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Multiparameter continuous physiological monitoring (MCPM) technologies are critical in the clinical 
management of high-risk neonates; yet, these technologies are frequently unavailable in many 
African healthcare facilities. We conducted a prospective clinical feasibility study of EarlySense’s 
novel under-mattress MCPM technology in neonates at Pumwani Maternity Hospital in Nairobi, 
Kenya. To assess feasibility, we compared the performance of EarlySense’s technology to Masimo’s 
Rad-97 pulse CO-oximeter with capnography technology for heart rate (HR) and respiratory rate 
(RR) measurements using up-time, clinical event detection performance, and accuracy. Between 
September 15 and December 15, 2020, we collected and analyzed 470 hours of EarlySense data from 
109 enrolled neonates. EarlySense’s technology’s up-time per neonate was 2.9 (range 0.8, 5.3) hours 
for HR and 2.1 (range 0.9, 4.0) hours for RR. The difference compared to the reference was a median 
of 0.6 (range 0.1, 3.1) hours for HR and 0.8 (range 0.1, 2.9) hours for RR. EarlySense’s technology 
identified high HR and RR events with high sensitivity (HR 81%; RR 83%) and specificity (HR 99%; RR 
83%), but was less sensitive for low HR and RR (HR 0%; RR 14%) although maintained specificity (HR 
100%; RR 95%). There was a greater number of false negative and false positive RR events than false 
negative and false positive HR events. The normalized spread of limits of agreement was 9.6% for 
HR and 28.6% for RR, which met the a priori-identified limit of 30%. EarlySense’s MCPM technology 
was clinically feasible as demonstrated by high percentage of up-time, strong clinical event detection 
performance, and agreement of HR and RR measurements compared to the reference technology. 
Studies in critically ill neonates, assessing barriers and facilitators to adoption, and costing analyses 
will be key to the technology’s development and potential uptake and scale-up.

With an estimated 6700 newborn deaths every day globally, 47% of all deaths in children under 5 years of age  
occurred within the first month of  life1. The highest neonatal mortality rate is in sub-Saharan Africa with 27 
deaths per 1000 live births, a rate 10 times higher than rates in high-income  countries2. In high-income coun-
tries, multiparameter continuous physiological monitoring (MCPM) technologies can be critical in the clinical 
management of high-risk neonates; yet, these technologies are frequently unavailable in resource-constrained 
settings. At Kenyatta National Hospital in Nairobi, only 3 to 24% of neonates were observed to have their vital 
signs recorded within the first hour of life, and more than half (56%) did not receive heart rate (HR) or respiratory 
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rate (RR) recordings on their first day of hospital  admission3. At 6 hospitals in Nairobi county, missed vital signs 
monitoring and other nursing tasks have been associated with nursing shortages and high patient  workloads4. 
MCPM technologies could help to improve quality of neonatal care by expanding nurses’ capacities to moni-
tor more neonates regularly and efficiently. There is a need for innovations in neonatal care that allow for early 
detection of critical events and timely intervention for major morbidities and are appropriate for use in resource-
constrained health  facilities5,6.

EarlySense’s Insight MCPM technology is a wireless, contactless, piezoelectric sensor pad that can be placed 
under a neonate’s mattress to detect ballistic vibrations from respiratory chest wall movement and cardioballis-
tic movements from ejection of blood (Fig. 1)7. Information from the sensor pad is analyzed using artificial 
intelligence-based analytics and transmitted to a monitor to provide alert indications and vital sign trends. A 
report that includes HR, RR, movement readings, and alarms is automatically generated and can be printed and/
or integrated into hospital electronic medical record systems. The projected cost of commercial acquisition of 
EarlySense’s technology is about $150 USD per unit, with no disposable costs greater than the purchase cost over 
the life of the technology. In a previous clinical trial, we evaluated the accuracy of this novel MCPM technol-
ogy to measure HR and RR in neonates when compared to a verified reference  technology8. We also completed 
qualitative assessments of the feasibility, usability, and acceptability among healthcare personnel and caregivers 
by conducting in-depth interviews and  observations9,10.

While medical technologies may be accurate in more controlled settings, also critical to evaluate are their 
accuracy and the clinical feasibility of use in uncontrolled, real-world settings. These types of evaluation are often 
not adequately conducted, which has implications for the technology’s eventual adoption, uptake, and scale-up. 
A novel medical technology’s use in practice may be limited if clinical feasibility performance is not evaluated 
and the findings incorporated during technology development. To address this, we evaluated EarlySense’s MCPM 
technology’s clinical feasibility in a large public maternity hospital in Africa. We specifically assessed EarlySense’s 
technology using objective measures of feasibility that included up-time (periods of adequate signal quality), 
clinical event detection performance, and sustained accuracy in a real-world  environment11.

Methods
Study design and participants. This prospective, observational, facility-based, clinical validation study 
was conducted in Nairobi, Kenya at Pumwani Maternity Hospital (PMH), the largest referral maternity hospital 
in sub-Saharan Africa. PMH has no neonatal intensive care unit. To recruit participants, trained study clinicians 
approached caregivers of neonates delivered at or admitted to PMH, obtained informed consent, and assessed 
the neonate for all inclusion and exclusion criteria (Table 1). Final eligibility determination was dependent on the 
results of the medical history, clinical examination, appropriate understanding of the study by the caregiver, and 
completion of the written informed consent process. Caregivers who were included in the study gave informed 
consent for both themselves and their respective neonate to participate.

Figure 1.  (a) Overview of the research set-up showing Masimo’s Rad-97 technology with touchscreen interface 
(1), pulse oximeter probe (2), and NomoLine nasal cannula for capnography (3), and EarlySense’s processing 
unit (4) and under-mattress sensor (5). (b) Close-up of EarlySense’s sensor under a mattress. EarlySense’s sensor 
is connected to the processing unit that processes, stores data and sends results wirelessly to the remote display 
unit where the data are presented.
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The study was conducted in accordance with the Declaration of Helsinki and Guideline for Good Clinical 
Practice/International Standards Organization (ISO) 14155 to ensure accurate, reliable, and consistent data 
collection. The study protocol was approved by Western Institutional Review Board (20191102), Aga Khan 

Table 1.  Study eligibility criteria, endpoints, and definitions.

Eligibility criteria

Inclusion

Neonate with corrected age of < 28 days requiring admission to the 
high dependency unit at Pumwani Maternity Hospital for prematu-
rity or other clinical indication(s) based on the attending physician’s 
assessment
Caregiver(s) willing and able to provide informed consent and avail-
able for follow-up for the duration of the study

Exclusion

Receiving continuous positive airway pressure or mechanical ventila-
tion
Skin abnormalities in the nasopharynx and/or oropharynx
Contraindication to skin sensor application
Known arrhythmia
Congenital abnormality requiring major surgical intervention
Any medical or psychosocial condition or circumstance that would 
interfere with study conduct or for which study participation could 
put the neonate’s health at risk

Study endpoints

Up-time duration of EarlySense’s technology compared to the reference technology
Diagnostic performance of EarlySense’s technology compared to the reference technology for clinical event detection including sensitivity, 
specificity, positive predictive value, negative predictive value, and ratio of false negative-to-false positive events
Agreement between EarlySense’s technology and the reference technology for heart rate (HR) and respiratory rate (RR)

Study definitions

Total time attached

Measured in minutes as non-zero values recorded by the technology 
starting 10 min after technology placement and 5 min before discon-
nection; the 5-min periods before and after neonate removal from 
the mattress (EarlySense’s technology) or disconnection (reference 
technology) were also removed

Up-time
Measured in minutes as the total time the sensor was attached that 
met the a priori-identified adequate signal quality limits for each 
technology

Signal quality, high and adequate

HR
EarlySense’s technology—high signal quality for every second, we 
evaluated the preceding 59 s in addition to the current second to 
ensure that at least 30 (50%) seconds demonstrated a proprietary HR 
signal quality index ≥ 70; adequate signal quality for every second, 
we evaluated the preceding 59 s in addition to the current second to 
ensure that at least 15 (25%) seconds demonstrated a proprietary HR 
signal quality index ≥ 25
Reference technology—for every second, we evaluated the preceding 
59 s in addition to the current second to ensure that at least 30 (50%) 
seconds demonstrated a signal quality index (Masimo SQI) > 150
RR
EarlySense’s technology—high signal quality for every second, we 
evaluated the preceding 59 s in addition to the current second to 
ensure that at least 42 (70%) seconds demonstrated a proprietary RR 
signal quality index ≥ 70; adequate signal quality for every second, 
we evaluated the preceding 59 s in addition to the current second to 
ensure that at least 15 (25%) seconds demonstrated a proprietary RR 
signal quality index ≥ 25
Reference technology—for every second, we evaluated the preceding 
59 s in addition to the current second to ensure that at least 30 (50%) 
seconds demonstrated no capnography exceptions, indicating low RR 
quality (RR exceptions ≤ 1), and a capnography quality score ≥ 2

Event second Any second that contains a high or low HR or RR event for either 
EarlySense’s technology or the reference technology

Event window

A 10-min window centered from 5 min before to 5 min after the 
first event second noted by the reference technology; no overlapping 
windows are allowed, so event seconds less than 5 min from the end 
of the previous event window result in the new event window starting 
immediately following the previous window

True positive event Any reference technology event window containing at least 1 event 
second identified by EarlySense’s technology

False negative event A reference technology event window containing no event seconds 
recorded by EarlySense’s technology

False positive event An event recorded by EarlySense’s technology outside the reference 
technology’s event window

True negative event Any 10-min window with no events recorded by either EarlySense’s 
technology or the reference technology

Clinically significant event Any false negative or false positive event that would likely require a 
clinician to institute a change in clinical practice
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University Nairobi Research Ethics Committee (2019/REC-02), and Kenya Pharmacy and Poisons Board 
(19/05/02/2019(078)). The trial was registered with ClinicalTrials.gov, NCT03920761.

Procedures. Each enrolled neonate with one neonate per cot was simultaneously and continuously moni-
tored with EarlySense’s technology and Masimo’s Rad-97 pulse CO-oximeter with capnography as the verified 
reference standard. We selected this reference technology based on its ability to extract and record high reso-
lution data, and perform neonatal capnography and pulse oximetry, and its compact design enabling bedside 
monitoring. Real-time HR and RR data were collected from both technologies for a duration of at least 1 hour 
and continued until neonates were discharged and exited from the study. Up-time, clinical event detection per-
formance, and HR and RR measurements data were collected by both technologies (Table 1). Great care was 
taken to ensure participation in the study did not interfere with or unnecessarily delay the clinical care of the 
neonates.

Outcomes. Study outcomes included comparisons between EarlySense’s technology’s and the reference 
technology’s total time attached and up-time, event detection of high and low HR and RR events, and agreement 
of HR and RR measurements (Table 1).

Data processing and analysis. We calculated the total number of minutes the sensors were attached and 
the up-time for each technology. The first step in the automated event detection process was to assess the quality 
of the measurements from both technologies, with periods of adequate signal quality data referred to as up-time 
(Table 1). For EarlySense’s technology, we obtained HR and RR every second along with a proprietary signal 
quality index. We retrieved raw data collected in real-time from the reference technology with a custom Android 
application. Data was parsed in C (Dennis Ritchie & Bell Labs, USA) to obtain plethysmograph waveform and 
plethysmograph quality index (PO-SQI) data at 62.5 Hz (Hz), and capnography (carbon dioxide  (CO2)) wave-
form data at approximately 20 Hz. We analyzed  CO2 waveform data using a breath detection algorithm devel-
oped in MATLAB (Math Works, USA) based on adaptive pulse  segmentation12. HR and RR were obtained from 
intra-beat and intra-breath intervals, respectively. We developed a custom algorithm based on capnography 
features to determine the capnography quality index  (CO2-SQI). For detecting events, upper limits for HR and 
RR were individualized for each neonate and were calculated to be 20% for HR and 15% for RR greater than the 
respective baseline value once the neonate was settled (approximately 15 minutes after monitoring was started), 
but no less than 140 beats/minute for HR and 40 breaths/minute for RR. Lower limits for HR and RR for all 
neonates were static values of 80 beats/minute for HR and 15 breaths/minute for RR. Using EarlySense’s technol-
ogy, high and low HR and RR events were identified in real-time using the above a priori-determined criteria; 
no modification or post-processing was performed. Reference technology data were processed following data 
collection to extract HR and RR values and identify high and low events. We developed a custom algorithm to 
identify, aggregate, and categorize all high and low HR and RR events.

High and low HR and RR events were identified during overlapping up-time from both technologies. Events 
were identified by looking at the previous minute of data for both technologies. An event was identified if the 
1-minute median and the recent 10-second median both met adequate signal quality and the upper or lower 
alarm values for HR or RR. We used a custom algorithm to aggregate events from the two technologies into 
10-minute windows categorized as true positive, false negative, false positive, or true negative for both high and 
low HR and RR individually (Table 1, Fig. 2). To gather insight around the signal quality threshold for EarlySense’s 
technology, we conducted two analyses, one including only the a priori higher signal quality (≥ 70) data and one 
including all adequate signal quality (≥ 25) data.

Manual adjudication of algorithmically identified events detected in the higher signal quality data was per-
formed by a panel of trained neonatologists to review false negative and false positive events and to identify those 
that were clinically significant (Table 1). Adjudication packages consisting of visualizations of false negative and 
false positive HR and RR events and adjudication checklists (Supplementary Fig. S1) were developed and dis-
seminated to the panel of adjudicators. To ensure the robustness of this process, false negative and false positive 
events were independently reviewed by two adjudicators and a third adjudicator reconciled the results if there 
was disagreement. Confusion matrices were generated to evaluate the EarlySense technology’s event detection 
ability. The matrices categorized all events for both pre- and post-adjudication results and included accuracy, 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and false negative-to-
false positive ratio for high and low HR and RR.

Using the higher signal quality dataset, agreement between EarlySense’s technology and the reference tech-
nology was evaluated as the normalized bias and the normalized spread between the 95% limits of agreement 
(LOA) calculated by dividing the bias and spread between the 95% LOA by the overall reference HR or RR 
mean  value13. Based on the reference technology verification phase, an acceptable a priori-identified normalized 
spread between the 95% upper and lower LOA of 30% was selected for both RR and  HR14. We also calculated the 
root-mean-square deviation (RMSD) for each comparison. Data analyses were completed with R version 4.0.2.

Results
Between September 15 and December 15, 2020, 116 neonates were enrolled, 109 of whom were included for 
analysis (Supplementary Fig. S2). Seven neonates were excluded due to less than 1 hour recording duration with 
EarlySense’s technology. No adverse events occurred due to monitoring with the technologies and after moni-
toring was finished, all enrolled neonates remained in stable condition until discharge to home. Included in the 
analysis were 57 females and 52 males. Median estimated age was 0 (interquartile range 0, 2) days, median gesta-
tional age was 39 (range 37, 41) weeks, and median weight was 3.0 (range 2.3, 3.4) kilograms. Common primary 
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and secondary diagnoses included sepsis or suspected sepsis (26; 23.9%), asphyxia (25; 22.9%), respiratory dis-
tress syndrome (24; 22.0%), prematurity (17; 15.6%), meconium aspiration syndrome (16; 14.7%), and jaundice 
(16; 14.7%) (Supplementary Table S3).

We collected and included 470 hours of data for HR and RR from EarlySense’s technology in the higher signal 
quality dataset, and 423 hours of HR data and 351 hours of RR data from the reference technology (Fig. 3). In the 
higher signal quality dataset analysis, the difference compared to the reference was a median of 0.6 (range 0.1, 
3.1) hours for HR and 0.8 (range 0.1, 2.9) hours for RR; overall, this was 54 (16%) hours less for HR and 42 (17%) 
hours less for RR. In the higher signal quality dataset analysis, the mean up-time per neonate for EarlySense’s 
technology was 2.9 (range 0.8, 5.3) hours for HR and 2.1 (range 0.9, 4.0) hours for RR; the mean up-time per 
neonate for the reference technology was 3.3 (range 1.2, 5.7) hours for HR and 2.5 (range 0, 4.4) hours for RR. 
Reducing the quality threshold to adequate (≥ 25) resulted in one additional hour of HR and 5 additional hours 
of RR of total up-time for EarlySense’s technology.

EarlySense’s technology identified the majority (67%) of HR events (Table 2). There was a greater number 
of false negative and false positive RR events than false negative and false positive HR events. Using the higher 
signal quality dataset, EarlySense’s technology’s high HR and RR event detection showed high accuracy, sensi-
tivity, specificity, PPV, and NPV, and a low false negative-to-false positive events ratio (Supplementary Fig. S4). 
EarlySense’s technology’s low HR and RR event detection demonstrated high accuracy, specificity, NPV, and 
false negative-to-false positive events ratio, but were lower in sensitivity and PPV. The few additional hours of 
adequate signal quality data in our analyses resulted in minimal overall changes in event detection.

For HR monitoring, there were minimal changes in accuracy, sensitivity, specificity, PPV, NPV, and false 
negative-to-false positive events ratio observed between pre- and post-adjudication of events (Table 2, Sup-
plementary Fig. S4). Following adjudication of 178 false negative and false positive events, only 1 false negative 

Figure 2.  Event identification schema by automated algorithm. (a) Events were identified in order: true positive 
and false negative, false positive, and true negative events. (b) Examples of how the algorithm identified events 
in different scenarios.
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high RR event was deemed clinically significant. Performance generally improved following adjudication for RR 
events; however, there was minimal improvement in low RR event sensitivity (14% to 17%) due to the infrequent 
occurrence of low RR events.

HR agreement indicated a minimal normalized bias of − 0.5% (95% CI − 0.7, − 0.4), a normalized spread of 
LOA of 9.6%, and a normalized RMSD of 2.5% (Fig. 4a). RR agreement indicated a normalized bias of − 2.0% 
(95% CI − 2.4, − 1.5), a normalized spread of LOA of 28.6%, and a normalized RMSD of 7.6% (Fig. 4b). The a 
priori-identified limit of 30% for the normalized spread of LOA was met for both HR and RR.

Figure 3.  Total time technology attached and up-time.

Table 2.  Clinical event detection. Pre-adjudication with adequate signal quality analysis (Pre-A); pre-
adjudication with higher signal quality analysis (Pre-H); post-adjudication (Post); positive predictive 
value (PPV); negative predictive value (NPV); false negative event to false positive event ratio (FN:FP). 
Accuracy = (True positive + True negative)/(True positive + True negative + False negative + False positive); 
Sensitivity = True positive/(True positive + False negative); Specificity = True negative/(True negative + False 
positive); PPV = True positive/(True positive + False positive); NPV = True negative/(True negative + False 
negative).

High heart rate Low heart rate High respiratory rate Low respiratory rate

Pre-A Pre-H Post Pre-A Pre-H Post Pre-A Pre-H Post Pre-A Pre-H Post

Event

True positive 65 60 72 0 0 0 634 407 506 10 1 1

True negative 1458 1206 1206 1529 1251 1251 292 198 198 653 279 293

False positive 26 15 10 3 3 3 29 42 12 90 14 1

False negative 20 14 7 1 1 1 411 83 14 12 6 5

Statistical summary

Accuracy 97% 98% 99% 100% 100% 100% 68% 83% 96% 87% 93% 98%

Sensitivity 77% 81% 90% 0% 0% 0% 61% 83% 97% 46% 14% 17%

Specificity 98% 99% 99% 100% 100% 100% 91% 83% 94% 88% 95% 100%

PPV 71% 80% 86% 0% 0% 0% 96% 91% 97% 10% 7% 50%

NPV 99% 99% 99% 100% 100% 100% 42% 71% 93% 98% 98% 98%

FN:FP 1:1.3 1:1.1 1:1.4 1:3 1:3 1:3 1: 0.1 1:0.5 1:0.9 1:7.5 1:2.3 1:0.2
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Figure 4.  Bland–Altman plots of measured (a) heart rate (HR) and (b) respiratory rate (RR) as measured by 
EarlySense’s and the reference technologies. Colors indicate which participant neonate is associated with the 
measurement pair.
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Discussion
We found EarlySense’s MCPM technology to be clinically feasible in a large public maternity hospital in Africa, 
as demonstrated by the technology’s up-time when the neonate was physically on the mattress, the clinical event 
detection performance, and the agreement of HR and RR measurements compared to the reference technology. 
Agreement of neonatal HR and RR measurements between EarlySense’s technology and the verified reference 
technology in this real-world clinical environment was similar to what we found in a more controlled clinical 
trial at a better-resourced hospital with a neonatal intensive care  unit8. There was high agreement between 
EarlySense’s and the reference technologies’ event detection of high and low HR and high RR events, which 
further improved post-adjudication. With so few low RR events among the neonates we evaluated, we were 
not able to robustly assess EarlySense’s technology in this respect. Of note, given that EarlySense’s algorithm is 
programmed to identify apneic events using more than just low RR, their technology does not use low RR as an 
independent event detection threshold.

To be clinically feasible and effective, a technology would need to avoid excessive alarms resulting from false 
positive events and suppress transient artifacts without missing clinically significant events. Typically, this would 
be accomplished by employing an appropriate delay before alarm generation. EarlySense’s technology detected 
few false positive events. This bodes well for the technology’s ability to reliably detect true positive clinical events 
and to generate critical alarms to allow healthcare providers to respond without also causing unnecessary alarms 
that could lead to alarm fatigue.

The major limitation to EarlySense’s under-mattress technology is that continuous monitoring cannot occur 
when the neonate is out of bed, especially during breastfeeding and kangaroo mother care. Notably, the reference 
technology’s capnography cannula is also removed when the neonate is out of bed. We did not test EarlySense’s 
technology when there was more than one neonate per cot although no special mattress or cot was used to 
improve the performance of the technology; thus, we do not know how EarlySense’s technology would perform 
when neonates have to share cots.

Our evaluation, analyses, and adjudication may have been constrained by the a priori signal quality limits we 
chose, which were relatively arbitrary. The a priori signal quality limits were selected to mitigate confusion that 
could have arisen if poor quality signals were used for event detection. We chose to treat event detection as if it 
had happened in real-time. Given that only 1 hour of HR and 5 hours of RR data were excluded from the higher 
signal quality data analysis, these limits may have been appropriate to include the majority of the monitoring 
data. The analyses including all adequate signal quality data demonstrated marginal degradation in event detec-
tion performance for both HR and RR.

There were relatively few clinically significant events, despite the prolonged duration of monitoring, and we 
did not allow either technology to generate alarms that may have impacted clinical outcomes. Of note, we lim-
ited our comparison to the detection of low RR and did not evaluate the detection of apnea since the reference 
device did not detect any episodes of apnea. A clinically useful monitor should be able to detect life-threatening 
apnea associated with bradycardia and desaturation. For this reason, direct comparison between EarlySense’s 
technology and the reference technology was not feasible. Another limitation was that the study population was 
relatively healthy and critically ill neonates did not appear to be included, and thus, few life-threatening events 
were recorded. This limits the generalizability of our evaluation; the technology would benefit from being evalu-
ated in different populations and settings. In addition, we did not explore clinical outcomes or impact.

Despite these limitations, the study results from this and a previous accuracy evaluation in Kenya indicate 
that EarlySense’s contactless MCPM technology performs well when used to measure neonatal HR and RR as 
compared to the more invasive Masimo Rad-97 reference  technology8. Evaluating the accuracy and the clinical 
feasibility of medical technologies remains a critical and necessary step in product development and use. Under-
standing the technology and its use cases is important to better appreciate how these technologies (and their 
alarms) could change clinical practice and management of neonates, especially in these resource-constrained set-
tings where the high patient-to-provider ratios severely limits quality of care. Studies of monitoring technologies 
in neonates have largely been limited to high-income countries. Established methods for continuous HR and RR 
monitoring exist, but factors such as invasiveness, time-consuming application, and high cost have contributed 
to feasibility concerns in resource-constrained settings. Novel contactless technologies such as EarlySense’s tech-
nology may be able to address these concerns while also avoiding skin irritation and distress to the vulnerable 
neonate; however, notably, EarlySense’s technology does not include oxygen saturation monitoring which may 
be considered critical to neonatal care.

Use of clinically accurate and feasible MCPM technologies have the potential to improve quality of neonatal 
care. It will be critical to evaluate EarlySense’s technology in more preterm and critically ill neonates, assessing 
the threshold and adaptive alerts provided by the technology, to consider barriers and facilitators to adoption, 
and to conduct costing studies. This type of information and feedback will be key to the technology’s develop-
ment as well as its successful uptake and scale-up.

Data availability
De-identified individual participant data, raw reference data, and a data dictionary will be made available on 
publication through moderated approvals supported by Vivli.org. In addition, the study protocol, statistical 
analysis plan, and the informed consent form will be made available. We have ethics approval to deposit the data 
in an open access repository upon completion of the study.

Received: 29 September 2021; Accepted: 9 February 2022
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