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ABSTRACT: The early stages of the drug design process involve
identifying compounds with suitable bioactivities via noisy assays. As
databases of possible drugs are often very large, assays can only be
performed on a subset of the candidates. Selecting which assays to perform
is best done within an active learning process, such as batched Bayesian
optimization, and aims to reduce the number of assays that must be
performed. We compare how noise affects different batched Bayesian
optimization techniques and introduce a retest policy to mitigate the effect
of noise. Our experiments show that batched Bayesian optimization
remains effective, even when large amounts of noise are present, and that
the retest policy enables more active compounds to be identified in the
same number of experiments.

■ INTRODUCTION
The early stages of the drug discovery process involve
identifying suitable compounds in assays. These are prone to
experimental random error, caused by random variations in
natural processes.1 This study focuses on how to select which
assays to perform to quickly identify suitable compounds, given
the presence of noise. This is an important problem, as
reducing the number of experiments would help reduce the
large costs and time scales currently involved in drug design;
typically, new drugs cost upward of $2.5 billion, and the
process takes approximately 10 years to complete.2

The standard approach to this problem is to use virtual
screening techniques, most commonly quantitative structure−
activity relationship (QSAR) models, to identify potential drug
candidates from large databases of chemicals.3,4 A QSAR
model links a chemical descriptor to an activity value: the
chemical descriptor can be either a two-dimensional (2D) or
three-dimensional (3D) representation of the molecule that
provides information about the chemical structure; the activity
value will be the property of interest�in drug design this is
usually binding affinity to a target protein.5 An initial set of
known activity values is required with which to train the
model, and the accuracy of the model’s predictions will depend
on the size and quality of this initial data set.
Active learning provides a system to use these predictions

for effective experiment selection; it aims to reduce the amount
of data required to achieve a desired outcome by using an
algorithm to select future training examples. This technique is
particularly applicable to drug design, as chemical activity
experiments are expensive to perform, and it has been used to

reduce the data requirement across a range of drug design
tasks.6−9 Batched Bayesian optimization is an active learning
method where experiments are performed in batches
(reflecting how real drug design experiments are performed10),
with a surrogate model being used to predict the activity of
untested compounds between batches. An acquisition metric
then uses the activity predictions to select which compounds
will be in the next batch. Batched Bayesian optimization has
been shown to be effective across a range of physical tasks
including material design11 and drug design.12 Performing
batched Bayesian optimization requires a choice of both
surrogate model and acquisition function. Graff et al. compared
multiple surrogate models and acquisition functions on a
computational docking experiment. They found directed
message passing neural networks with an upper confidence
bound or greedy acquisition metric to be most effective,12

although the effectiveness of any active learning technique will
depend on the data set.13 Pyzer-Knapp14 demonstrated this by
testing Bayesian optimization on two different drug discovery
data sets. On the smaller, simpler, data set the greedy metric
performed the best, with two versions of expected improve-
ment performing only slightly worse. On a larger data set,
which presented a more complicated optimization problem by
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having multiple local maxima, the expected improvement
methods had a much better performance than the greedy
method, which got stuck in a local maxima and never
recovered.
Other approaches to compound screening attempt to

balance the need to both find highly active compounds and
to explore uncertain areas of the data set. For example, Yang et
al. compared four methods of selecting compounds based on
there predicted activity and uncertainty.15 They found
selecting compounds the model had the highest uncertainty
on, from the compounds that were in the top 5% of predicted
activities, to be an effective active learning method in all cases,
allowing for the same performance as the standard approach
while using less data.
When noise is present the effectiveness of active learning

decreases, and methods that are optimal in noise-free
environments can perform poorly when noise is present.16

So, it is important to test how active learning performs in noisy
environments, both to find techniques that are appropriate for
real data sets and to give realistic predictions for the
performance of active learning. Methods to minimize the
effect of noise in active learning include the development of
specific algorithms and repeating experiments. For example,
Pickett et al. used a genetic algorithm to select training
examples and used retests to help minimize the effects of noisy
experiments: each compound was retested a fixed number of
times.17 They successfully identified compounds in the most
active regions of the data set despite having noisy experiments.
Our experiments used batched Bayesian optimization to

identify active compounds as quickly as possible. They were
performed with different amounts of noise present, both with
and without the use of a retest policy. This retest policy
selectively chose experiments to repeat, differing from that
used by Pickett et al., which retested each compound a fixed
number of times. Experiments were performed on a simulated
data set, on 288 drug activity data sets from CHEMBL18,19 and
on two data sets from PubChem. The results show that
batched Bayesian optimization remains effective in noisy
environments, but the relative performance of different
techniques varies depending on both the data set and the
amount of noise present. Using the retest policy consistently
allowed more actives to be correctly identified when noise was
present.

■ METHODS
Data Sets. Experiments were performed using a simulated

data set, enabling the amount of noise to be controlled, and
real QSAR data sets from both PubChem and CHEMBL,
demonstrating the usefulness of the approach on real
problems. The simulated data set was created using the
make regression tool from the scikit learn package (version
1.0.1) and contained 5000 samples with 10 features, 5 of which
were informative, and had 1 regression target. The CHEMBL
data sets19 had the pXC50 value as the activity value for
learning, and chemical structures were represented using
extended-connectivity fingerprints.20 These data sets were
obtained directly from Olier et al.18 All data sets with over 800
entries were used, giving a total of 288 data sets.
Two data sets were obtained from PubChem, namely, assays

AID-1347160 and AID-1893. For these data sets the PubChem
activity score was used as the activity value for learning. The
structural information used was a 1024-bit, radius 2 Morgan
fingerprint calculated using rdkit. Actives for these data sets

were defined in the data set, so for these experiments the
number of actives differed from 10%. The data set for assay
AID-1347160 contained 5444 molecules with 323 actives
(5.9% actives), and assay AID-1893 contained 5942 molecules
with 117 actives (2.0%). Assay AID-1893 is a percent
inhibition data set.
Noise Generation. To observe the effect of random noise

on the active learning process, noise was added to all the data
sets. However, in the data sets from CHEMBL and PubChem
there will be noise present in the underlying data. Assuming
that the noise present in the provided data is normally
distributed, the experimental data will have activity values
following

= + +y y (0, ) (0, )true 1
2

2
2

(1)

where y is the activity value used in learning, ytrue is the true
activity value, σ12 is the variance in the noise in the data, and σ22
is the variance in the artificially added noise. This equation can
be rewritten as21

= + +y y (0, )true 1
2

2
2

(2)

The value of σ12 will typically be around 0.65 for QSAR data
sets. Varying σ22 can only show the effect of more noise (with
the simulated data σ12 = 0 so the effect of noise can be observed
directly).
The initial set of random noise was produced using a

random seed that changed each run of the experiment. This
same set of noise was used for all acquisition functions in a
given run to prevent the comparison between acquisition
functions being affected by differences in the random
generation of noise. Similarly, in experiments when retests
were required the noise generation was constant between runs.
In experiments noise was added with variance, σ22, proportional
to the range of y values in the data.

= y y(max min )i i i i2
2

(3)

The values of α used were: 0, 0.05, 0.1, 0.15, 0.2, and 0.25. The
average range of the activity values in the CHEMBL data sets
was 6, meaning that σ22 and σ12 are of similar size.
Active Learning. The active learning process was

performed as batched Bayesian optimization, with 100
molecules per batch, which is also used by Graff et al.12 A
QSAR model was trained using a randomly selected initial
batch of 100 molecules; this surrogate model was then used to
predict the activity of the remaining molecules. Various
acquisition functions were used to rank untested molecules
by the estimated utility of performing an experiment on them.
The inputs for the acquisition function are model prediction,
model uncertainty, and the required activity for a molecule to
be considered active; full details are given later in the methods
section.22 The next batch of experiments was selected by
taking the top 100 molecules as ranked by the acquisition
function. This is a naive method to select batches: all
molecules are selected independently of each other, which
can be suboptimal,23 but it greatly decreases the computational
complexity of the process compared to other batch selection
policies.24

After a batch is selected the activity readings for the new
molecules are added to the data set. If retests were being used,
the molecules to be retested were identified. Each retest would
mean one less new molecule in the next batch, to keep the total
number of experiments at 100 per batch. With the new data, a
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new QSAR model was generated to give a new set of predicted
activities, to be used to rank molecules via the acquisition
functions. The next batch was then found by combining the
molecules identified to be retested with the top ranked
molecules to make a total batch of 100 (or just the top 100 if
not using retests). This process continues until the total
number of measurements performed is greater than half the
total number of entries in the data set (e.g., if the data set
contains 5100 entries, 25 active learning batches will be
performed after the initially selected random batch). See the
experimental design subsection at the end of the methods
section for details on which experiments were performed.
Acquisition Functions. The acquisition functions tested

were
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μ̂(x) and σ̂(x) are the predicted mean and uncertainty at point
x, respectively. Φ and ϕ are the cumulative distribution
function and the probability density function of the standard
normal distribution, respectively, and f* is the target objective
function value. For the experiments in this paper β = 2 and ε =
0.01 were used. These metrics are the same as those used by
Graff et al.12

Surrogate Models. The QSAR models were made using
random forest regression, implemented in python using the
sckit learn package (version 1.0.1). Each forest used 100 trees,
and the default values are used for the remaining parameters:
all the variables are considered at each split, the squared error
criterion is used to measure the quality of the split, and only
one sample is required to be a leaf node. Random forest
models were chosen, as they have been shown to provide good
performance on QSAR problems.18,25

Retest Policy. To try and reduce the number of active
molecules that are incorrectly labeled as inactive a retest policy
was added. If a molecule was predicted to be above the active
threshold, but the measured value was below this threshold, it
was retested. A retest is subject to the same amount of random
noise as the original test. Both this new activity value and the
original are used in the training set. This is because there is no
reason to believe either of the measurements to be more valid
than the other, as both have been randomly sampled from the

same distribution. For each molecule that is being retested one
less new molecule is added in the next batch; this keeps the
number of measurements in the data set consistent, allowing
for a comparison between results.
Hit Detection. The objective of the active learning process

in this investigation was to quickly detect active compounds.
Actives were defined as molecules within the top 10% of the
entire data set. An active compound was found after it had
been recommended by the active learner and added to the
training set. However, because of the added noise, when the
active compound is added to the data set its measured activity
value may be below the threshold for it to be considered active.
A compound that is active and has been recorded as active is
referred to as a “true active”.
Experimental Design. For each data set experiments are

performed both with and without retests. They are done as
follows.

Without Retests.
1. 100 sample random initial batch selected as a training set
and used to train a model.

2. A batch of 100 samples is selected using the acquisition
metric with the model predictions, the batch is added to
the training set, and the model is retrained.

3. The number of actives and true actives present in the
training set are recorded.

4. Steps 2 & 3 are repeated until the total number of
entries in the training set is greater than half the total
entries in the data set.

This process is referred to as a run and is done 10 times for
each combination of acquisition metric and noise level, with
the noise generation being different each time.

With Retests.
1. Initially the list of molecules to be retested is empty and
so has a length of n = 0.

2. 100 sample random initial batch selected as a training set
and used to train a model.

3. A batch of 100 − n samples is selected using the
acquisition metric with the model predictions.

4. This is combined with list of molecules to be retested to
get the full batch.

5. Measurements are obtained for samples in the batch and
used to determine if they should be retested, this
information is stored as the list of molecules to be
retested of length n.

6. The batch is added to the training set, and the model is
retrained.

7. The number of actives and true actives present in the
training set is recorded.

8. Steps 3−7 are repeated until the total number of entries
in the training set is greater than half the total entries in
the data set; note that, due to retests, samples may be
repeated in the training set.

Again, this process is referred to as a run and is done 10
times for each combination of acquisition metric and noise
level, with the noise generation being different each time.

■ RESULTS
Simulated Data Sets. The active learning process was

performed, without retests, on the simulated data set as
described in the methods section. Noise was added to the data
set with variance given by eq 3, using α values of 0, 0.05, 0.1,
0.15, 0.2, and 0.25. This process enabled a comparison of the
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acquisition metrics. Figure 1 shows how hits found varied as
batch number increased for the different acquisition metrics
using α values of 0, 0.1, and 0.2. Figure 2 shows the number of
hits found after 8 active learning batches for each acquisition

metric at each noise level (α value) tested. At all noise levels
tested batched Bayesian optimization, using the greedy and PI
acquisition metrics, outperformed random selection. The UCB
and EI acquisition metrics performed poorly: they found fewer
hits than PI and greedy at all noise levels and performed
similarly to a random search at high noise levels.
Figure 3 shows the number of hits and true hits detected

after 8 active learning batches, for the greedy and PI

acquisition metrics, at all noise levels tested. The rate of
detection of true hits decreases rapidly as noise increases for
both acquisition metrics. A hit is recorded when an active
sample is added to the training set, but for a sample to be a
true hit it must be added to the training set and also have an
appropriately high measured activity value. So, the difference

Figure 1. Active learning performance with different amounts of noise
present using the simulated data set. Noise values (σ22) are found
using eq 3 with the indicated values for α. Results shown are the mean
over 10 runs; error bars show the standard deviation. Acquisition
metrics: greedy, random, UCB - upper confidence bound, EI -
expected improvement, PI - predicted improvement.

Figure 2. Hits found after 8 active learning batches for each
acquisition metric on the simulated data set with different levels of
noise. Noise added using eq 3 and the indicated values for α. Results
show the mean of 10 runs, and the error bars indicate the standard
deviation. Acquisition metrics: greedy, random, UCB - upper
confidence bound, EI - expected improvement, PI - predicted
improvement.

Figure 3. Hits and true hits found after 8 active learning batches for
the predicted improvement (PI) and greedy acquisition metrics.
Noise added using eq 3 and the indicated values for α. Results show
the mean of 10 runs, and the error bars indicate the standard
deviation.
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between the detection of hits and true hits is due to random
noise causing active samples to sometimes have low measured
activity values.
The retest policy described in the methods section was

implemented with the goal of finding more true hits. The rate
of true hit acquisition both with and without retests, with a
noise level given by α = 0.2 in eq 3, is shown in Figure 4. The

number of true hits found after 4 and 8 batches for all noise
levels tested is shown in Figure 5a,b, respectively. When no
noise is present using retests causes fewer true hits to be found.
When noise is present, active learning processes with a small
number of batches find a similar number of hits both with and
without retests. As the number of batches increases using
retests becomes more beneficial.
CHEMBL Data Sets. The batched Bayesian optimization

process was then tested on 288 drug activity data sets from
CHEMBL. Following Graff et al. an enrichment factor was
defined as the ratio of hits (or true hits) found by an
acquisition metric to the hits found by random selection.
Figure 6 shows the mean enrichment factor, at each noise level
tested, for each acquisition metric with error bars showing the
standard deviation in results. These results are after
approximately 25% of the data set had been used in batched
Baysian optimization and noise had been added to the data
using eq 3 and the indicated α values. On the real data sets the
performance of the acquisition metrics was more similar. All
metrics outperformed random selection, and at all noise levels
the greedy and PI metrics found the most hits, with the
difference increasing as the amount of noise increased.
Figure 7 shows the enrichment factor for finding both hits

and true hits with the greedy and PI acquisition metrics, at
different levels of artificial noise, after approximately 25% of
the data set had been added to the training set in batched
Bayesian optimization. Results are shown at all noise levels
tested, found using eq 3 and the α values given. The rate of
detection of true hits drops off rapidly for both acquisition
metrics.
The restest policy was used to try and find more true hits.

The percentage of data sets for which using the retest policy

found more true hits than no retests is shown in Figure 8. The
results show the mean of 10 runs, and the error bars indicate
the standard deviation. The drawn data sets (those that both
with and without retests found the same number of true hits)
are not shown, so the results on the graph do not add up to
100%. Results are shown for approximately 15% and 30% of
the data set being added in Figure 8a,b, respectively. When no
noise is present retests are not beneficial; as noise increases
retests quickly become more favorable. When more experi-
ments are performed (more of the data set is added), retests
win more often. The effectiveness of the retest policy is similar
for both the greedy and PI acquisition metrics.
PubChem Data Sets. Batched Bayesian optimization was

run, both with and without retests, on the two data sets from
PubChem. This process was otherwise identical to that used
for the simulated data set, except hits were used as defined in
the original data set, rather than the top 10% of the data set.
Figures 9 and 10 show the number of hits found after 8 active
learning batches, at each noise level tested, for the PubChem
data sets AID-1347160 and AID-1893, respectively. These

Figure 4. True hits found using active learning, both with and without
retests, on the simulated data set for the predicted improvement (PI)
and greedy acquisition metrics. Noise added using α = 0.2 in eq 3.
The graph shows the mean of 10 runs, and the error bars indicate the
standard deviation.

Figure 5. Number of true hits found after the indicated number of
active learning batches, with different levels of artificial noise in the
data, both with and without retests. Noise added using the indicated α
values in eq 3. Results are the mean of 10 runs with the error bars
showing the standard deviation. The acquisition metrics used were
greedy and predicted improvement (PI).
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results are similar to those for the CHEMBL data set: the
greedy and PI acquistion metrics perform the best at all noise
levels, UCB and EI are slightly worse, and all metrics
outperform random selection.
Figures 11 and 12 show the acquisition of true hits, both

with and without restests, at a noise level of α = 0.2 for the
PubChem data sets AID-1347160 and AID-1893, respectively.
On both data sets, all of the active learning protocols have a
similar performance. Unlike the simulated data set, the number
of true hits found is still increasing at the end of the
experiment.

Figures 13 and 14 show the number of true hits found after
4 and 8 active learning batches, at all noise levels tested, or the
PubChem data sets AID-1347160 and AID-1893, respectively.
On both of these data sets all of the tested active learning
approaches had a similar performance.

■ DISCUSSION
Acquisition Strategy performance. On the simulated

data set the greedy and PI acquisition metrics were very
effective, finding approximately 5 times as many actives as a
random search. On the CHEMBL and PubChem data sets the
methods performed worse finding approximately 1.8 times and
2.1 times as many hits, respectively. The suspected reason that
the performance is so much worse for these methods is due to
differences in the data sets: the simulated data set is an easy
function to fit compared to the QSAR problems, and there is
less noise present, as the simulated data contains only the
artificially added noise (in eq 2 σ12 = 0, and noise controlled by

Figure 6. Mean enrichment factor for each acquisition function, at
different noise levels, after approximately 25% of the data set had been
added in batched Bayesian optimization. Noise added using the
indicated α values in eq 3. The graph shows the mean over all data
sets tested, and the error bars indicate the standard deviation.
Acquisition metrics: greedy, random, UCB - upper confidence bound,
EI - expected improvement, PI - predicted improvement.

Figure 7. Mean enrichment factor for finding both hits and true hits
(true hits indicated by TH), at different noise levels, after
approximately 25% of the data set had been added in batched
Bayesian optimization. Noise added using the indicated α values in eq
3. The graph shows the mean over all data sets tested, and the error
bars indicate the standard deviation. Acquisition metrics: greedy,
random, UCB - upper confidence bound, EI - expected improvement,
PI - predicted improvement.

Figure 8. Percentage of data sets using retests finds more true hits
than not using retests, with different amounts of noise present, after
approximately the indicated percentage of the data set has been added
in batched Bayesian optimization. Noise added using the indicated α
values in eq 3. Drawn data sets are not shown. Results show the mean
of 10 runs, and the error bars indicate the standard deviation.
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changing σ22 only), whereas the real data sets have noise
present before any additional noise is added (σ12 has a fixed
value). These data set differences make the real data sets
harder to predict using a QSAR model−worse model
predictions lead to worse active learning performance. These
observations were also reported by Pyzer-Knapp14 on a
Bayesian optimization study with multiple data sets; the
effectiveness of the different acquisition metrics varied between
the two different types of data set tested.
The purely exploitative greedy method consistently performs

as well or better than the more complex acquisition strategies
aiming to balance exploration and exploitation. Similar
observations were made by Graff et al. in a structure-based

experiment that compared the same acquisition metrics
without any artificial noise. They stated that the reason for
the poorer performance of the methods that require
uncertainty estimates may be that uncertainty quantification
in regression models is generally unreliable.12,26

The UCB and EI metrics performed very poorly on the
simulated data set, but on the real data sets they were similar to
the greedy and PI metrics. This could be because the simple
function of the simulated data set allowed good predictions to
be quickly produced, meaning attempts to explore the data set
were not useful, whereas on the real data set further
exploration was beneficial, as the models predictions were
worse. So, the more exploitative greedy and PI acquisition
metrics are much better on the simulated data set, where a very
good model can be easily made, and on real data sets the
acquisition metrics that perform a more explorative search
become more competitive.

Figure 9. Hits found after 8 active learning batches for each
acquisition metric on the PubChem 1347160 data set with different
levels of noise. Noise added using eq 3 and the indicated values for α.
Results show the mean of 10 runs, and the error bars indicate the
standard deviation. Acquisition metrics: greedy, random, UCB - upper
confidence bound, EI - expected improvement, PI - predicted
improvement.

Figure 10. Hits found after 8 active learning batches for each
acquisition metric on the PubChem 1893 data set with different levels
of noise. Noise added using eq 3 and the indicated values for α.
Results show the mean of 10 runs, and the error bars indicate the
standard deviation. Acquisition metrics: greedy, random, UCB - upper
confidence bound, EI - expected improvement, PI - predicted
improvement.

Figure 11. True hits found using active learning, both with and
without retests, on the PubChem 1347160 data set for the predicted
improvement (PI) and greedy acquisition metrics. Noise added using
α = 0.2 in eq 3. The graph shows the mean of 10 runs, and the error
bars indicate the standard deviation.

Figure 12. True hits found using active learning, both with and
without retests, on the PubChem 1893 data set for the predicted
improvement (PI) and greedy acquisition metrics. Noise added using
α = 0.2 in eq 3. The graph shows the mean of 10 runs, and the error
bars indicate the standard deviation.
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To test this hypothesis the simulated data experiments were
repeated with a more complex function. This new data set was
produced using the sklearn method make_friedman3, with
5000 samples. The number of hits found after 8 active learning
batches for each acquisition metric is shown in Figure 15; these
are the same results as were shown in Figure 2 for the original
simulated data set. On this more complex data set, the greedy
and PI methods perform worse, finding fewer hits. But the EI
and UCB methods perform better, showing that a more
complex function can allow these explorative methods to
perform better.
Hits Versus True Hits. In a real experimental process, the

distinction between hits and true hits is important, as only the
true hits will be correctly identified and, so, be considered as
prospects for future drugs. The probability of a hit being
misidentified decreases as its activity increases (the most active
compounds are least likely to be mistaken for nonhits), so the
purely exploitative greedy method might be expected to have a
better relative performance than the other acquisition metrics

on true hits. However, Figure 3 and Figure 7 show the
likelihood of a hit being correctly identified is independent of
the acquisition function; this is also true for the UCB and EI
acquisition metrics, although these results are not shown. This
could be because all the acquisition metrics select the
compounds with the highest activity, and the difference in
performance depends on the compounds near the boundary.
Figure 3 shows that the change in enrichment factor

decreases quickly as noise increases. This means that even
small amounts of noise present in the data can cause a
relatively large fraction of hits to be misidentified and that, as
noise increases, the proportion of hits that are misidentified
increases more slowly.
Hit Frequency. In the simulated data experiment and the

CHEMBL experiments hits are taken as the top 10% of the
data set. In real drug discovery processes it is likley that active
compounds will comprise a smaller fraction of the data set. To
investigate the effect of this the simulated experiments were
repeated with hits being defined as the top 1%. Figure 16

Figure 13. Number of true hits found after the indicated number of
active learning batches on the PubChem 1347160 data set, with
different levels of artificial noise in the data, both with and without
retests. Noise added using the indicated α values in eq 3. Results are
the mean of 10 runs with the error bars showing the standard
deviation. The acquisition metrics used were greedy and predicted
improvement (PI).

Figure 14. Number of true hits found after the indicated number of
active learning batches on the PubChem 1893 data set, with different
levels of artificial noise in the data, both with and without retests.
Noise added using the indicated α values in eq 3. Results are the mean
of 10 runs with the error bars showing the standard deviation. The
acquisition metrics used were greedy and predicted improvement
(PI).
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shows the number of hits found after 8 active learning batches,
for each noise level tested, and Figure 17 shows the acquisition
of hits at a noise level of α = 0.2.

Figure 16 shows that the change of hit rarity does not effect
the relative performance of the acquisition metrics due to its
similarity to Figure 2. This is also demonstrated by the results
for the PubChem data sets, where the relative performance of
the acquisition metrics was similar between the two data sets
with hits at approximately 6% for the AID-1347160 (Figure 9)
data set and approximatly 2% for the AID-1893 (Figure 10)
data set. This means that the frequency of hits does not effect
the relative performance of the acquisition metrics.

There is a smaller difference between the results with and
without retests in Figure 17, when hits are defined as 1%, than
in Figure 4, where hits are at 10%. This is because only a very
small number of the QSAR model predictions are above the
new (1%) activity threshold, so only a very small number of
retests occurs, and only a slight improvement is seen in using
retests. To demonstrate this a new retest policy was
implemented, which retested a molecule if its activity plus a
tenth of its prediction uncertainty was above the threshold
value. These results are shown in Figure 18. They are much

more similar to the results for a 10% hit rarity, and retests have
again allowed a much larger number of hits to be correctly
identified. This demonstrates that a suitable retest policy must
be chosen in conjunction with the model and acquisition
metric. This choice will be dependent on the data set and the
aims of the active learning process.

Figure 15. Hits found after 8 active learning batches for each
acquisition metric on the new, more complex, simulated data set with
different levels of noise. Noise added using eq 3 and the indicated
values for α. Acquisition metrics: greedy, random, UCB - upper
confidence bound, EI - expected improvement, PI - predicted
improvement.

Figure 16. Hits in the top 1% found after 8 active learning batches for
each acquisition metric on the simulated data set with different levels
of noise. Noise added using eq 3 and the indicated values for α.
Results show the mean of 10 runs, and the error bars indicate the
standard deviation. Acquisition metrics: greedy, random, UCB - upper
confidence bound, EI - expected improvement, PI - predicted
improvement.

Figure 17. True hits in the top 1% found using active learning, both
with and without retests, on the simulated data set for the predicted
improvement (PI) and greedy acquisition metrics. Noise added using
α = 0.2 in eq 3. The graph shows the mean of 10 runs, and the error
bars indicate the standard deviation.

Figure 18. True hits in the top 1% found using active learning, both
with and without the alternative retest policy, on the simulated data
set for the predicted improvement (PI) and greedy acquisition
metrics. Noise added using α = 0.2 in eq 3.
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Batch Size. In the drug design process the batch size can
often be larger than 100. To test the effectiveness of the retest
policy the simulated experiment was repeated with batch sizes
of 300 and 500. These results are shown in Figure 19. The
increasing batch size does not have an effect on the usefulness
of the retest policy. This means that retests can be used
effectively across a range of batch sizes.

Usefulness of the Retest Policy. Figure 4 shows that,
after a small number of batches, the performance is similar
both with and without retests and that, as batch number
increases, the retest policy becomes more favorable. The long-
term performance with retests finds more hits than without
retests; these patterns are also seen in Figure 8. One reason for
this is that, at the end of a shorter process, there are still many
actives left to be found, making it relatively easy to detect
actives by testing on new molecules. At the end of a longer
process there are fewer active molecules left to find, making it
difficult to detect actives in untested molecules, and so more
benefit is gained by retesting molecules.

Using retests also allows for more actives to be possible to
identify. For example, at an artificial noise level with α = 0.2,
Figure 3 shows that approximately 40% of hits will not be
measured as active. So, the maximum number of true hits is
about 60% of the total. With retests, if the model performed
perfectly, the remaining hits would all be retested, and after 1
retest 60% of them would be correctly classified as true hits.
This increases the maximum number of true hits that can be
identified from 60% to 84%. Allowing for further retests would
increase this amount to

=
=

a amaximum true hits (%) (1 )
x

n
x

0 (4)

where n is the maximum number of retests allowed, and a is
the chance a hit is correctly identified as a true hit in the first
round. While increasing the number of retests increases the
maximum number of hits that can be correctly identified, the
error in the QSAR model means that some hits would still be
missed. Further retests could cause fewer true hits to be found
in the same number of experiments, as fewer unique
compounds would be tested due to retests being repeated.
The effectiveness of a retest policy, particularly involving
multiple retests, will largely depend on the accuracy of the
QSAR model.
The retest method found more true hits on both the

simulated and CHEMBL data sets, but on the PubChem data
sets the performance was very similar both with and without
retests. This is due to the data set differences, with actives
being more difficult to identify on the PubChem data sets.
Figures 11 and 12 show that, on the PubChem data sets, hits
are still being identified at the end of the active learning
process, whereas in the equivalent figure for the simulated data
set (Figure 4) the number of true hits plateaus approximately
halfway through the process, showing that all identifiable true
hits were found at this point. This difference means that hits
are relatively easy to find by doing new experiments on the
PubChem data set at all points in the process, reducing any
benefit of performing retests. It is expected that, if the active
learning process was continued on the PubChem data sets, the
retesting methods would eventually become favorable.
Further work could be done on alternative retest methods;

these could allow for multiple retests and use the prediction
variance, measured activity, and predicted activity to selectively
retest compounds. The retests could also be done at the end of
the process after a fixed number of batches, potentially giving
better performance if the accuracy of the QSAR model
improves throughout the process. Additionally, choosing a
retest policy depending on the data set to maximize learning
performance could be explored.
Data and software availability. The code and the data sets

used in these experiments are available on github at https://
github.com/hugobellamy/JCIM-ALNoise.

■ CONCLUSION
This work demonstrated that batched Bayesian optimization
techniques remain effective in noisy environments and that the
greedy and PI acquisition metrics preform the best at all noise
levels on the tested data sets. Adding noise causes the relative
performance of different acquisition metrics to change and
makes the absolute performance of the active learning worse. A
comparison of results between simulated data and data sets for
CHEMBL and PUBCHEM showed that the suitability of

Figure 19. True hits found using active learning, both with and
without retests, on the simulated data set for the predicted
improvement (PI) and greedy acquisition metrics with the indicated
batch size. Noise added using α = 0.2 in eq 3. The graph shows the
mean of 10 runs, and the error bars indicate the standard deviation.
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different acquisition metrics depends on the data set, surrogate
model, and amount of noise. Relatively small amounts of noise
can cause many molecules to be misidentified as inactive, and
the choice of acquisition metric does not affect the rate at
which these molecules are misidentified.
The use of a simple retest policy will increase the amount of

correctly identified hits in a fixed number of experiments. In
the simulated and CHEMBL data sets the retest policy caused
more hits to be found, and on the PubChem data set it resulted
in no change to the number of correctly identified hits. This
effectiveness of the retest policy was demonstrated with various
hit frequencies, and the potential for alternative retest
methods, which depend on the hit frequency, was discussed.
The retest method was also shown to be applicable for a wide
range of batch sizes allowing it to be used flexibly in various
active learning procedures.
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