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Abstract: Inhibiting the tubulin-microtubules (Tub-Mts) system is a classic and rational approach
for treating different types of cancers. A large amount of data on inhibitors in the clinic supports
Tub-Mts as a validated target. However, most of the inhibitors reported thus far have been developed
around common chemical scaffolds covering a narrow region of the chemical space with limited
innovation. This manuscript aims to discuss the first activity landscape and scaffold content analysis
of an assembled and curated cell-based database of 851 Tub-Mts inhibitors with reported activity
against five cancer cell lines and the Tub-Mts system. The structure–bioactivity relationships of the
Tub-Mts system inhibitors were further explored using constellations plots. This recently developed
methodology enables the rapid but quantitative assessment of analog series enriched with active
compounds. The constellations plots identified promising analog series with high average biological
activity that could be the starting points of new and more potent Tub-Mts inhibitors.

Keywords: activity landscape; analog series; chemical space; cell-based assays; chemoinformatics;
drug discovery; constellation plots; microtubules; scaffold; structure–property relationships

1. Introduction

The α,β-tubulin heterodimer is the basic structural unit of microtubules. It is one of
the most studied cancer therapy targets due to its significant role in cellular and tumor
proliferation. It actively participates in forming the centrosome, an essential organelle,
during the G2/M phase of the cell cycle [1]. The microtubule’s dynamic activity is guided
by a polymerization and depolymerization process which can be modified by interaction
with small molecules with different binding sites on the Tub-Mts system, e.g., colchicine,
taxanes, pironetin, vinca alkaloids, and laulimalide derivatives, as shown in Figure 1. In
this way, the modulation of polymerization/depolymerization of the microtubules allows
for pharmacological regulation of the cell cycle, which is a crucial event in cancer [2].
According to the U.S. National Institute of Health (www.clinicaltrials.gov, accessed on 23
April 2021), there are several ongoing clinical studies in different phases related to tubulin
inhibition: I (1604 studies), II (3771 studies), III (1410 studies), and IV (182 studies), that are
analyzing colchicine derivatives (e.g., ombrabulin), taxanes (e.g., docetaxel), vinca alkaloids
(e.g., ALB 109564) or laulimalide derivatives (e.g., epothilone D and eribulin). Although
currently there are no pironetin analogs in clinical trials, pironetin is the first compound
found to have the ability to covalently bind to microtubules, which gives it the capacity to
inhibit the growth of cancer cells that are resistant to conventional treatments (derivatives
of the vinca or paclitaxel) [3]. The small molecules are of synthetic, semi-synthetic, or
natural origin. Figure 1 shows that the main binding sites are distributed along the
microtubule. Additionally, the flexibility of microtubules’ quaternary structure has limited
classical structure-based drug design approaches, such as rigid molecular docking. Several
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manuscripts that report predictive quantitative structure–activity relationships (QSAR)
and machine learning models for compounds interacting with the Tub-Mts system have
been published [4–11]. These studies have focused on the biological activity measured in
biochemical assays. However, there are no reports on the quantitative analysis of the SAR
of Tub-Mts system modulators tested in cell-based assays.
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Figure 1. Schematic representation of the tubulin-binding sites on microtubules and chemical
structures of representative inhibitors of the Tub-Mts system [2].

One consistent approach to characterize the SAR of compound datasets is through
the systematic pairwise comparison of the structure with the activity. This approach,
termed “activity landscape modeling” [12,13], is based upon the similarity principle, i.e.,
structurally similar compounds have similar activity. Activity landscape modeling can be
generalized to “property landscape modeling”, where “property” includes a biological
activity measured in vitro biochemical assays, cell-based, or any other type of activity with
a measurable outcome. This approach identifies activity cliffs (AC), i.e., pairs of compounds
with high structural similarity but large potency differences [14]. Depending on the work
scope, an AC, which constitutes a significant exception to the similarity principle, can have
beneficial or detrimental effects. For instance, an AC leads directly to essential structural
information that influences the activity (property) [14]. Several quantitative and/or visual
approaches have been published to characterize the activity (property) landscapes [15] of
compounds with one or several endpoints over the past few years.

Virtual screening methods initially deal with many compounds, until they are reduced
to a manageable quantity [16]. Each type of evaluation has its challenges and complexity
in regard to in vitro assays (e.g., biochemical or cell-based assays). It is not uncommon that
compounds which are active in biochemical assays are inactive in cell-based assays. Each
system (biochemical or cell-based assays) allows for analyzing the properties of different
compounds, evaluating their pros and cons depending on the costs and how representative
each system can be for the proposed study. This is shown schematically in Figure 2 [17].
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Figure 2. Schematic overview of the differences between biochemical and cell-based assays on the hit-to-lead process for
drug discovery. Adapted from Mateus et al. [17].

A common and significant issue in the early phases of drug discovery, particularly in
large screening campaigns, is the large number of false positives. This large number can
be reduced by analyzing cell-based data instead of biochemical data. However, cell-based
data do not provide direct information concerning the specific mechanism of action [17].
SAR studies are typically performed using activity obtained from biochemical assays, with
quantitative measures of half-maximal inhibitory concentration (IC50), inhibitory constant
(Ki), or the percentage of inhibition [18]. The same happens in the particular case of activity
(property) landscape studies [19]. Given that sizable cellular diversity exists and there are
significant differences in the outcomes of biochemical and cell-based data analyses, the
present study uses cell-based inhibition information to characterize the activity landscape
of a herein generated dataset of Tub-Mts inhibitors reported in the literature.

The main goal of this work was to explore and describe the activity landscape and
scaffold content [19] of a database built and curated herein, with 851 Tub-Mts inhibitors
tested on cell-based assays and reported in the literature. To achieve the main goal, we
analyzed the chemical space, structural chemical diversity, and scaffold content of the
Tub-Mts inhibitors’ dataset.

2. Materials and Methods
2.1. Dataset

We assembled a dataset of 851 compounds tested as Tub-Mts inhibitors and with
reported bioactivity in different cancer cell lines [20–40]. All compounds were retrieved
from original and review articles and patents over a period of 15 years (2005–2020). The
list of information sources is shown in Table S1 in the Supplementary Materials. The
compounds were classified based on the bioactivity on different types of cancer cell lines:
cervix (HeLa), colon (HCT-116), breast (MCF-7 and MDA-MB-231), lung (A-549), or prostate
(PC3). The canonical SMILES [41] of the structures and pIC50 (−log IC50) values are listed
in Table S1 in the Supplementary Materials. Duplicate molecules were removed using
Molecular Operating Environment (MOE) software, version 2019 [42].
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2.2. Chemical Space

Standard 2D chemical features were used to characterize the chemical space. The
chemical space analysis focused on six physicochemical properties (PCP) of pharmaceutical
relevance: octanol/water partition coefficient (cLog P), molecular weight (MW), topological
polar surface area (TPSA), number of rotatable bonds (RB), number of hydrogen bond
donors, and number of hydrogen bond acceptors (HBD/HBA). PCP-based clustering using
t-distributed stochastic neighbor embedding (t-SNE) [43] was generated with DataWarrior,
version 5.2.1 [44].

2.3. Activity Landscape Modeling

A structure–activity similarity (SAS) map is a two-dimensional graph suited for SAR
analysis of compound datasets tested against a molecular target or a biological outcome.
SAS maps are based on the concept of the activity landscape. They are suited for the
rapid identification of AC, defined as compounds with a high structural similarity but
unexpected large activity differences [45]. SAS maps also enable one to identify scaffold
hops (SH), defined as compounds with low structural similarity due to differences in their
scaffold but similar biological activity [45].

SAS maps were generated via systematic pairwise comparisons of the 851 compounds
tested as Tub-Mts inhibitors. The structural similarity was calculated with the extended
connectivity fingerprint 4 (ECFP4) (systematically records the neighborhood of each hydro-
gen atom at a distance of 4 bonds, for each atom within a molecule) [46] and the Tanimoto
coefficient. This was represented on the X-axis to generate the map. The activity difference
(pIC50 differences between each pair of compounds, e.g., if the pIC50 of compound “A” is 5
and the pIC50 of compound “B” is 7, the difference in activity of the pair of compounds
A–B would be 2) was plotted on the Y-axis. The four major regions in the SAS map were
defined using thresholds along the X- and Y-axis. There are several rational approaches
to determine the thresholds [47]. In this work, the criteria to select the X-axis threshold
was the “mean + two standard deviations” of the similarity values of compounds in the
dataset (calculated with Tanimoto and the ECFP4 fingerprint). The threshold of the activity
difference (Y-axis) was set to two logarithmic units [48].

The data points in the SAS map were further colored by the corresponding Structure–
Activity Landscape Index (SALI) value [47]. This index, as implemented in Activity
Landscape Plotter [47], quantifies AC using the equation proposed by Guha and Van Drie:

SALI I,J = ((|Ai − Aj|)/(1 − sim(i,j)))

where Ai and Aj are the activities of the ith and the jth molecules, and sim (i,j) is the
similarity coefficient between the two molecules (in this work, computed with the ECFP4
fingerprint and the Tanimoto coefficient). Quantitative analysis of the SAS maps was done
with Activity Landscape Plotter, a web server freely available at http://132.248.103.152:
3838/ActLSmaps/ (accessed on 23 April 2021) [48].

2.4. Scaffold Content Analysis

To study the molecular scaffolds, we used the methodology implemented by Bemis
and Murcko [49]. Briefly, the method involves a graph analysis for each compound where
a “scaffold” is defined as the union of ring systems and linkers in a molecule, and the
side chains are removed (any non-ring, non-linker atoms). This was done with the RDKit
Fragments node implemented in KNIME, version 3.7.2 [50]. The chemical structures of the
scaffolds are available in Table S2 of the Supplementary Materials.

2.5. Constellation Plot

A constellation plot is a graphical representation of chemical space based on networks
and coordinates. Each node represents a group of chemical analog series. In other words, a
constellation plot reduces the number of points depicted in chemical space representations,

http://132.248.103.152:3838/ActLSmaps/
http://132.248.103.152:3838/ActLSmaps/
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while increasing the quality and volume of data legibly represented in a 2D chemical space
plot. They aim to group analogs that share a common core, which can be compared with
other cores and their corresponding associated molecules [51]. A constellation plot was
generated using free Python code published elsewhere [52]. RDKit was used for computing
Morgan fingerprints and to handle the chemical structures (http://www.rdkit.org, accessed
on 23 April 2021); Scikit-learn was used for computing the t-SNE (scaffold-based clustering).
The output file was adapted to be viewed interactively using the DataWarrior software
(see the file “out_FinalData.dwar” in the Supplementary Materials). This is the first
interactive constellation plot reported so far.

3. Results and Discussion

As mentioned in the Introduction Section, most of the Tub-Mts system’s reported
inhibitors are derivatives of four main principal structures, as shown in Figure 1. Thus,
to further develop the inhibitors of the Tub-Mts system, it is common to first perform
cell-based screening, followed by a screening using a biochemical assay (i.e., tubulin poly-
merization) of the most active compounds. The new series of compounds lack information
about the mechanism of action and the specific binding site in tubulin. Therefore, we em-
ployed chemoinformatic approaches to explore the SAR of 851 compounds with reported
cell-based inhibitory activity.

Although there are advantages to using data based on cell line inhibition, there are
also disadvantages. For example, the bioactivity results reported in the literature depend
on the type of test and protocol used. Hence, it is not possible to compare each compound
directly against another, and approximations have to be made to explore the SAR. In this
scenario, this work aims to fill part of the information gaps left by conventional SAR and
QSAR studies.

3.1. Chemoinformatics Approaches
3.1.1. Chemical Space

Figure 3A shows a visual representation of the chemical space of the 851 compounds
using t-SNE coordinates based on the six PCP of pharmaceutical interest described in the
Materials and Methods Section. The box plot analysis of the common drug-like properties
for drug discovery is shown in Figure 3B–G. The figure shows the data summarized
using the information presented by the box plots. Such as, in panel B (cLog P), the active
compounds (green area) have values of around 2.5 to 4.0, and the inactive compounds (red
area) have higher values. This information can be used to generate new knowledge about
this kind of inhibitor, e.g., generally, compounds with cLog P values higher than four are
inactive. It is important to note that the average PCP values of compounds are different,
depending on the tubulin’s binding site. For example, the cLog P values of vinca-like
inhibitors (e.g., vinblastine derivatives) are higher than those of colchicine-like inhibitors;
in other words, vinca derivatives are more lipophilic than colchicine derivatives. This can
be deduced from the higher number of aromatic and non-aromatic rings of vinblastine
than colchicine (Figure 1).

http://www.rdkit.org
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Figure 3. Overview of physicochemical properties of 851 compounds tested in cell-based assays. Compounds are colored
by ranges of biological activity values: Green as active (<1 µM) and red as less-active (>1 µM). The compounds were
grouped by binding site: vinca site (V), paclitaxel site (T), pironetin (P), laulimalide (L), and colchicine site (C). (A) Visual
representation of the chemical space using t-SNE; (B–G) Box plots of the drug-like properties commonly used in the
drug design and development process. (B) cLog P; (C) number of H bond acceptors; (D) TPSA (topological surface area);
(E) number of H bond donors; (F) RB (rotatable bonds); (G) MW (molecular weight). The boxes enclose data points with
values in the first and third quartile. The red and black triangles denote the mean and median distributions, respectively.
The data points outside of the boxes indicate outliers; (H) Summary statistics of the dataset.
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3.1.2. Activity Landscape Modeling

Following the activity landscape concept described in the Introduction and Meth-
ods Sections, we analyzed the SAR of the 851 compounds tested in cell-based assays.
Figure 4A,B shows the SAS map and amplification on the AC zone, respectively. Each
point represents a pair of compounds that are colored by SALI values, using a color scale
from green (low SALI value, i.e., non-AC) to red (high SALI value, i.e., AC). The informa-
tion helps identify small structural changes in molecules that decrease or increase their
bioactivity. Interestingly, 97% of the data points correspond to a series of compounds
with low structural similarity: 67% are SH (compounds with low structural similarity and
low activity differences or high activity similarity). This result is indicative of the high
structural diversity of the compounds in this dataset. Figure 4B,C depicts the chemical
structures of representative AC.
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Figure 4. Structure-activity similarity (SAS) map of compounds with activity against Tub-Mts system using cell-based
inhibition data. (A) General activity landscape of compounds. The activity cliffs and scaffold hops zone was defined
by a black and red dotted line, respectively; (B) activity cliff zone. Data points are colored by SALI value using a
continuous scale from low (green) to high (red); (C) representative activity cliffs. Activity marked as (*) is a representative
value of the activity reported in different cell lines. The similarity was calculated with the Tanimoto coefficient and the
ECFP4 fingerprint.

We emphasize that the bioactivity data were derived from cell-based assays. Therefore,
it involves the affinity of these compounds with the main target (Tub-Mts system) and also
with the ability to interact favorably with a biological (cellular) system, e.g., consider the
membrane barriers and non-specific bindings (see Introduction Section). In addition to
Figures 1, 4 and 5 illustrates other representative compounds and scaffolds with bioactivity
reported against the Tub-Mts system. Except for compound 3BB (designed to interact



Molecules 2021, 26, 2483 8 of 14

with the laulimalide binding site), all other compounds shown were designed to interact
with the colchicine binding site. However, as emphasized above, the precise binding site
remains to be elucidated using biophysical assays.
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3.1.3. Scaffold Content Analysis

Figure 6A shows an overview of the ten most common scaffolds of compounds
tested in cell-based assays against the Tub-Mts system. In contrast, Figure 6B shows a
landscape with the most bioactive compounds’ IDs (and their respective scaffold identifiers).
Figure 6B plots the pIC50 Max values (maximum IC50 value reported in any cell line)
in relationship with a list of compounds (and its respective scaffolds) represented by
each point. The dotted line represents the “cliff path” of activity from one compound
(and its respective scaffolds) to another. For example, compound 3D is more bioactive
(pIC50 Max = 10.1) than 17ZZ (pIC50 Max = 9.6), and the latter, in turn, is more bioactive
than 10III (pIC50 Max = 9.2). In Figure 6B, the compounds (represented by points) are
colored by a color scale, from red (lower similarity value to the colchicine scaffold) to blue
(higher similarity to the colchicine scaffold).
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Figure 6. Scaffold content analysis of compounds with activity against Tub-Mts system using cell-based inhibition data.
(A) Frequency of most common scaffolds. The scaffolds were generated using Bemis and Murcko’s definition; (B) scaffolds
of the most active compounds and activity differences. The pIC50 values plotted were the most active values reported
independently of the cell line (pIC50 Max). Each compound identifier (ID) and each scaffold identifier (SID) are shown
for each structure. Each scaffold is colored by the low (red) or high (blue) similarity value to the colchicine’s Bemis and
Murcko scaffold.

Interestingly, only S128, S140, and S165 (common scaffolds) are contained in five,
four, and four cases, respectively, of the most active compounds. Representative exam-
ples of the most active compounds with common scaffolds are 22HH, 4OO, and 20TT
(see Figure S1 in the Supplementary Materials which illustrates other active compounds
that were not found in the AC or scaffold hops sections). In other words, they are scaffolds
(Bemis–Murcko) that are not necessarily contained in the most active compounds. The
complete list of scaffolds is in Table S2 in the Supplementary Materials.
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3.1.4. Constellation Plot

Constellation plots were developed as a graphical representation of SAR to integrate
coordinate-based chemical space representation with analog series. These plots summarize
the scaffolds content of a dataset and show the scaffold diversity and their mutual structural
relationships [51]. Since the biological activity data can be mapped into a constellation
plot, these two-dimensional representations of the chemical space enable the identification
of whole regions in chemical space rich in SAR annotations, either active (“bright” SAR
in analogy with chemical space) or inactive (“dark regions”), where few or no active
molecules have been found. Figure 7 shows the constellation plot of Tub-Mts inhibitors (an
interactive version of the plot that can be visualized with DataWarrior and is available in
the Supplementary Materials).
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point’s size indicates the relative number of compounds in each analog series, and the color is the average activity of the
compound in the series.

From the initial compound database, the chemical structures of 851 inhibitors have
been summarized into 142 analog series (illustrated in Figure 7), which further summarize
the 258 Bemis–Murcko scaffolds in Table S2 (Supplementary Materials). Of note, com-
pounds with different Bemis–Murcko scaffolds share a structural fraction (that is not a
complete scaffold). This explains why molecules with different scaffolds are contained
in the same analog series. An analog series considers the synthetic route to generate the
compounds which are based on RECAP (retrosynthetic rules) [53]. In contrast, Bemis–
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Murcko scaffolds do not consider synthetic rules; these remove each compound’s side
chains. Additionally, the constellation plots order the analog series using similarity-based
coordinates, i.e., analog series with similar chemical structures are closely ordered be-
cause they share similar X and Y coordinates in the 2D plots. In contrast, analog series
with more different chemical structures remain far apart. As mentioned in the Materials
and Methods Section, the similarity and coordinate data are not comparable between
Figure 4A,B (calculated similarity between pairs of compounds) and Figure 7 (calculated
similarity between analog series).

The analog series ID, SMILES, coordinates (t-SNE coordinates), average activity (av-
erage of pIC50), compounds contained per analog series, and standard deviations are
included in the file “out_FinalData.dwar” in the Supplementary Materials.

Figure 7 illustrates representative “dark” and “bright” inhibitors of chemical space.
Each point in the graph corresponds to a complete analog series and the data points are
colored by the average pIC50 of all compounds in that particular analog series. The average
activity is colored using a scale from blue (less active) to red (more active). The size of
each point represents the relative number of molecules contained in the analog series.
Additionally, linking lines represent shared molecules between two analog series.

The constellation plot in Figure 7 shows the clear identification of “dark regions” in
the SAR in the chemical space of Tub-Mts inhibitors, e.g., the analog series in light blue
with low average pIC50 values: AS16, AS23, AS68, AS92 and AS96. The plot also aids
the identification of promising analog series or “emerging bright stars” in the chemical
space, e.g., the analog series in green-to-red color with high average pIC50 values, AS2,
AS9, AS43, AS112, AS130, and AS133. Although these analog series have been explored
on a limited basis (between two and three compounds, as depicted by the smaller size of
the data point in Figure 7) they have a high average activity. Thus, these analog series
could be the future of new and potent inhibitors. However, and despite their high average
activity, some series (e.g., AS112) could still have limitations such as their difficult synthetic
accessibility or poor pharmacokinetic profile.

Figure S2 in the Supplementary Materials shows a summary of the major analog
series (constellations in chemical space) related to the chemical structures of four principal
inhibitors of the Tub-Mts system (illustrated in Figure 1). The analog series (constellations)
with labels AS16, AS23, AS68, and AS112 in Figure 7 are analog series of compounds that
interact with the vinca binding site. The analog series AS2, AS9, AS43, AS130, and AS133
in Figure 7 interact with the colchicine binding site. Other representative examples are the
analog series AS96 and AS107 (Figure 7), which include compounds that interact with the
pironetin and paclitaxel binding sites, respectively. Of note, there were no analog series for
inhibitors that interact with the laulimalide binding site since none of them complied with
the retrosynthesis rules (RECAP) considered in this work, so they are not visualized in the
constellation plot.

4. Conclusions

The present work explored and described the first activity landscape and scaffold
content analysis of a newly assembled and curated cell-based database of 851 Tub-Mts
inhibitors with reported activity against five cancer cell lines and the Tub-Mts system. The
study revealed that the current Tub-Mts inhibitors are a series of compounds with limited
molecular and scaffold diversity. It was also concluded that there are differences in the
physicochemical profile that depend on the inhibitors’ binding site (e.g., against colchicine,
vinca, pironetin, paclitaxel, or laulimalide binding site). Cell-based data implicitly contain
information that is not possible to analyze via biochemical assays. We propose using this
information to generate SAR and QSAR predictive methods to reduce the error rate in
biological evaluations of novel inhibitors of the Tub-Mts systems. Additionally, Tub-Mts
system’s inhibitors were explored using constellation plots; this novel visualization of
the SAR of chemical datasets led to the identification of promising analog series with
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high average pIC50 values (e.g., AS2, AS9, AS43, AS112, AS130, and AS133); these analog
series could be the starting point of new and potent Tub-Mts inhibitors.

Supplementary Materials: The following are available online, Table S1: Compound dataset, Table
S2: List of Bemis–Murcko scaffolds, Figure S1: Active compounds that were not found in the AC or
scaffold hops sections, Figure S2: Summary of major analog series related to the chemical structures
of four principal inhibitors by the Tub-Mts system, out_FinalData.dwar: Interactive output to be
viewed using the DataWarrior software.
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