Coast on

southbound migrant activity. Consequently, our formulation of

wind profit ascribed reduced or negative values to these wind

conditions. We suggest the strong association of warbler and

sparrow NFC detections with wind profit supports the idea that

Figure 3. Geographic variation in the seasonal patterns of warbler and sparrow flight calls. Average seasonal pattern in warbler (solid
line) and sparrow (dashed line) nocturnal flight call (NFC) detections during fall in 2010 and 2011 at eight coastal sites in southern Rhode Island, USA
(see Figure 1): (A–B) two sites on the mainland coast, (C) one on Aquidneck Island, and (D–H) five on Block Island. Seasonal patterns were estimated
with generalized additive models; the seasonal trend of the linear predictor (and 95% confidence interval) is illustrated with other variables held at
their mean value. All plots share the same vertical scale to facilitate comparisons of NFC detections among locations. Note that each unit change in
the linear predictor represents nearly a tripling of NFC detections.
doi:10.1371/journal.pone.0092218.g003

Figure 4. Intranight variation in warbler and sparrow nocturnal flight calls. Intranight variation in warbler (solid line) and sparrow (dashed
line) nocturnal flight call (NFC) detections in 2010 and 2011 at (A) two coastal locations (sites N and T; see Figure 1) on mainland Rhode Island, (B) a
single location on a nearshore island (site S), (C) three locations on northern Block Island (sites K, W, and L), and (D) two locations on southern Block
Island (sites P and C). The horizontal axis uses a percentage scale to account for increasing night length throughout the study period, with 50%
corresponding to approximately 2330 h EST. The vertical axis (NFC density) is identical among panels to facilitate comparisons of NFC detections;
actual density values are omitted for clarity.
doi:10.1371/journal.pone.0092218.g004
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NFC detections generally reflect the number of birds aloft. We

note that in addition to wind profit, several alternatives exist for

capturing the multivariate problem of wind assistance, each

making different assumptions regarding the behavior of the

organism of interest [46].

Unlike wind profit, the extent to which other atmospheric

conditions influence NFC detections directly or indirectly is less

clear and not likely to be mutually exclusive. Therefore,

atmospheric conditions likely complicate the relationship between

the number of vocal birds aloft and NFC detections. For example,

precipitation is thought to suppress migration [1,2,4], which

concurs with the negative association of regional precipitation with

NFC detections we documented in this study. However, consistent

precipitation also compromises the detectability of NFCs by

increasing the background noise (see below). In contrast, light to

moderate precipitation may decrease visibility without hindering

migration and thus induce increased calling rates [35,47] or lower

flight altitudes [8], thereby increasing detections.

Cloud cover and visibility describe additional conditions under

which the influence on NFC detections may be direct or indirect.

NFC detections are known to be positively related to increasing

cloud cover (or decreasing cloud ceiling, which correlated very

strongly with cloud cover in this study) or decreasing visibility

(reviewed in [35]; see also [47]). Farnsworth [35] suggested that

increased calling rates by individuals under conditions of poor

visibility may be adaptive for maintaining contact, avoiding

Figure 5. Warbler and sparrow flight call relationships with atmospheric and ambient conditions. Changes in warbler (solid line) and
sparrow (dashed line) nocturnal flight call (NFC) detections during the 2010 and 2011 fall migrations as a function of average regional atmospheric
conditions (A–E) and ambient noise (F); associations were estimated with generalized additive models. We illustrate each variable’s association (and
95% confidence interval) with the linear predictor of NFC detections when all other variables are at their mean value; we excluded the intercept and
site-specific effects from the linear predictor to facilitate the comparison of effect magnitudes among variables. Note that each unit change in the
linear predictor represents nearly a tripling of NFC detections. Rug plots illustrate the distribution of the input variables.
doi:10.1371/journal.pone.0092218.g005

Table 3. Relationships between nightly warbler and sparrow nocturnal flight call (NFC) detections and average regional nightly
atmospheric or ambient noise conditions estimated via generalized additive models.

Warblers Sparrows

Variablea Expected association Estimate (SE) tb Pc Estimate (SE) tb Pc

Wind profit + 1.13 (0.08) 14.99 ,0.001 1.01 (0.09) 11.31 ,0.001

Wind speed 2 20.91 (0.09) 210.24 ,0.001 21.37 (0.10) 213.57 ,0.001

Rain 2 20.37 (0.09) 24.08 ,0.001 20.47 (0.10) 24.63 ,0.001

Cloud cover + 0.40 (0.08) 4.77 ,0.001 0.24 (0.09) 2.78 0.006

Visibility 2 20.19 (0.07) 22.66 0.008 0.00 (0.08) 0.03 0.97

Noise 2 20.16 (0.08) 22.11 0.035 20.07 (0.08) 20.81 0.42

aInput variables were centered and scaled; thus, exponentiation of parameter estimates provides the average change in NFC detections per standard deviation change
of the input variable. Standard deviations of input variables: wind profit (1.91 m/s), wind speed (1.53 m/s), rain (22.57%), cloud cover (35.27%), visibility (1.70 mi), noise
(8.28 dB).
b603 residual degrees of freedom.
cAlthough the expected associations are one-directional, we report P from the two-sided test to avoid missing large differences in the unexpected direction [72].
doi:10.1371/journal.pone.0092218.t003
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collisions, and coordinating migratory behavior, particularly in

inexperienced migrants [48]; this hypothesis implies a behavior-

modifying influence on calling rates. Its potential pertinence to

inexperienced migrants is particularly relevant to this study, as the

vast majority of autumnal songbird migrants along the coast are

young birds performing their first migration [49–53]. But indirect

effects seem equally plausible; poor visibility, cloud cover, and low

cloud ceiling may decrease flight altitudes relative to clearer nights,

placing more migrants within NFC detection range. Although we

documented the expected increase in NFC detections with

increasing cloud cover (warblers and sparrows) and decreasing

visibility (warblers only), we were unable to distinguish between

changes in calling or flight behaviors.

We further expected certain atmospheric and biological

conditions to increase background noise and decrease our ability

to detect NFCs, and thus associate negatively to NFC detections.

Wind and insects comprised the primary sources of noise in this

study. Wind speed associated strongly and negatively with NFC

detections. The strong correlation between wind speed and

background noise measurements at each site (r = 0.59, P,0.001,

df = 622; ‘within-site’ correlation sensu [57]) suggests wind noise

importantly reduced the detection of NFCs. Nonetheless, higher

wind speeds might also decrease the number of migrants aloft,

particularly when opposing the direction of travel [4,54], although

high wind conditions may also result in lower flight altitudes [54–

56] and thus possibly increase detectability. We suggest that the

negative effect of wind speed reflected primarily an increase in

background noise and an associated decrease in the detectability of

NFCs more so than a decrease in warbler and sparrow abundance

aloft [34]. Insect noise was the primary non-wind source of

background noise above 6 kHz. Our manual detector evaluation

revealed a clear reduction in NFC detection due to insect noise in

some instances (A. D. Smith unpubl. data), but its irregular and

ephemeral occurrence made it impractical to quantify on a nightly

basis. Insect noise occurred less commonly as the season

progressed. While high background noise levels universally

impaired NFC detections, intermediate noise levels may have

disproportionately discriminated against species that produce calls

not contained completely in the frequency range of our detector or

less powerful calls, or that fly at higher altitudes. For example,

most warbler NFCs occur above 6 kHz, but a few common species

produce flight calls that regularly drop below 6 kHz (Table 2). We

suggest that these calls were more sensitive to noise levels given our

detector settings. In contrast, the NFCs of all sparrow species in

this study occur entirely above 6 kHz [30]. This perhaps explains

the weak influence of non-wind ambient noise on warbler NFC

detection and the apparent lack of such an influence for sparrows.

NFC detections and coastal context
We recorded warbler and sparrow NFCs in multiple coastal

contexts along the Atlantic Coast of the northeastern United

States, an important migratory corridor during autumn migration.

NFC detections occurred episodically over the fall migration

season, similar to migration intensity in the region (e.g.,

[9,15,17,58]), presumably the result of most migrants coinciding

movements with ephemerally favorable conditions [2,4,28,39,59].

Although offshore islands often offer excellent opportunities to

observe high densities of migrants [20,37], we expected that most

migrants would move over land or near the coast, rather than

offshore, and thus would detect more NFCs at mainland sites

compared to offshore sites. Indeed, warbler and sparrow NFC

detections were considerably higher at our two mainland sites.

Radar studies suggest the difference in NFC detections between

coastal contexts along the Atlantic Coast reflects migrant

abundance rather than a difference in the calling behavior or

flight altitudes of birds, as the bulk of migration intensity occurs

along the coast and inland, not over ocean, excluding water

crossings from Nova Scotia over the Gulf of Maine [15–17,60].

Furthermore, if patterns of NFC detections reflected changes in

calling behavior more so than abundance, we might reasonably

expect the opposite pattern (i.e., birds displaced offshore increase

calling rates). Flight altitude might play some role in the observed

pattern, but the data are scarce and mixed and often complicated

by radar peculiarities (see, e.g., [8,21,25]).

There exists a well-documented pattern in ‘on-the-ground’

migrant densities on Block Island: migrants occur in higher

densities on the northern half of the island, where they prepare for

reoriented flights to the mainland or subsequent migratory flights

[20,37]. Indeed, two migration banding operations on the island

([52]; USFWS unpubl. data) exploit the phenomenon, as have

multiple previous studies [61–65]. We thus expected a similar

latitudinal pattern in NFC detections among Block Island sites;

however, we found little evidence for this pattern (or differences

among sites in general), suggesting that concentrations of migrants

on the northern half of Block Island result primarily from

redistribution after landfall (e.g., [22,24,66,67]). Indeed, regular

observation of significant diurnal, northerly movements of

migrants on offshore islands following nights of active southerly

migration provide evidence of such a redistribution ([20,37]; A. D.

Smith pers. obs.).

Migration activity along the Atlantic Coast, as assessed by

radar, generally peaks in the few hours following sunset and

declines steadily thereafter [9,33,58,60,68]. Comparisons of NFC

detections with radar are few but suggest that NFC detections

follows a similar pattern ([34]; but see the New York data in [33])

or peak up to a few hours later, usually near or just after the

middle of the night [33,69]. Seasonal patterns of intra-night NFC

detections in this study (Figure 4) support an apparent delay in

peak NFC detections relative to expectations from previous radar

work. The patterns also suggest that sparrows migrate, or at least

call, slightly later in the night on average than warblers (Figure 4).

The intra-night patterns of warbler and sparrow NFC detections

were generally consistent for the larger coastal context (i.e.,

mainland vs. island) and among latitudinal contexts on Block

Island, with the possible exception of sparrow NFC detections at

southern Block Island sites (Figure 4D). For reasons that remain

unclear, the reduced activity near sunrise and sunset at these sites

suggests that fewer sparrows are landing and settling on southern

Block Island. Finally, rather than comparing seasonal averages of

intra-night activity, more detailed work will be necessary to

evaluate the variability of the relationship between migrant density

and concurrent NFC detections (e.g., [34]).

NFC species composition
Acoustic monitoring is relatively inexpensive compared to

radar, the equipment can be automated, and it provides

information not readily obtained from other methodologies,

including species composition and phenology information for

vocal species and the ability to detect secretive, rare, or species

otherwise difficult to survey [70,71]. However, inferring the

relative abundances of calling species using patterns of NFCs is

complicated because several common species do not regularly

vocalize during migration (e.g., flycatchers, vireos, mimids;

[30,35,36]) whereas other species regularly vocalize during

migration and so may be over-represented in NFC recordings

(e.g., Savannah Sparrows; [71]). For example, a comparison of

NFC detections at four of our microphone locations with capture

rates at active and close (,500 m) banding operation suggests that
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Savannah and Chipping Sparrows were likely over-represented in

NFC recordings whereas Yellow-rumped Warblers were likely

under-represented in NFC recordings. Clearly, inferring the

relative abundances of calling species using patterns of NFCs

requires more knowledge of calling rates among species [36] and

species-specific differences in NFC detection. Despite these

potential complications in interpreting NFC data and inferring

migration intensity, the acoustic monitoring of NFCs provides a

viable and complementary methodology for exploring the

spatiotemporal patterns of songbird migration (e.g., [29,71]; see

also oldbird.org), as well as evaluating the atmospheric conditions

that shape these patterns.
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